JPH08197063A - Apparatus for producing deionized water - Google Patents
Apparatus for producing deionized waterInfo
- Publication number
- JPH08197063A JPH08197063A JP7025834A JP2583495A JPH08197063A JP H08197063 A JPH08197063 A JP H08197063A JP 7025834 A JP7025834 A JP 7025834A JP 2583495 A JP2583495 A JP 2583495A JP H08197063 A JPH08197063 A JP H08197063A
- Authority
- JP
- Japan
- Prior art keywords
- deionized water
- ion
- ion exchanger
- anion exchange
- anion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A20/00—Water conservation; Efficient water supply; Efficient water use
- Y02A20/124—Water desalination
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
- Treatment Of Water By Ion Exchange (AREA)
- Water Treatment By Electricity Or Magnetism (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、脱イオン水製造装置に
関するものであり、更に詳しくは、イオン交換体とイオ
ン交換膜を組み合わせて脱イオン水を製造する自己再生
型の脱イオン水製造装置に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for producing deionized water, and more specifically, an apparatus for producing deionized water of a self-regeneration type which produces deionized water by combining an ion exchanger and an ion exchange membrane. It is about.
【0002】[0002]
【従来の技術と発明が解決すべき課題】脱イオン水の製
造方法としては、イオン交換樹脂の充填床に被処理水を
流し、不純物イオンをイオン交換樹脂に吸着させて除去
し脱イオン水を得、吸着能力の低下したイオン交換樹脂
は酸やアルカリを用いて再生する方法が広く使用されて
いる。しかしながら、この方法においては再生に使用し
た酸やアルカリの廃液が排出される問題があり、そのた
め再生の必要のない脱イオン水の製造方法が望まれてい
る。2. Description of the Related Art As a method for producing deionized water, water to be treated is flowed through a packed bed of ion exchange resin to remove impurity ions by adsorbing and removing the impurity ions on the ion exchange resin. A method of regenerating an ion exchange resin having a reduced adsorption capacity with an acid or an alkali is widely used. However, this method has a problem that the waste liquid of the acid or alkali used for the regeneration is discharged, and therefore a method for producing deionized water that does not require regeneration is desired.
【0003】このような観点から、近年イオン交換樹脂
とイオン交換膜を組み合わせた自己再生型の電気透析脱
イオン水製造方法も注目されている。この方法は、陰イ
オン交換膜と陽イオン交換膜とを交互に配置した電気透
析装置の脱塩室に陰イオン交換体と陽イオン交換体の混
合物を入れ、この脱塩室に被処理水を流しながら電圧を
印加して電気透析を行なうことにより脱イオン水を製造
する方法である。From such a point of view, a self-regenerating type electrodialysis deionized water production method in which an ion exchange resin and an ion exchange membrane are combined has recently attracted attention. In this method, a mixture of an anion exchanger and a cation exchanger is placed in a desalting chamber of an electrodialysis device in which an anion exchange membrane and a cation exchange membrane are alternately arranged, and water to be treated is placed in the desalting chamber. It is a method of producing deionized water by applying voltage while flowing and performing electrodialysis.
【0004】この方法に関して、脱塩室の幅と厚みを限
定する方法(特開昭61−107906)や、脱塩室に
収容するイオン交換樹脂の径を均一にしたものを使用す
る方法(特開平3−207487)、被処理水が最初に
通過する部分に充填するイオン交換樹脂をアニオン交換
樹脂にする方法(特開平4−71624)、脱塩室に充
填するイオン交換体をイオン交換樹脂とイオン交換繊維
の混合物にする方法(特開平5−277344)などが
検討されているが、脱塩室に入れるイオン交換体として
イオン交換樹脂を用いる場合には表面積が小さいため、
効率的な脱塩と再生が行なわれず、得られる水の純度の
安定性に問題があった。Regarding this method, a method of limiting the width and thickness of the desalting chamber (Japanese Patent Laid-Open No. 61-107906) or a method of using an ion exchange resin having a uniform diameter in the desalting chamber (special feature) Kaihei 3-207487), a method in which the ion exchange resin filled in the portion through which the water to be treated first passes is anion exchange resin (Japanese Patent Laid-Open No. 4-71624), and the ion exchanger filled in the desalting chamber is the ion exchange resin. A method of forming a mixture of ion exchange fibers (Japanese Patent Laid-Open No. 5-277344) has been studied, but when an ion exchange resin is used as an ion exchanger to be placed in the desalting chamber, the surface area is small,
There was a problem in the stability of the purity of the obtained water because efficient desalting and regeneration were not performed.
【0005】また、脱塩室に入れるイオン交換体として
イオン交換繊維を用いる場合には、機械的強度が十分で
なく長時間運転すると破砕したり、カチオン交換繊維と
アニオン交換繊維の分散が不均一化したりして得られる
水の純度が不安定になるという欠点があった。更にこれ
らの混合物であっても同様な問題があった。When ion-exchange fibers are used as the ion-exchanger in the desalting chamber, they have insufficient mechanical strength and are crushed when operated for a long time, or the cation-exchange fibers and the anion-exchange fibers are dispersed unevenly. There was a drawback that the purity of water obtained by liquefying becomes unstable. Further, even these mixtures have the same problem.
