JP3513955B2 - Electrodialysis type deionized water production method - Google Patents

Electrodialysis type deionized water production method

Info

Publication number
JP3513955B2
JP3513955B2 JP00672195A JP672195A JP3513955B2 JP 3513955 B2 JP3513955 B2 JP 3513955B2 JP 00672195 A JP00672195 A JP 00672195A JP 672195 A JP672195 A JP 672195A JP 3513955 B2 JP3513955 B2 JP 3513955B2
Authority
JP
Japan
Prior art keywords
ion
deionized water
electrodialysis
ion exchanger
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP00672195A
Other languages
Japanese (ja)
Other versions
JPH08192163A (en
Inventor
一郎 寺田
生 斉藤
晴久 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP00672195A priority Critical patent/JP3513955B2/en
Publication of JPH08192163A publication Critical patent/JPH08192163A/en
Application granted granted Critical
Publication of JP3513955B2 publication Critical patent/JP3513955B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電気透析により脱イオ
ン水を製造する方法に関するものであり、さらに詳しく
は、イオン交換体とイオン交換膜を組み合せて脱イオン
水を製造する自己再生型電気透析脱イオン水製造方法に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing deionized water by electrodialysis. More specifically, the present invention relates to a self-regenerating type electrolysis apparatus for producing deionized water by combining an ion exchanger and an ion exchange membrane. The present invention relates to a dialysis deionized water production method.

【0002】[0002]

【従来の技術】脱イオン水の製造方法としては、イオン
交換樹脂の充填床に被処理水を流し、不純物イオンをイ
オン交換樹脂に吸着させて除去し脱イオン水を得る方法
が一般的である。ここで吸着能力の低下したイオン交換
樹脂は、酸やアルカリを用いて再生する方法が採用され
ている。しかしながら、この方法においては再生に使用
した酸やアルカリの廃液が排出される問題があり、その
ため再生の必要のない脱イオン水製造方法が望まれてい
る。
2. Description of the Related Art As a method for producing deionized water, a method is generally used in which water to be treated is flowed through a packed bed of ion exchange resin so that impurity ions are adsorbed by the ion exchange resin and removed to obtain deionized water. . Here, the ion exchange resin having a reduced adsorption capacity is regenerated by using an acid or an alkali. However, this method has a problem that the waste liquid of the acid or alkali used for the regeneration is discharged, and therefore a deionized water production method that does not require regeneration is desired.

【0003】このような観点から、近年イオン交換樹脂
とイオン交換膜を組み合せた自己再生型電気透析脱イオ
ン水製造方法が注目されている。この方法は、陰イオン
交換膜と陽イオン交換膜とを交互に配置した電気透析装
置の脱塩室に陰イオン交換体と陽イオン交換体の混合物
を入れ、この脱塩室に被処理水を流しながら電圧を印加
して電気透析を行うことにより脱イオン水を製造する方
法である。
From such a point of view, a self-regenerating type electrodialysis deionized water production method in which an ion exchange resin and an ion exchange membrane are combined has attracted attention in recent years. In this method, a mixture of an anion exchanger and a cation exchanger is placed in a desalting chamber of an electrodialysis device in which an anion exchange membrane and a cation exchange membrane are alternately arranged, and water to be treated is placed in the desalting chamber. It is a method of producing deionized water by applying voltage while flowing and performing electrodialysis.

【0004】この方法に関して、脱塩室の幅と厚さを限
定する方法(特開昭61−107906号公報)、脱塩
室に充填するイオン交換樹脂の径を均一にしたものを使
用する方法(特開平3−207487号公報)、被処理
水が最初に通過する部分に充填するイオン交換樹脂をア
ニオン交換樹脂にする方法(特開平4−71624号公
報)、脱塩室に充填するイオン交換体をイオン交換樹脂
とイオン交換繊維の混合物とする方法(特開平5−27
7344号公報)などが検討されている。しかし、脱塩
室に入れるイオン交換体として固い架橋イオン交換樹脂
を用いているため使用中に破砕し、効率的な脱塩と再生
が行われなくなり、得られる水の純度の安定性に問題が
あった。
Regarding this method, a method of limiting the width and thickness of the desalting chamber (Japanese Patent Laid-Open No. 61-107906) and a method of using an ion exchange resin having a uniform diameter in the desalting chamber are used. (JP-A-3-207487), a method of converting an ion exchange resin filled in a portion through which water to be treated first passes into anion exchange resin (JP-A-4-71624), and ion exchange filled in a desalting chamber. A method in which the body is a mixture of ion-exchange resin and ion-exchange fibers (Japanese Patent Application Laid-Open No. 5-27)
No. 7344) are being studied. However, since a solid cross-linked ion exchange resin is used as the ion exchanger to be put in the desalting chamber, it is crushed during use, efficient desalination and regeneration are not performed, and there is a problem in the stability of the purity of the obtained water. there were.

