JPS63203730A - Production of high-purity metal bismuth - Google Patents

Production of high-purity metal bismuth

Info

Publication number
JPS63203730A
JPS63203730A JP3454487A JP3454487A JPS63203730A JP S63203730 A JPS63203730 A JP S63203730A JP 3454487 A JP3454487 A JP 3454487A JP 3454487 A JP3454487 A JP 3454487A JP S63203730 A JPS63203730 A JP S63203730A
Authority
JP
Japan
Prior art keywords
bismuth
metal
crude
purity
biocl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3454487A
Other languages
Japanese (ja)
Inventor
Toshiaki Ito
寿章 伊藤
Yuichi Owa
大輪 裕一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP3454487A priority Critical patent/JPS63203730A/en
Publication of JPS63203730A publication Critical patent/JPS63203730A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To produce metal Bi which has extremely high purity and is usable as a raw material for electronic materials by producing crude BiCl3 from crude metal Bi, subjecting the same to a hydrolysis treatment after rectification to form BiOCl and subjected the same to hydrogen reduction. CONSTITUTION:The crude metal Bi having about 99.99% purity is placed on a quartz boat and is put into a quartz tube. While gaseous chlorine is run in the quartz tube, the metal is heated to effect reaction in a 450-700 deg.C range to produce the crude BiCl3. After the crude BiCl3 is dropped into pure water to from the BiOCl by the hydrolysis reaction. The BiOCl is cleaned and dried and is put into a boat made of high-purity graphite. The BiOCl is heated to 700-900 deg.C in gaseous hydrogen flow and is thereby subjected to the hydrogen reduction. The Bi which has the extremely high purity and is usable as the raw material for various electronic materials is thus produced at a high yield of the raw material and at low cost.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は粗金属ビスマスから純度99.9909重量%
以上の高純度金属ビスマスを製造する方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention is based on the invention, which is made from crude metal bismuth with a purity of 99.9909% by weight.
The present invention relates to a method for producing the above-mentioned high-purity metal bismuth.

〔従来の技術〕[Conventional technology]

電気光学効果、光伝導特性機能を持つB112SiOz
B112SiOz with electro-optic effect and photoconductive properties
.

や、シンチレータ用材料のB14Ge30t2、Bit
2Ge02゜なとの酸化物結晶の原料として、できるだ
け高純度の酸化ビスマス(旧203)が必要であり、こ
の酸化ビスマスの原料となる金属ビスマス(Bi)の高
純度化が求められている。
and scintillator material B14Ge30t2, Bit
As a raw material for oxide crystals such as 2Ge02°, bismuth oxide (formerly 203) of as high purity as possible is required, and there is a demand for high purity metal bismuth (Bi), which is the raw material for this bismuth oxide.

金属ビスマスは粗金属ビスマスの電解精製又は酸化ビス
マスの還元て得るのが一般的で、その純度はf19.9
9重量%程度が限度であり、さらに純度を高めるため従
来はゾーン精a法が用いられている。この方法によれば
99.999重量%程度の金属ビスマスを得ることがで
きるが、この方法てはコスト、量産なとの面から難点が
あり、また分配係数が1に近い元素や、1より大きい元
素については精製が困難で、さらに高純度のものを得る
ことができなかった。
Bismuth metal is generally obtained by electrolytic refining of crude metal bismuth or reduction of bismuth oxide, and its purity is f19.9.
The limit is about 9% by weight, and in order to further increase the purity, the zone a method has conventionally been used. According to this method, metal bismuth of about 99.999% by weight can be obtained, but this method has disadvantages in terms of cost and mass production, and it also has problems with elements with distribution coefficients close to 1 or larger than 1. It was difficult to purify the elements, and it was not possible to obtain even higher purity ones.

〔発明が解決しようとする問題点ン 本発明の目的は、上記従来法の欠点を解消し、電子材料
等の原料に使用される純度99.9999重量%以上の
高純度の金属ビスマススを収串良(、且つ低コストで得
ることができる高純度金属ビスマスの製造方法を提供す
ることにある。
[Problems to be Solved by the Invention] The purpose of the present invention is to eliminate the drawbacks of the above-mentioned conventional methods and to efficiently collect bismuth metal with a purity of 99.9999% by weight or higher, which is used as a raw material for electronic materials, etc. (The object of the present invention is to provide a method for producing high-purity metal bismuth that can be obtained at low cost.)