【0006】これらの欠点を補う方法として、ポリエチ
レンやポリプロピレンなどの不織布に放射線グラフトを
行なってイオン交換基を導入する方法(特開平5−64
726、特開平5−131120)や、イオン交換ポリ
マ−と補強材ポリマ−を海島構造の複合繊維形態とした
後シ−ト状にしたもの(特開平6−79268)が提案
されているが、放射線を使用したり、複合繊維を作成す
る工程が複雑であり、均一なイオン交換体が簡便にしか
も安定的に得られないという欠点があった。As a method for compensating for these drawbacks, a method of introducing a ion-exchange group by performing radiation grafting on a nonwoven fabric such as polyethylene or polypropylene (Japanese Patent Laid-Open No. 5-64).
726, JP-A-5-131120), and a sheet-shaped composite fiber of an ion exchange polymer and a reinforcing polymer, which is then formed into a sheet (JP-A-6-79268). There is a drawback in that a uniform ion exchanger cannot be obtained easily and stably, because the process of using radiation or the process of producing a composite fiber is complicated.
【0007】本発明の目的は、従来技術が有していた前
述の欠点を解消しようとするものであり、脱イオン水が
安定的に得られる脱イオン水製造装置を提供することで
ある。An object of the present invention is to solve the above-mentioned drawbacks of the prior art, and to provide a deionized water producing apparatus capable of stably obtaining deionized water.
【0008】[0008]
【課題を解決するための手段】本発明は前述の問題点を
解決すべくなされたものであり、陰極と陽極の間に、陽
イオン交換膜と陰イオン交換膜とを交互に配列させた電
気透析槽の脱塩室にイオン交換体を収容してなる脱イオ
ン水製造装置において、イオン交換体がポリオレフィン
またはポリフルオロオレフィンからなる膜状の多孔性材
料をスルホン化またはクロロスルホン化した後、これに
陰イオン交換性ポリマ−溶液を含浸して陰イオン交換性
ポリマ−を担持させたものである脱イオン水製造装置を
提供するものである。SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and an electrical structure in which a cation exchange membrane and an anion exchange membrane are alternately arranged between a cathode and an anode. In a deionized water production apparatus in which a deionization chamber of a dialysis tank contains an ion exchanger, the ion exchanger is sulfonated or chlorosulfonated from a membrane-like porous material made of polyolefin or polyfluoroolefin, The present invention provides a deionized water production apparatus in which an anion-exchangeable polymer solution is impregnated with and an anion-exchangeable polymer is supported.
【0009】本発明においては、多孔性材料としてポリ
オレフィンまたはポリフルオロオレフィンが用いられ
る。脱イオン水製造装置の脱塩室では、脱塩と同時に水
解離が起こり、酸とアルカリを発生させてイオン交換体
を再生するため、酸、アルカリ耐性に優れる材料を選択
することが必要であり、この観点から上記材料が好まし
く用いられる。In the present invention, polyolefin or polyfluoroolefin is used as the porous material. In the desalination chamber of the deionized water production equipment, water dissociation occurs simultaneously with desalination to generate acid and alkali to regenerate the ion exchanger, so it is necessary to select a material with excellent acid and alkali resistance. From this viewpoint, the above materials are preferably used.
【0010】本発明で使用されるポリオレフィンまたは
ポリフルオロオレフィンからなる多孔性材料としては、
例えばポリエチレン、ポリプロピレン、ポリ−4−メチ
ルペンテン−1、ポリフッ化ビニリデン、ポリテトラフ
ルオロエチレン、ヘキサフルオロプロピレン/テトラフ
ルオロエチレン共重合体、フルオロオレフィン系モノマ
−/オレフィン系モノマ−共重合体等を挙げることがで
きるが、反応性、成形加工性、膜強度等の観点からポリ
エチレン、ポリプロピレン、ポリエチレン/ポリテトラ
フルオロエチレン共重合体、ポリフッ化ビニリデン、お
よびそれらの混合体は好ましい材料である。The porous material composed of polyolefin or polyfluoroolefin used in the present invention includes:
For example, polyethylene, polypropylene, poly-4-methylpentene-1, polyvinylidene fluoride, polytetrafluoroethylene, hexafluoropropylene / tetrafluoroethylene copolymer, fluoroolefin-based monomer / olefin-based monomer copolymer and the like can be mentioned. However, polyethylene, polypropylene, polyethylene / polytetrafluoroethylene copolymer, polyvinylidene fluoride, and mixtures thereof are preferable materials from the viewpoint of reactivity, moldability, film strength and the like.