【0005】これらの欠点を補う方法として、ポリエチ
レンやポリプロピレン等の不織布に放射線グラフトを行
ってイオン交換基を導入する方法(特開平5−6472
6号公報、特開平5−131120号公報)、イオン交
換ポリマーと補強材ポリマーを海島構造の複合繊維形態
とした後シート状に成形したもの(特開平6−7926
8号公報)が提案されている。これらの方法では、強度
を保持する部分とイオン交換性を発現する部分を機能分
担したものとしているが、放射線を使用する必要があ
る、複合繊維を作製する工程が複雑である、機械的強度
が必ずしも十分でないなどの欠点があった。
As a method of compensating for these drawbacks, a method of introducing a ion-exchange group by performing radiation grafting on a nonwoven fabric such as polyethylene or polypropylene (Japanese Patent Laid-Open No. 5-6472).
No. 6, JP-A-5-131120), an ion exchange polymer and a reinforcing polymer in the form of a composite fiber having a sea-island structure, and then formed into a sheet (JP-A-6-7926).
No. 8) has been proposed. In these methods, the part that retains the strength and the part that expresses the ion exchange property are divided into functions, but it is necessary to use radiation, the process of producing the conjugate fiber is complicated, and the mechanical strength is There were drawbacks, such as not always being sufficient.

【0006】[0006]

【発明が解決しようとする課題】本発明は、イオン交換
体とイオン交換膜を組み合せた自己再生型電気透析脱イ
オン水製造方法において、放射線の使用などの複雑な工
程によらず強度の高いイオン交換体を作製し、安定して
高純度の脱イオン水を製造することを目的とする。
DISCLOSURE OF THE INVENTION The present invention relates to a self-regenerating type electrodialysis deionized water production method in which an ion exchanger and an ion exchange membrane are combined, and an ion having high strength regardless of complicated steps such as the use of radiation. The purpose of the present invention is to produce an exchanger and stably produce highly pure deionized water.

【0007】[0007]

【課題を解決するための手段】本発明は、陰極と陽極の
間に陽イオン交換膜と陰イオン交換膜とを交互に配列さ
せた電気透析装置の脱塩室にイオン交換体を充填してな
る脱イオン水製造装置の脱塩室に被処理水を流しながら
通電することにより脱イオン水を製造する方法におい
て、該イオン交換体として、スチレンまたは4−ビニル
ピリジンの少なくとも1種と、ブタジエンまたはイソプ
レンの少なくとも1種とのブロック共重合体またはその
水素添加物に、イオン交換基を導入した構造を含有する
ポリマーを用いる電気透析型脱イオン水製造方法を提供
するものである。
SUMMARY OF THE INVENTION According to the present invention, an ion exchanger is filled in a desalting chamber of an electrodialyzer in which a cation exchange membrane and an anion exchange membrane are alternately arranged between a cathode and an anode. In the method for producing deionized water by energizing while flowing water to be treated in the deionization chamber of the deionized water producing apparatus, at least one of styrene or 4-vinylpyridine, butadiene or It is intended to provide an electrodialysis-type deionized water production method using a polymer having a structure in which an ion exchange group is introduced into a block copolymer with at least one type of isoprene or a hydrogenated product thereof.