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

この目的を達成するために本発明の方法は、粗金属ビス
マスを450〜700℃で塩素ガスと反応させて粗三塩
化ビスマスを生成させ、該三塩化ビスマスを蒸留又は精
留して精製三塩化ビスマスを回収し、該精製三塩化ビス
マスを加水分解してオキシ塩化ビスマスとした後、該オ
キシ塩化ビスマスを700〜900℃の水素気流中で還
元するように構成したものである。
To achieve this objective, the method of the present invention involves reacting crude metal bismuth with chlorine gas at 450-700°C to produce crude bismuth trichloride, and distilling or rectifying the bismuth trichloride to produce purified trichloride. It is configured to collect bismuth, hydrolyze the purified bismuth trichloride to produce bismuth oxychloride, and then reduce the bismuth oxychloride in a hydrogen stream at 700 to 900°C.

〔作用〕[Effect]

本発明では粗金属ビスマスを石英製の容器に入れ、容器
内を不活性ガスで充分置換した後塩素ガスを流し、金属
ビスマスを450〜700℃、好マシくは500〜60
0℃で過剰の塩素ガスと反応させ三塩化ビスマスを生成
させる。
In the present invention, crude metal bismuth is placed in a quartz container, and after sufficiently replacing the inside of the container with an inert gas, chlorine gas is passed through the container, and the metal bismuth is heated to a temperature of 450 to 700°C, preferably 500 to 600°C.
Bismuth trichloride is produced by reacting with excess chlorine gas at 0°C.

(28i+ 3 CI2→2BiC13)塩素化での反
応温度を450〜700℃とするのは450℃以下では
反応が遅<、700℃以上では反応が激しいため危険で
あるからである。好ましくは500〜600℃での反応
が穏やかであり最も好ましい、この三塩化ビスマスを回
収し、石英製の蒸留器、好ましくは精留器を用い常圧で
精製を行う。
(28i+3CI2→2BiC13) The reaction temperature in chlorination is set at 450 to 700°C because below 450°C the reaction is slow and above 700°C the reaction is violent and dangerous. This bismuth trichloride, which is most preferable because the reaction is mild at 500 to 600° C., is recovered and purified at normal pressure using a quartz distiller, preferably a rectifier.

蒸留器又は精留器の塔頂温度が三塩化ビスマスの沸点で
ある約450℃になってから全還流させ、塔内を平衡状
態に到達させた後留出を開始し、三塩化ビスマス重量の
5〜lO%を初留として分離し、その後の留分80〜9
0%を水留として回収する。
When the top temperature of the distiller or rectifier reaches about 450°C, which is the boiling point of bismuth trichloride, total reflux is carried out, and after reaching an equilibrium state in the column, distillation is started, and the weight of bismuth trichloride is 5-10% is separated as the first distillate, and subsequent fractions 80-9
0% is recovered as water fraction.

蒸留又は精留で初留の量を三塩化ビスマス重量の5〜l
O%とするのは低沸点物の混入を避けるためであり、1
0%以上とすると収率が悪くなるので好ましくない。ま
た水留を80〜90%に止めたのも高沸点物が混入しな
いようにしたためである。
Distillation or rectification reduces the amount of initial distillation to 5 to 1 liters of bismuth trichloride weight.
The reason for setting O% is to avoid contamination with low boiling point substances, and 1
If it exceeds 0%, the yield will deteriorate, which is not preferable. Also, the reason why the water distillation was limited to 80-90% was to prevent high boiling point substances from being mixed in.

得られた精製三塩化ビスマスは過剰の純水(5MΩ以上
)中に滴下しオキシ塩化ビスマスとする。
The obtained purified bismuth trichloride is dropped into excess pure water (5 MΩ or more) to obtain bismuth oxychloride.

(BiC13+  1120→旧OC1+2Hε1)三
塩化ビスマスを加水分解してオキシ塩化ビスマスとする
のは、三塩化ビスマスのままで水素還元を行うと回収率
が悪いためである。
(BiC13+ 1120→old OC1+2Hε1) The reason why bismuth trichloride is hydrolyzed to bismuth oxychloride is that hydrogen reduction of bismuth trichloride as it is results in a poor recovery rate.