【0011】本発明における多孔性材料は、イオン交換
基が導入されたイオン交換体の形態にて、その多孔度
は、脱塩室に収容乃至充填した際の状態で20〜95
%、中でも30〜90%、特には40〜80%が好まし
い。多孔度が20%より低いと脱塩室の水が流れ難く処
理水量が低下し、95%より高いとイオンの吸着、脱塩
が十分に行なわれず、更に脱塩室の電気抵抗も上昇する
ため好ましくない。多孔度が30〜90%であると処理
水純度が高いものが得られ、更に40〜80%であると
性能安定性にも優れており好ましい。The porous material of the present invention is in the form of an ion exchanger into which an ion exchange group is introduced, and its porosity is 20 to 95 when it is stored or filled in the desalting chamber.
%, Especially 30 to 90%, and particularly 40 to 80% is preferable. If the porosity is lower than 20%, the water in the desalting chamber will not flow easily and the amount of treated water will be reduced. If the porosity is higher than 95%, adsorption of ions and desalting will not be sufficiently carried out, and the electrical resistance of the desalting chamber will also increase. Not preferable. When the porosity is 30 to 90%, a high treated water purity can be obtained, and when it is 40 to 80%, the performance stability is also excellent, which is preferable.
【0012】また多孔性材料は、イオン交換基が導入さ
れたイオン交換体の形態にて、そのの膜厚は、脱塩室に
収容した際の状態で0.1〜10mm、中でも0.3〜
5mm、特には0.5〜2mmのものが好ましい。膜厚
が0.1mmより薄いと膜強度が低下し、10mmより
厚いと脱塩室の電気抵抗が高くなるので好ましくない。
膜厚が0.3〜5mmであると、膜強度と抵抗の両方を
満足し、更に0.5〜2mmであると耐久力および性能
安定性も優れ好ましい。The porous material is in the form of an ion exchanger into which an ion exchange group is introduced, and the film thickness of the porous material is 0.1 to 10 mm when accommodated in the desalting chamber, and particularly 0.3. ~
It is preferably 5 mm, particularly 0.5 to 2 mm. If the film thickness is less than 0.1 mm, the film strength will decrease, and if it is more than 10 mm, the electrical resistance of the desalting chamber will increase, which is not preferable.
When the film thickness is 0.3 to 5 mm, both film strength and resistance are satisfied, and when it is 0.5 to 2 mm, durability and performance stability are excellent, which is preferable.
【0013】多孔性材料をスルホン化またはクロロスル
ホン化する方法としては、濃硫酸を使用する方法やクロ
ロスルホン酸を使用する方法やトリエチルホスフェ−ト
/無水硫酸錯体を使用する方法等が挙げられる。Examples of the method for sulfonation or chlorosulfonation of the porous material include a method using concentrated sulfuric acid, a method using chlorosulfonic acid and a method using a triethyl phosphate / sulfuric acid anhydride complex. .
【0014】スルホン化またはクロロスルホン化した多
孔性材料の陽イオン交換基のイオン交換容量は、0.5
〜4ミリ当量/g乾燥樹脂、中でも1〜3ミリ当量/g
乾燥樹脂のものが好ましく用いられる。イオン交換容量
が0.5ミリ当量/g乾燥樹脂より小さいと脱塩室にお
いてイオンの吸着が十分に行なわれず処理水の純度が低
下し、電気抵抗も高くなり好ましくない。イオン交換容
量が4ミリ当量/g乾燥樹脂より大きいと多孔性材料の
強度が著しく低下し、使用中に破砕するので好ましくな
い。イオン交換容量が1〜3ミリ当量/g乾燥樹脂であ
ると、脱塩性能も優れ、電気抵抗も低いので低電圧で純
度の高い処理水が得られ好ましい。The ion exchange capacity of the cation exchange groups of the sulfonated or chlorosulfonated porous material is 0.5.
~ 4 meq / g dry resin, especially 1-3 meq / g
A dry resin is preferably used. If the ion exchange capacity is smaller than 0.5 meq / g dry resin, the adsorption of ions is not sufficiently carried out in the desalting chamber, the purity of the treated water is lowered, and the electric resistance is increased, which is not preferable. If the ion exchange capacity is larger than 4 meq / g dry resin, the strength of the porous material is significantly reduced and it is crushed during use, which is not preferable. It is preferable that the ion exchange capacity is 1 to 3 meq / g dry resin because the desalination performance is excellent and the electric resistance is low, and thus treated water with high purity can be obtained at low voltage.