【0008】本発明では、スチレンまたは4−ビニルピ
リジンの少なくとも1種と、ブタジエンまたはイソプレ
ンの少なくとも1種とのブロック共重合体またはその水
素添加物を基材としてイオン交換基を導入した構造を含
有するポリマーを用いてイオン交換体を成形し、電気透
析型脱イオン水製造装置に使用することが特徴である。
この方法で用いられるイオン交換体はブロック共重合体
で強度保持部分とイオン交換性発現部分が分子内で機能
分担されているため機械的強度が高く、イオン交換性能
にも優れたものが得られる。
In the present invention, a block copolymer of at least one kind of styrene or 4-vinylpyridine and at least one kind of butadiene or isoprene or a hydrogenated product thereof is used as a base material and an ion exchange group is introduced. The polymer is characterized in that an ion exchanger is molded and used in an electrodialysis type deionized water producing apparatus.
The ion exchanger used in this method is a block copolymer, and since the strength-retaining portion and the ion-exchangeable portion are shared within the molecule, the mechanical strength is high and the ion-exchange performance is also excellent. .

【0009】上記ブロック重合体の水素添加物とは、重
合物中の2重結合部分を水素添加により飽和化したもの
であり、必ずしも2重結合の全部に水素が添加されてい
るものには限られない。水素添加により、さらに機械的
強度を向上させることができる。
The above-mentioned hydrogenated product of the block polymer is a product obtained by saturating a double bond portion in the polymer by hydrogenation, and is not necessarily limited to one in which hydrogen is added to all the double bonds. I can't. By adding hydrogen, the mechanical strength can be further improved.

【0010】上記ブロック共重合体において、ブタジエ
ンまたはイソプレンの少なくとも1種からなるモノマー
成分は、モノマー成分の含有量として、共重合体のモノ
マー成分の合計量に対して20〜90モル%が好まし
い。含有量が20モル%より低いとイオン交換体の機械
的強度が低下するおそれがあるので好ましくない。含有
量が90モル%より高いとイオン交換容量が低くなりイ
オンの吸着、脱塩が十分に行われず、電気抵抗も上昇す
るおそれがあるため好ましくない。ブタジエンまたはイ
ソプレンの少なくとも1種からなるモノマーの重合物ま
たはその水素添加物の含有量が35〜80モル%である
場合は、性能安定性にも優れており特に好ましい。
In the above block copolymer, the content of the monomer component containing at least one of butadiene and isoprene is preferably 20 to 90 mol% with respect to the total amount of the monomer components of the copolymer. If the content is less than 20 mol%, the mechanical strength of the ion exchanger may decrease, which is not preferable. If the content is higher than 90 mol%, the ion exchange capacity becomes low, the adsorption and desalting of ions may not be sufficiently carried out, and the electric resistance may increase, which is not preferable. When the content of the polymerized product of at least one of butadiene and isoprene or the hydrogenated product thereof is 35 to 80 mol%, the performance stability is also excellent, which is particularly preferable.

【0011】イオン交換体のイオン交換容量は、0.5
〜4ミリ当量/g乾燥樹脂が好ましい。イオン交換容量
が0.5ミリ当量/g乾燥樹脂より小さい場合は、脱塩
室においてイオンの吸着が十分に行われず処理水の純度
が低下し、電気抵抗も高くなるおそれがあるので好まし
くない。イオン交換容量が4ミリ当量/g乾燥樹脂より
大きい場合は、イオン交換体の強度が低下するおそれが
あるので好ましくない。特に、イオン交換容量が1〜3
ミリ当量/g乾燥樹脂である場合は、脱塩性能および機
械的強度に優れ、かつ、電気抵抗も低いので低電圧で純
度の高い処理水が得られるので、さらに好ましい。
The ion exchange capacity of the ion exchanger is 0.5.
~ 4 meq / g dry resin is preferred. When the ion exchange capacity is smaller than 0.5 meq / g dry resin, the adsorption of ions is not sufficiently performed in the desalting chamber, the purity of the treated water may decrease, and the electric resistance may increase, which is not preferable. If the ion exchange capacity is larger than 4 meq / g dry resin, the strength of the ion exchanger may decrease, which is not preferable. Especially, the ion exchange capacity is 1 to 3
A milliequivalent / g dry resin is more preferable because it is excellent in desalination performance and mechanical strength, and has low electric resistance, so that treated water of high purity can be obtained at low voltage.