得られたオキシ塩化ビスマスは洗浄乾燃後700〜90
0℃で水素気流中で水素還元を行い金属ビスマスを得る
The obtained bismuth oxychloride has a molecular weight of 700 to 90 after washing and dry combustion.
Metallic bismuth is obtained by hydrogen reduction in a hydrogen stream at 0°C.

(2旧OC1+3Ha→2 Bi’ + 2 HCI 
+ 21hO)ここで得た金属ビスマスは酸洗して表面
酸化物を除去することにより高純度金属ビスマスを得る
ことができる。オキシ塩化ビスマスの還元温度を700
〜900℃としたのは、700℃以下では還元速度が遅
<、900℃以上では金属ビスマスの回収率が悪(なる
からである。
(2 old OC1+3Ha→2 Bi' + 2 HCI
+21hO) High purity metal bismuth can be obtained by pickling the metal bismuth obtained here to remove surface oxides. The reduction temperature of bismuth oxychloride is 700.
The reason for setting the temperature to 900°C is that below 700°C, the reduction rate is slow, and above 900°C, the recovery rate of metal bismuth is poor.

〔実施例〕〔Example〕

実施例1 不純物を含有した純度99.99%の金属ビスマス10
00gを石英ボートにのせ石英管内に入れ、管内を充分
窒素ガスで置換した後塩素ガス500cc/分を通じ、
800℃で7時間反応させて三塩化ビスマス1480g
を得た。この三塩化ビス、マスを石英製の内容a I 
EXの精留フラスコに入れ、高さ80caの充填式カラ
ム精留器の塔頂温度が約450℃になってから10分間
全還流を行い、次いで10分間初留を回収し、以後2時
間水留を回収した。得られた水留の三塩化ビスマスは1
12℃1gであった。この三塩化ビスマスを過剰の純水
(5MΩ)中に滴下し、完全にオキシ塩化ビスマスにし
てレバルプ洗浄、乾燥を行って乾量902gのオキシ塩
化ビスマスを得た。これを高純度黒鉛ボート(こ入れ8
00℃の水素気液中で3時間水素還元を行い、10%の
硝酸で酸洗し金属ビスマス 635gを得た。使用した
原料及び得られた高純度金属ビスマス中の不純物の含有
量を第1表に示す、市た比較のためゾーン精製法によっ
て得たものの不純物の含有量も併せて第1表に示す。
Example 1 99.99% pure metal bismuth 10 containing impurities
00g was placed on a quartz boat and put into a quartz tube, and after the inside of the tube was sufficiently replaced with nitrogen gas, chlorine gas was passed through at 500cc/min.
1480g of bismuth trichloride after reacting at 800℃ for 7 hours
I got it. This bistrichloride mass is made of quartz content a I
After the top temperature of a packed column rectifier with a height of 80 ca reached approximately 450°C, total reflux was performed for 10 minutes, the initial distillate was collected for 10 minutes, and water was then heated for 2 hours. The residue was collected. Bismuth trichloride of the obtained water distillate is 1
It was 1g at 12°C. This bismuth trichloride was dropped into excess pure water (5 MΩ) to completely convert it into bismuth oxychloride, and was washed and dried to obtain 902 g of dry bismuth oxychloride. Add this to a high-purity graphite boat.
Hydrogen reduction was performed in a hydrogen gas liquid at 00°C for 3 hours, and pickling was performed with 10% nitric acid to obtain 635 g of metal bismuth. Table 1 shows the raw materials used and the content of impurities in the high-purity bismuth metal obtained. Table 1 also shows the content of impurities in the material obtained by the zone refining method for comparison.

この結果から高純度金属ビスマス中の不純物の合計は0
.78ρpmであり、最終収率は83.5%であった。
From this result, the total amount of impurities in high-purity metal bismuth is 0.
.. The final yield was 83.5%.