【0015】陰イオン交換ポリマ−としては、例えばポ
リエチレンイミンやポリ(ビニルベンジルトリメチルア
ンモニウムクロライド)、ポリ(4−ビニルピリジ
ン)、およびその4級化物、ポリ(アクリルアミド)、
ポリ(N,N−ジメチルアクリルアミド)、およびその
4級化物、ポリ(N,N−ジメチルアミノプロピルアク
リルアミド)、およびその4級化物、ポリ(ジメチルア
ミノエチルアクリレ−ト)、およびその4級化物、ポリ
(N−イソプロピルアクリルアミド)、ポリ(2−ヒド
ロキシ−3−ジメチルアミノプロピルクロライド)等、
溶媒に溶解して溶液となるものであれば使用できる。中
でもポリ(ビニルベンジルトリメチルアンモニウムクロ
ライド)や、ポリ(2−ヒドロキシ−3−ジメチルアミ
ノプロピルクロライド)、ポリ(4−ビニルピリジン)
の4級化物等の4級アンモニウム塩基またはピリジニウ
ム塩基を持つポリマ−は、強塩基性を有し、陰イオン交
換特性と電気抵抗に優れているため好ましい。またこの
陰イオン交換ポリマ−のイオン交換容量としては、アニ
オン吸着性と電気抵抗の観点から1ミリ当量/g乾燥樹
脂以上、好ましくは3〜9当量/g乾燥樹脂のものが好
ましい。Examples of the anion exchange polymer include polyethyleneimine, poly (vinylbenzyltrimethylammonium chloride), poly (4-vinylpyridine), and quaternary compounds thereof, poly (acrylamide),
Poly (N, N-dimethylacrylamide) and its quaternized product, poly (N, N-dimethylaminopropylacrylamide) and its quaternized product, poly (dimethylaminoethyl acrylate), and its quaternized product , Poly (N-isopropylacrylamide), poly (2-hydroxy-3-dimethylaminopropyl chloride), etc.,
Any substance can be used as long as it can be dissolved in a solvent to form a solution. Among them, poly (vinylbenzyltrimethylammonium chloride), poly (2-hydroxy-3-dimethylaminopropyl chloride), poly (4-vinylpyridine)
Polymers having a quaternary ammonium salt group or a pyridinium salt group such as the quaternary compound are preferable because they have strong basicity and are excellent in anion exchange characteristics and electric resistance. The anion exchange polymer has an ion exchange capacity of 1 milliequivalent / g dry resin or more, preferably 3 to 9 equivalents / g dry resin, from the viewpoint of anion adsorption and electric resistance.
【0016】本発明で使用されるイオン交換体は、膜状
の多孔性材料に陽イオン交換基としてスルホン酸基また
はクロロスルホン酸基が導入された後、これを上記した
陰イオン交換性ポリマ−溶液に浸漬、塗布することなど
により、該陰イオン交換性ポリマーが多孔性材料に含浸
され、好ましくは乾燥される。かくすることにより、陰
イオン交換性ポリマ−の有する一部の陰イオン交換基は
多孔性材料の有する陽イオン交換基とイオンコンプレッ
クスを形成する。このようにして、陰イオン交換性ポリ
マ−は多孔性材料に物理的および化学的にも固定され、
強固に担持されることになる。The ion exchanger used in the present invention is prepared by introducing a sulfonic acid group or a chlorosulfonic acid group as a cation exchange group into a membrane-like porous material, and then using the anion exchange polymer as described above. The porous material is impregnated with the anion-exchangeable polymer by dipping or coating in a solution, and preferably dried. By doing so, a part of the anion-exchange groups contained in the anion-exchange polymer form an ion complex with the cation-exchange groups contained in the porous material. In this way, the anion-exchangeable polymer is physically and chemically fixed to the porous material,
It will be firmly supported.
【0017】本発明の脱イオン水製造装置に用いる陽イ
オン交換膜および陰イオン交換膜には特に制限はなく、
いずれのものも用いることができる。陽イオン交換膜は
酸性の環境下でも使用できる強酸型の陽イオン交換膜の
使用が好ましい。陰イオン交換膜は、アルカリ性の環境
下でも使用できる強塩基型の陰イオン交換膜の使用が好
ましい。陽イオン交換膜および陰イオン交換膜の厚みは
5〜500μmの範囲で用いることができるが、膜強度
および膜抵抗の面から1.00〜300μmが好まし
い。The cation exchange membrane and the anion exchange membrane used in the deionized water producing apparatus of the present invention are not particularly limited,
Either one can be used. As the cation exchange membrane, it is preferable to use a strong acid type cation exchange membrane that can be used even in an acidic environment. As the anion exchange membrane, it is preferable to use a strong base type anion exchange membrane that can be used even in an alkaline environment. The thickness of the cation exchange membrane and the anion exchange membrane can be used in the range of 5 to 500 μm, but from the viewpoint of membrane strength and membrane resistance, it is preferably 1.00 to 300 μm.
【0018】本発明の脱イオン水製造装置のその他の点
は、例えば特開平3−224688号公報などに記載の
既知のものが広く使用できる。As the other points of the deionized water producing apparatus of the present invention, known ones described in, for example, JP-A-3-224688 can be widely used.
【0019】[0019]
【実施例】次に本発明を実施例により説明するが、本発
明はかかる実施例により限定されるものでない。EXAMPLES The present invention will now be described with reference to examples, but the present invention is not limited to these examples.