【0012】イオン交換体の形状としては、布状物また
は発泡体が好ましい。これらの成形体は通常のイオン交
換樹脂と比較して、電気透析槽に組込む際に充填が容易
であり、イオン交換体が均一に分散したまま固定化され
ているため使用中に同符号のイオン交換基の凝集がな
く、安定した性能が得られるので好ましい。布状物の場
合には、ブロック共重合体を繊維化し布状にした後イオ
ン交換基を導入してもよいし、ブロック共重合体を繊維
化しイオン交換基を導入した後布状にしてもよい。前者
の布状にした後イオン交換基を導入する方法では、陽イ
オン交換基導入反応と陰イオン交換基導入反応の両方の
反応を行う必要があり、第2の反応中に第1の反応で導
入したイオン交換基が失活する可能性があるので後者の
方法が好ましい。発泡体の場合にも、ブロック共重合体
を発泡剤と混合し発泡成形した後イオン交換基を導入し
てもよいし、ブロック共重合体にイオン交換基を導入し
た後に発泡成形してもよいが、布状物と同様の理由で後
者の方法が好ましい。
The shape of the ion exchanger is preferably a cloth or foam. Compared to ordinary ion exchange resins, these molded products are easier to fill when assembled in an electrodialysis tank, and because the ion exchangers are fixed in a uniformly dispersed state, ions of the same sign will be used during use. It is preferable because there is no aggregation of exchange groups and stable performance is obtained. In the case of the cloth-like material, the block copolymer may be made into a cloth-like shape and then introduced with an ion-exchange group, or the block copolymer may be made into a fiber-like shape and then introduced into a cloth-like shape. Good. In the former method of introducing an ion-exchange group after forming a cloth, it is necessary to carry out both a cation-exchange group introduction reaction and an anion-exchange group introduction reaction, and the first reaction is performed during the second reaction. The latter method is preferable because the introduced ion-exchange group may be deactivated. Also in the case of a foam, an ion exchange group may be introduced after mixing the block copolymer with a foaming agent and foam-molding, or may be foam-molding after introducing the ion exchange group into the block copolymer. However, the latter method is preferable for the same reason as the cloth-like material.

【0013】イオン交換体の成形体の空隙率は、脱塩室
に設置した状態で20〜95%が好ましい。空隙率が2
0%より低いと、脱塩室の水が流れ難く処理水量が低下
するおそれがあるので好ましくない。空隙率が95%よ
り高いと、イオンの吸着、脱塩が十分に行われず、イオ
ン交換体の機械的強度も低下するおそれがあるので好ま
しくない。特に、空隙率が40〜80%である場合は、
強度と性能に加え、性能安定性も向上するのでさらに好
ましい。
The porosity of the molded body of the ion exchanger is preferably 20 to 95% when installed in the desalting chamber. Porosity is 2
If it is less than 0%, the water in the desalting chamber is difficult to flow and the amount of treated water may decrease, which is not preferable. If the porosity is higher than 95%, the adsorption and desalting of ions may not be sufficiently performed, and the mechanical strength of the ion exchanger may be reduced, which is not preferable. Especially when the porosity is 40 to 80%,
In addition to strength and performance, performance stability is also improved, which is more preferable.

【0014】イオン交換体の成形体の膜厚は、脱塩室に
設置した状態で0.5〜2mmが好ましい。膜厚が0.
5mmより薄いと脱塩室の水が流れ難く処理水量が低下
するおそれがあるので好ましくない。膜厚が2mmより
厚いと電気抵抗が高くなるおそれがあるので好ましくな
い。
The film thickness of the molded body of the ion exchanger is preferably 0.5 to 2 mm when installed in the desalting chamber. The film thickness is 0.
If the thickness is less than 5 mm, the water in the desalting chamber is difficult to flow and the amount of treated water may decrease, which is not preferable. If the film thickness is thicker than 2 mm, the electric resistance may increase, which is not preferable.