実施例2 不純物を゛含有した純度99.9%の金属ビスマスを実
施例1と同様に処理をした結果を同じ<11!1表に示
す、この結果から高純度金属ビスマス中の不純物の合計
は0.40ρp−であり、最終収率は81.0%であっ
た。
Example 2 The results of treating 99.9% pure metal bismuth containing impurities in the same manner as in Example 1 are shown in the same <11!1 table. From this result, the total impurities in high purity metal bismuth are The final yield was 81.0%.

〔効果〕〔effect〕

本発明によれば純度99.91399重量%以上の高純
度金属ビスマスを安定して製造することができる。
According to the present invention, high purity metallic bismuth having a purity of 99.91399% by weight or more can be stably produced.

また不純物含有量の多い粗金属ビスマスを用いた場合に
も、当初の蒸留を繰り返すことにより高純度の金属ビス
マスを得ることが可能であり、その工業的価値は大なる
ものがある。
Furthermore, even when crude metal bismuth containing a large amount of impurities is used, it is possible to obtain highly pure metal bismuth by repeating the initial distillation, which has great industrial value.

Claims (1)

【特許請求の範囲】[Claims] 粗金属ビスマスを450〜700℃で塩素ガスと反応さ
せて粗三塩化ビスマスを生成させ、該三塩化ビスマスを
蒸留又は精留して精製三塩化ビスマスを回収し、該精製
三塩化ビスマスを加水分解してオキシ塩化ビスマスとし
た後、該オキシ塩化ビスマスを700〜900℃の水素
気流中で還元することを特徴とする高純度金属ビスマス
の製造方法。
Crude metal bismuth is reacted with chlorine gas at 450 to 700°C to produce crude bismuth trichloride, the bismuth trichloride is distilled or rectified to recover purified bismuth trichloride, and the purified bismuth trichloride is hydrolyzed. A method for producing high-purity metal bismuth, which comprises reducing the bismuth oxychloride in a hydrogen stream at 700 to 900°C.
JP3454487A 1987-02-19 1987-02-19 Production of high-purity metal bismuth Pending JPS63203730A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3454487A JPS63203730A (en) 1987-02-19 1987-02-19 Production of high-purity metal bismuth

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3454487A JPS63203730A (en) 1987-02-19 1987-02-19 Production of high-purity metal bismuth

Publications (1)

Publication Number Publication Date
JPS63203730A true JPS63203730A (en) 1988-08-23

Family

ID=12417244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3454487A Pending JPS63203730A (en) 1987-02-19 1987-02-19 Production of high-purity metal bismuth

Country Status (1)

Country Link
JP (1) JPS63203730A (en)

Similar Documents

Publication Publication Date Title
JP4465961B2 (en) Method for producing disilicon hexachloride
US4112057A (en) Process for purifying halogenosilanes
US2311466A (en) Chlorination of metal bearing materials
DE3310828A1 (en) METHOD FOR PRODUCING SILICON
US3261664A (en) Process for the production and separation of titanium tetrachloride from crystalline ferrous chloride
US2416191A (en) Method for the purification of titanium tetrachloride
EP0319857B1 (en) Method for producing titanium fluoride
US3041145A (en) Production of pure silicon
US4515762A (en) Process for processing waste gases resulting during the production of silicon
DE3642285C1 (en) Process for working up residues of a chlorosilane distillation
US5171549A (en) Process for decreasing the level of impurities in zirconium chloride, titanium chloride and hafnium chloride
US2844441A (en) Process of purifying liquid silicon halide
JPS6053093B2 (en) How to recover titanium from slag
JPS63203730A (en) Production of high-purity metal bismuth
US2820698A (en) Process for purifying silicon halide
US4794204A (en) Process for the removal of dimethyl ether in methyl chloride
US3760071A (en) PROCESS FOR TREATING BY-PRODUCT TITANIUM TETRACHLORIDE FROM PYROGENIC TiO{11 {11 PRODUCTION
JPH04300206A (en) Purification of silicon chloride
JPH02196014A (en) Production of high purity dichlorosilane
JPS63203731A (en) Production of high-purity metal bismuth
JPS6325221A (en) Manufacture of ticl4
US2924624A (en) Process for preparing carbon tetrafluoride of at least 90 percent purity
US2530735A (en) Purification of titanium halides
US3207581A (en) Process for purifying boron trichloride
US2457917A (en) Purification of titanium halides by treatment with metal hydrides and distillation