【0020】<実施例1>多孔度95%、厚さ4mmの
発泡ポリエチレンシ−トを98%濃硫酸に60℃、16
時間浸漬しスルホン化を行なった。得られたカチオン交
換体のイオン交換容量は1.2ミリ当量/g乾燥樹脂で
あった。このカチオン交換体を2%のポリ(2−ヒドロ
キシ−3−ジメチルアミノプロピルクロライド)(イオ
ン交換容量7.2ミリ当量/g乾燥樹脂)水溶液に30
℃で16時間浸漬した後水洗、乾燥しイオン交換体とし
た。<Example 1> A foamed polyethylene sheet having a porosity of 95% and a thickness of 4 mm was added to 98% concentrated sulfuric acid at 60 ° C and 16 ° C.
It was immersed for a period of time for sulfonation. The ion exchange capacity of the obtained cation exchanger was 1.2 meq / g dry resin. 30% of this cation exchanger was added to a 2% aqueous solution of poly (2-hydroxy-3-dimethylaminopropyl chloride) (ion exchange capacity 7.2 meq / g dry resin).
After being immersed at 16 ° C. for 16 hours, it was washed with water and dried to obtain an ion exchanger.
【0021】得られた厚さ4mmのイオン交換体の厚み
を圧縮して厚さ0.75mmの脱塩室に入れ、陽イオン
交換膜:セレミオンCMT(旭硝子社製、強酸性陽イオ
ン交換膜の商品名)および陰イオン交換膜:セレミオン
AMT(旭硝子社製、強塩基性陰イオン交換膜の商品
名)を用いた電気透析槽(有効膜面積500cm2 ×5
対)からなる脱イオン水製造装置を組立てた。脱塩室に
入れた状態でのこのイオン交換体の多孔度は73%であ
る。かかる脱イオン水製造装置に原水として電導度5μ
S/cmの水を供給し、ユニットセル当たり4Vの電圧
を印加して脱塩を行なったところ、電導度0.12μS
/cmの処理水が得られた。The obtained 4 mm thick ion exchanger was compressed and placed in a 0.75 mm thick desalting chamber, and a cation exchange membrane: Selemion CMT (manufactured by Asahi Glass Co., Ltd., a strongly acidic cation exchange membrane (Trade name) and anion exchange membrane: electrodialysis tank using Selemion AMT (trade name of strong basic anion exchange membrane manufactured by Asahi Glass Co., Ltd.) (effective membrane area 500 cm 2 × 5)
A pair of deionized water production equipment was assembled. The porosity of this ion exchanger in the desalting chamber is 73%. In such a deionized water production device, the raw water has an electric conductivity of 5 μm.
When S / cm of water was supplied and a voltage of 4 V was applied per unit cell for desalination, the conductivity was 0.12 μS.
/ Cm of treated water was obtained.
【0022】<実施例2>多孔度95%、厚さ5mmの
ポリエチレン/ポリプロピレン混合体の不織布を15%
クロロスルホン酸の1,1,2,2−テトラクロロエタ
ン溶液に25℃、16時間浸漬しクロロスルホン化を行
なった。メタノ−ル洗浄、水洗後、1Nの水酸化ナトリ
ウム水溶液に60℃、16時間浸漬、更に1Nの塩酸に
60℃、16時間浸漬し、スルホン酸型のカチオン交換
体を得た。得られたカチオン交換体のイオン交換容量は
1.5ミリ当量/g乾燥樹脂であった。このカチオン交
換体を2%のポリ(4−ビニルピリジン)のヨウ化メチ
ル4級化物(イオン交換容量4.0ミリ当量/g乾燥樹
脂)水溶液に30℃で16時間浸漬した後水洗、乾燥し
イオン交換体とした。<Example 2> 15% of a non-woven fabric of polyethylene / polypropylene mixture having a porosity of 95% and a thickness of 5 mm
Chlorosulfonation was carried out by immersing in a 1,1,2,2-tetrachloroethane solution of chlorosulfonic acid at 25 ° C for 16 hours. After washing with methanol and washing with water, it was immersed in a 1N aqueous sodium hydroxide solution at 60 ° C. for 16 hours and further immersed in 1N hydrochloric acid at 60 ° C. for 16 hours to obtain a sulfonic acid type cation exchanger. The ion exchange capacity of the obtained cation exchanger was 1.5 meq / g dry resin. This cation exchanger was immersed in a 2% aqueous solution of poly (4-vinylpyridine) methyl iodide quaternary compound (ion exchange capacity 4.0 meq / g dry resin) at 30 ° C. for 16 hours, washed with water and dried. It was used as an ion exchanger.