【0015】イオン交換体のイオン交換基は、イオンの
吸着性および電気抵抗の観点から、陽イオン交換基は主
にスルホン酸またはその塩型であり、陰イオン交換基は
主に4級アンモニウム塩基またはピリジニウム塩基であ
ることが好ましい。イオン交換基を基材に導入する方法
は、特に制限されず公知の方法を採用することができ
る。
The ion-exchange group of the ion-exchanger is mainly a sulfonic acid or its salt type, and the anion-exchange group is mainly a quaternary ammonium salt group from the viewpoints of ion adsorption and electric resistance. Alternatively, it is preferably a pyridinium base. The method for introducing the ion-exchange group into the substrate is not particularly limited, and a known method can be adopted.

【0016】本発明の製造方法により脱イオン水を製造
するための製造装置としては、具体的には次のような構
成を有することが好ましい。すなわち、陽極を備える陽
極室と陰極を備える陰極室との間に、複数枚の陽イオン
交換膜と陰イオン交換膜とを交互に配列して、陽極側が
陰イオン交換膜で区画され陰極側が陽イオン交換膜で区
画された脱塩室と、陰極側が陽イオン交換膜で区画され
陽極側が陰イオン交換膜で区画された濃縮室とを交互
に、2〜30組程度直列に配置する。脱塩室には被処理
水を流し、濃縮室には濃縮された塩類を排出するための
水を流しながら、電流を流すことにより脱塩を行うこと
ができる。各ユニットセルには、脱塩室において水解離
が生じる4V程度の電圧を印することが好ましい。
Specifically, the production apparatus for producing deionized water by the production method of the present invention preferably has the following configuration. That is, a plurality of cation exchange membranes and anion exchange membranes are alternately arranged between an anode chamber having an anode and a cathode chamber having a cathode, and the anode side is partitioned by the anion exchange membrane and the cathode side is positive. About 2 to 30 sets of demineralization chambers partitioned by an ion exchange membrane and a concentration chamber partitioned by a cation exchange membrane on the cathode side and an anion exchange membrane on the anode side are alternately arranged. Desalination can be performed by flowing an electric current while flowing water to be treated in the desalting chamber and flowing water for discharging concentrated salts in the concentration chamber. Each unit cell, it is preferable to mark pressure to about 4V voltage dissociation of water occurs in the desalting compartment.

【0017】[0017]

【実施例】 実施例1 ブタジエン含有量が60モル%のスチレン−ブタジエン
ブロック共重合体(日本合成ゴム株式会社製、TR20
00)を、成形温度200℃で溶融紡糸し、繊維径50
μmの繊維を得た。これをイオン交換体の基材とした。
この基材繊維100gを繊維長約2cmで切断した後、
98重量%硫酸1000gに60℃で8時間浸漬するこ
とによりスルホン化を行って、イオン交換容量が2.0
ミリ当量/g乾燥樹脂のカチオン交換樹脂繊維115g
を得た。これとは別に、上記の基材繊維100gを、2
重量%塩化第2スズ含有クロロメチルメチルエーテル溶
液1500gに60℃で浸漬し、クロロメチル化反応を
行った。反応後メタノールで洗浄し、1Nトリメチルア
ミンのメタノール溶液に40℃で16時間浸漬すること
によりアミノ化反応を行って、イオン交換容量が1.6
ミリ当量/g乾燥樹脂のアニオン交換樹脂繊維117g
を得た。
Example 1 A styrene-butadiene block copolymer having a butadiene content of 60 mol% (TR20 manufactured by Japan Synthetic Rubber Co., Ltd.)
00) is melt-spun at a molding temperature of 200 ° C. and a fiber diameter of 50
Fibers of μm were obtained. This was used as the base material of the ion exchanger.
After cutting 100 g of the base fiber with a fiber length of about 2 cm,
Sulfonation was carried out by immersing in 1000 g of 98 wt% sulfuric acid at 60 ° C. for 8 hours, and the ion exchange capacity was 2.0.
115 g of cation exchange resin fiber of meq / g dry resin
Got Separately, 100 g of the above-mentioned base fiber is added to 2
A chloromethylation reaction was carried out by immersing the solution in 1500 g of a chloromethyl methyl ether solution containing stannous chloride in a weight percentage at 60 ° C. After the reaction, the product was washed with methanol and immersed in a methanol solution of 1N trimethylamine at 40 ° C. for 16 hours to perform an amination reaction.
117 g of anion exchange resin fiber of meq / g dry resin
Got