【0023】得られた厚さ5mmのイオン交換体の厚み
を圧縮して厚さ0.75mmの脱塩室に入れた他は、実
施例1と同様にして構成した電気透析槽からなる脱イオ
ン水製造装置を組立てた。脱塩室に入れた状態でのこの
イオン交換体の多孔度は73%である。かかる脱イオン
水製造装置に原水として電導度5μS/cmの水を供給
し、実施例1と同様にしてユニットセル当たり4Vの電
圧を印加して脱塩を行なったところ、電導度0.1μS
/cmの処理水が安定して得られた。Deionization consisting of an electrodialysis tank constructed in the same manner as in Example 1 except that the thickness of the obtained ion exchanger having a thickness of 5 mm was compressed and placed in a desalting chamber having a thickness of 0.75 mm. The water production equipment was assembled. The porosity of this ion exchanger in the desalting chamber is 73%. Water having an electric conductivity of 5 μS / cm was supplied as raw water to the deionized water producing apparatus, and a voltage of 4 V was applied per unit cell in the same manner as in Example 1 to perform desalination, and an electric conductivity of 0.1 μS was obtained.
/ Cm of treated water was stably obtained.
【0024】<実施例3>1リットルのフラスコに1,
1,2−トリクロロエタンを400ml、トリエチルホ
スフェ−トを56.2g入れた。氷冷した後、60%S
O3 の発煙硫酸を82.4g徐々に滴下し、トリエチル
ホスフェ−ト/SO3 錯体を調整した。<Example 3> In a 1 liter flask, 1,
400 ml of 1,2-trichloroethane and 56.2 g of triethyl phosphate were added. 60% S after ice cooling
82.4 g of fuming sulfuric acid of O 3 was gradually added dropwise to prepare a triethyl phosphate / SO 3 complex.
【0025】多孔度96%、厚さ5mmのポリエチレン
/ポリプロピレン混合体の不織布を上記錯体溶液に25
℃、16時間浸漬し、スルホン化を行なった。メタノ−
ル洗浄、水洗後、スルホン酸型のカチオン交換体を得
た。得られたカチオン交換体のイオン交換容量は1.6
ミリ当量/g乾燥樹脂であった。このカチオン交換体を
2%のポリ(ビニルトリメチルアンモニウムクロライ
ド)(イオン交換容量4.7ミリ当量/g乾燥樹脂)水
溶液に30℃で16時間浸漬した後水洗、乾燥しイオン
交換体とした。A non-woven fabric of polyethylene / polypropylene mixture having a porosity of 96% and a thickness of 5 mm was added to the above-mentioned complex solution.
It was immersed at 16 ° C for 16 hours for sulfonation. Methano
After washing with water and washing with water, a sulfonic acid type cation exchanger was obtained. The ion exchange capacity of the obtained cation exchanger was 1.6.
It was a meq / g dry resin. The cation exchanger was immersed in a 2% aqueous solution of poly (vinyltrimethylammonium chloride) (ion exchange capacity of 4.7 meq / g dry resin) at 30 ° C. for 16 hours, washed with water and dried to give an ion exchanger.
【0026】得られた厚さ5mmのイオン交換体の厚み
を圧縮して、厚さ0.75mmの脱塩室に入れた他は、
実施例1と同様にして構成した電気透析槽からなる脱イ
オン水製造装置を組立てた。脱塩室に入れた状態でのこ
のイオン交換体の多孔度は73%である。かかる脱イオ
ン水製造装置に原水として電導度5μS/cmの水を供
給し、実施例1と同様にしてユニットセル当たり4Vの
電圧を印加して脱塩を行なったところ、電導度0.1μ
S/cmの処理水が安定して得られた。The thickness of the obtained ion exchanger having a thickness of 5 mm was compressed and placed in a desalting chamber having a thickness of 0.75 mm.
A deionized water production apparatus composed of an electrodialysis tank constructed in the same manner as in Example 1 was assembled. The porosity of this ion exchanger in the desalting chamber is 73%. Water having an electric conductivity of 5 μS / cm was supplied as raw water to the deionized water producing apparatus, and a voltage of 4 V was applied per unit cell in the same manner as in Example 1 to carry out desalination, and an electric conductivity of 0.1 μ was obtained.
S / cm treated water was stably obtained.
【0027】<比較例1>ポリスチレン繊維を実施例3
で使用したトリエチルホスフェ−ト/SO3 錯体溶液に
25℃、16時間浸漬し、スルホン化を行なった。メタ
ノ−ル洗浄後、水洗し、スルホン酸型のカチオン交換繊
維を得た。得られたカチオン交換繊維のイオン交換容量
は2.5ミリ当量/g乾燥樹脂であった。一方上記で用
いたと同じポリスチレン繊維を1,1,2,2−テトラ
クロロエタン/オクタン/クロロメチルメチルエ−テル
/塩化第2スズ=50/50/25/0.1(重量部)
溶液中に30℃、16時間浸漬し、クロロメチル化を行
なった。メタノ−ル洗浄後、1Nトリメチルアミンのメ
タノ−ル溶液に60℃で16時間浸漬し、4級アンモニ
ウム塩基を導入してアニオン交換繊維を得た。得られた
アニオン交換繊維のイオン交換容量は2.0ミリ当量/
g乾燥樹脂であった。Comparative Example 1 Polystyrene fiber was used in Example 3
Sulfonation was carried out by immersing the solution in the triethyl phosphate / SO 3 complex used in Step 16 at 25 ° C. for 16 hours. After washing with methanol, it was washed with water to obtain a sulfonic acid type cation exchange fiber. The ion exchange capacity of the obtained cation exchange fiber was 2.5 meq / g dry resin. On the other hand, the same polystyrene fiber as used above is used in the form of 1,1,2,2-tetrachloroethane / octane / chloromethylmethyl ether / stannic chloride = 50/50/25 / 0.1 (parts by weight).
Chloromethylation was carried out by immersing in the solution at 30 ° C. for 16 hours. After washing with methanol, it was immersed in a 1N solution of trimethylamine in methanol at 60 ° C. for 16 hours to introduce a quaternary ammonium salt group to obtain an anion exchange fiber. The ion exchange capacity of the obtained anion exchange fiber is 2.0 meq /
g dry resin.
【0028】これらのイオン交換繊維を約1cmにカッ
トし、カチオン交換繊維/アニオン交換繊維=45/5
5(重量比)の比率で混合後、脱塩室に入れた他は、実
施例1と同様にして構成した電気透析槽からなる脱イオ
ン水製造装置を組立てた。脱塩室に入れた状態でのこの
イオン交換体の空隙率は60%である。かかる脱イオン
水製造装置に原水として電導度5μS/cmの水を供給
し、実施例1と同様にしてユニットセル当たり4Vの電
圧を印加して脱塩を行なったところ、電導度が1μS/
cmの処理水しか得られなかった。These ion exchange fibers were cut into about 1 cm, and cation exchange fiber / anion exchange fiber = 45/5.
A deionized water producing apparatus composed of an electrodialysis tank configured in the same manner as in Example 1 was assembled except that the mixture was mixed at a ratio of 5 (weight ratio) and then placed in a desalting chamber. The porosity of this ion exchanger in the state of being placed in the desalting chamber is 60%. Water having an electric conductivity of 5 μS / cm was supplied as raw water to the deionized water producing apparatus, and a voltage of 4 V was applied per unit cell in the same manner as in Example 1 to perform desalination, and the electric conductivity was 1 μS / cm.
Only cm of treated water was obtained.
【0029】<比較例2>実施例3において、陰イオン
交換ポリマ−として比較例1のアニオン交換繊維をすり
つぶして水に分散した液を用いて製造したイオン交換体
を使用した他は実施例3と同様にして脱イオン水製造装
置を組立てた。原水として電導度5μS/cmの水を供
給し、実施例1と同様にしてユニットセル当たり4Vの
電圧を印加して脱塩を行なったところ、電導度2.5μ
S/cmの処理水しか得られなかった。Comparative Example 2 Example 3 is the same as Example 3 except that the anion exchange polymer prepared by grinding the anion exchange fiber of Comparative Example 1 and dispersing it in water is used as the anion exchange polymer. A deionized water production apparatus was assembled in the same manner as in. Water having a conductivity of 5 μS / cm was supplied as raw water, and a voltage of 4 V was applied per unit cell in the same manner as in Example 1 to perform desalination, and a conductivity of 2.5 μm was obtained.
Only treated water of S / cm was obtained.
【0030】[0030]
【発明の効果】本発明の脱イオン水製造装置では、膜状
の多孔性材料に陽イオン交換基と陰イオン交換基とが強
固に固定または担持されたイオン交換体が収容された電
気透析槽からなるので、電気透析槽の構造が簡単でかつ
製作が容易になると共に、イオン交換体の性能も均質で
安定しているので、純度の安定した脱イオン水が得られ
る。EFFECT OF THE INVENTION In the deionized water producing apparatus of the present invention, an electrodialysis tank containing an ion exchanger in which a cation exchange group and an anion exchange group are firmly fixed or supported on a membrane-like porous material. Since the electrodialysis tank has a simple structure and can be easily manufactured, and the performance of the ion exchanger is homogeneous and stable, deionized water having a stable purity can be obtained.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C02F 1/42 A ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location C02F 1/42 A
Claims (6)
オン交換膜とを交互に配列させた電気透析槽の脱塩室に
イオン交換体を収容してなる脱イオン水製造装置におい
て、イオン交換体がポリオレフィンまたはポリフルオロ
オレフィンからなる膜状の多孔性材料をスルホン化また
はクロロスルホン化した後、これに陰イオン交換性ポリ
マ−溶液を含浸して陰イオン交換性ポリマ−を担持させ
たものであることを特徴とする脱イオン水製造装置。1. A deionized water producing apparatus in which an ion exchanger is housed in a desalting chamber of an electrodialysis tank in which a cation exchange membrane and an anion exchange membrane are alternately arranged between a cathode and an anode. After sulfonation or chlorosulfonation of a film-like porous material whose ion exchanger is made of polyolefin or polyfluoroolefin, it is impregnated with an anion exchange polymer solution to support the anion exchange polymer. A deionized water manufacturing device characterized by being
れた状態で20〜95%であることを特徴とする請求項
1に記載の脱イオン水製造装置。2. The deionized water producing apparatus according to claim 1, wherein the ion exchanger has a porosity of 20 to 95% in a state of being accommodated in the desalting chamber.