【0018】上記のカチオン交換樹脂繊維40gおよび
アニオン交換樹脂繊維60gさらに未反応の繊維20g
を混合分散後、190℃で熱ロールプレスを行って、総
イオン交換容量が1.5ミリ当量/g乾燥樹脂、空隙率
75%、厚さ320μm、目付け量96g/m2 の不織
布を作製した。
40 g of the above cation exchange resin fiber, 60 g of anion exchange resin fiber and 20 g of unreacted fiber
Was mixed and dispersed, and then hot roll pressed at 190 ° C. to produce a nonwoven fabric having a total ion exchange capacity of 1.5 meq / g dry resin, a porosity of 75%, a thickness of 320 μm, and a basis weight of 96 g / m 2 . .

【0019】このイオン交換体不織布を電気透析装置の
脱塩室に組んで水処理試験を行った。電気透析装置は、
陽イオン交換膜(旭硝子株式会社製、商品名セレミオン
AMT)5枚、陰イオン交換膜(旭硝子株式会社製、商
品名セレミオンAMP)4枚を交互に重ねた構造のもの
を用いた。原水として電導度5μS/cmの水を用い、
ユニットセル当り4Vの電圧を印加して脱塩処理を行っ
たところ、電導度0.08μS/cmの処理水が安定し
て得られた。
This ion-exchange nonwoven fabric was assembled in a desalting chamber of an electrodialyzer to conduct a water treatment test. Electrodialyzer
A structure in which five cation exchange membranes (manufactured by Asahi Glass Co., Ltd., trade name Selemion AMT) and four anion exchange membranes (manufactured by Asahi Glass Co., Ltd., trade name Selemion AMP) were alternately stacked was used. Water with an electric conductivity of 5 μS / cm is used as raw water,
When a desalting treatment was performed by applying a voltage of 4 V per unit cell, treated water having an electric conductivity of 0.08 μS / cm was stably obtained.

【0020】実施例2 イオン交換体の基材として、スチレン−ブタジエンブロ
ック共重合体に代えて、水素添加したイソプレン含有量
が35モル%のスチレン−水素添加イソプレンブロック
共重合体(株式会社クラレ製、商品名セプトン210
4)を用いた以外は実施例1と同様にして、総イオン交
換容量が1.2ミリ当量/g乾燥樹脂、空隙率70%、
厚さ250μm、目付け量90g/m の不織布を作製
した。
Example 2 As a base material for the ion exchanger, a styrene-hydrogenated isoprene block copolymer having a hydrogenated isoprene content of 35 mol% was used in place of the styrene-butadiene block copolymer (manufactured by Kuraray Co., Ltd.). Product name Septon 210
In the same manner as in Example 1 except that 4) was used, the total ion exchange capacity was 1.2 meq / g dry resin, the porosity was 70%,
A nonwoven fabric having a thickness of 250 μm and a basis weight of 90 g / m 2 was prepared.

【0021】このイオン交換体不織布を脱塩室に入れ、
実施例1と同様に水処理試験を行った。原水として電導
度5μS/cmの水を用い、ユニットセル当り4Vの電
圧を印加して脱塩を行ったところ、電導度0.09μS
/cmの処理水が安定して得られた。
This ion-exchange nonwoven fabric is put in a desalting chamber,
A water treatment test was conducted in the same manner as in Example 1. When water having an electric conductivity of 5 μS / cm was used as raw water and a voltage of 4 V was applied per unit cell for desalting, the electric conductivity was 0.09 μS.
/ Cm of treated water was stably obtained.