た際の状態で0.1〜10mmであることを特徴とする
請求項1または2に記載の脱イオン水製造装置。3. The deionized water producing apparatus according to claim 1, wherein the film thickness of the ion exchanger is 0.1 to 10 mm when the ion exchanger is housed in the deionization chamber.
ホン化したもののイオン交換容量が0.5〜4ミリ当量
/g乾燥樹脂であることを特徴とする請求項1、2また
は3に記載の脱イオン水製造装置。4. The deionized product according to claim 1, 2 or 3, wherein the sulfonated or chlorosulfonated porous material has an ion exchange capacity of 0.5 to 4 meq / g dry resin. Ion water production equipment.
量1.0ミリ当量/g乾燥樹脂以上であることを特徴と
する請求項1〜3または4に記載の脱イオン水製造装
置。5. An apparatus for producing deionized water according to claim 1, wherein the anion-exchangeable polymer has an ion exchange capacity of 1.0 meq / g dry resin or more.
が、4級アンモニウム塩基またはピリジニウム塩基であ
ることを特徴とする請求項1〜4または5に記載の脱イ
オン水製造装置。6. The deionized water producing apparatus according to claim 1, wherein the anion exchange group of the anion exchange polymer is a quaternary ammonium base or a pyridinium base.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7025834A JPH08197063A (en) | 1995-01-23 | 1995-01-23 | Apparatus for producing deionized water |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7025834A JPH08197063A (en) | 1995-01-23 | 1995-01-23 | Apparatus for producing deionized water |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH08197063A true JPH08197063A (en) | 1996-08-06 |
Family
ID=12176897
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7025834A Pending JPH08197063A (en) | 1995-01-23 | 1995-01-23 | Apparatus for producing deionized water |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH08197063A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015167876A (en) * | 2014-03-05 | 2015-09-28 | オルガノ株式会社 | Amphoteric ion exchanger fiber sheet, method for producing the same and deionization absorbent |
-
1995
- 1995-01-23 JP JP7025834A patent/JPH08197063A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015167876A (en) * | 2014-03-05 | 2015-09-28 | オルガノ株式会社 | Amphoteric ion exchanger fiber sheet, method for producing the same and deionization absorbent |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0251511B1 (en) | Bipolar membranes and method of making same | |
KR100389938B1 (en) | Porous ion exchanger and deionized water production method | |
US7300984B2 (en) | Process for preparing graft copolymers and membranes formed therefrom | |
US7026364B2 (en) | Ion exchanger | |
CA2772306A1 (en) | Ion exchange membranes featuring polymer-filled microporous supports | |
EP0913422A2 (en) | Ion exchange membrane | |
KR101726658B1 (en) | Vinylbenzene-styrene based anion exchange composite membranes with nitrile rubber and method for preparing the same | |
EP1188784A1 (en) | Cation-exchange membrane selectively permeable to monovalent cation and process for producing the same | |
JPH08197063A (en) | Apparatus for producing deionized water | |
KR101681637B1 (en) | Styrene-tert-butyl styrene based cation exchange composite membranes with nitrile rubber and method for preparing the same | |
JPH10216717A (en) | Porous ion exchanger and preparation of demineralized water | |
JPH08197060A (en) | Production of deionized water | |
KR100473351B1 (en) | Preparation method of Polyethylene/Polystyrene cation-exchange membrane | |
JP2003190959A (en) | Electric demineralizer | |
JP3513955B2 (en) | Electrodialysis type deionized water production method | |
KR100460454B1 (en) | A swollen cation exchange membrane using water-soluble polymer and preparation method thereof | |
JP4431710B2 (en) | ION CONDUCTIVE SPACER, METHOD FOR PRODUCING THE SAME, ELECTRIC DESALTING DEVICE | |
JPH08182991A (en) | Deionized water producing device | |
JPH11151430A (en) | Bipolar membrane | |
JPWO2003055604A1 (en) | Electric desalination equipment | |
JPH08197062A (en) | Apparatus for electrodialytically producing deionized water | |
JPH10192717A (en) | Porous ion exchanger and production of demineralized water | |
JPH07241443A (en) | Method for selectively electrodialyzing monovalent cation | |
JPH08197061A (en) | Apparatus for producing deionized water | |
JPH0649786B2 (en) | Method for selective treatment of cation exchange membrane |