【0022】実施例3 100℃で減圧乾燥後精製窒素で常圧にした耐圧密閉容
器内に、冷却下で脱水精製したテトラヒドロフラン20
00mlとブタジエン54g、および1mol/リット
ルのn−ブチルリチウムのヘキサン溶液10mlを入
れ、35℃で2時間撹拌し重合した。重合後、気密状態
を保ったまま4−ビニルピリジン42gを入れ、さらに
40℃で2時間重合し、ブタジン含有量が60モル%
の4−ビニルピリジン−ブタジエンブロック共重合体9
0gを合成した。該共重合体を成形温度180℃で溶融
紡糸し、繊維径50μmの繊維とした。得られた繊維を
繊維長約2cmで切断した後、10重量%ヨウ化メチル
のヘキサン溶液に35℃で8時間浸漬して4級アミノ化
反応を行い、イオン交換容量が1.8ミリ当量/g乾燥
樹脂のアニオン交換繊維95gを得た。
Example 3 Tetrahydrofuran 20 dehydrated and refined under cooling in a pressure-resistant airtight container which was dried under reduced pressure at 100 ° C. and then brought to normal pressure with purified nitrogen.
00 ml, 54 g of butadiene, and 10 ml of a 1 mol / l n-butyllithium hexane solution were added, and the mixture was stirred at 35 ° C. for 2 hours for polymerization. After the polymerization, put the left 4-vinylpyridine 42g keeping the airtight state, and further polymerized for 2 hours at 40 ° C., butadiene et emissions content of 60 mol%
4-vinylpyridine-butadiene block copolymer 9
0 g was synthesized. The copolymer was melt-spun at a molding temperature of 180 ° C. to obtain fibers having a fiber diameter of 50 μm. The obtained fiber was cut to a fiber length of about 2 cm, and then immersed in a 10 wt% methyl iodide hexane solution at 35 ° C. for 8 hours to carry out a quaternary amination reaction to obtain an ion exchange capacity of 1.8 meq / 95 g of dry resin anion exchange fiber was obtained.

【0023】実施例1と同様にしてスチレン−ブタジエ
ンブロック共重合体、TR2000(日本合成ゴム株式
会社製)を用いてイオン交換容量が2.0ミリ当量/g
乾燥樹脂のカチオン交換繊維115gを得た。上記のカ
チオン交換繊維40g、アニオン交換繊維60gおよび
未反応の繊維20gを混合分散後180℃で熱ロールプ
レスを行って、総イオン交換容量が1.6ミリ当量/g
乾燥樹脂、空隙率75%、厚さ320μm、目付け量9
6g/m2 の不織布を作製した。
A styrene-butadiene block copolymer, TR2000 (manufactured by Japan Synthetic Rubber Co., Ltd.) was used in the same manner as in Example 1 to obtain an ion exchange capacity of 2.0 meq / g.
115 g of dried resin cation exchange fiber was obtained. 40 g of the above cation exchange fibers, 60 g of anion exchange fibers and 20 g of unreacted fibers were mixed and dispersed, and then hot roll press was performed at 180 ° C. to obtain a total ion exchange capacity of 1.6 meq / g.
Dry resin, porosity 75%, thickness 320 μm, basis weight 9
A 6 g / m 2 non-woven fabric was prepared.

【0024】このイオン交換体不織布を脱塩室に入れ、
実施例1と同様に水処理試験を行った。原水として電導
度5μS/cmの水を用い、ユニットセル当り4Vの電
圧を印加して脱塩を行ったところ、電導度0.08μS
/cmの処理水が安定して得られた。
The non-woven fabric of this ion exchanger is put in a desalting chamber,
A water treatment test was conducted in the same manner as in Example 1. When water having an electric conductivity of 5 μS / cm was used as raw water and a voltage of 4 V was applied per unit cell for desalting, the electric conductivity was 0.08 μS.
/ Cm of treated water was stably obtained.

【0025】実施例4 ブタジエン含有量が60モル%のスチレン−ブタジエン
ブロック共重合体(日本合成ゴム株式会社製、TR20
00)120gを、クロロホルム3600gに溶解し、
該溶液を撹拌しているメタノール中に入れ沈殿させ、ポ
リマーを粉末状にした。得られたポリマー100gを9
8重量%硫酸1000gに60℃で8時間浸漬し、スル
ホン化を行ってイオン交換容量が2.5ミリ当量/g乾
燥樹脂のカチオン交換体120gを得た。また上記のス
チレン−ブタジエンブロック共重合体100gをクロロ
ホルム2000gに溶解し、クロロメチルメチルエーテ
ル200gおよび塩化第2スズ20gを加えて40℃で
16時間クロロメチル化反応を行った。反応後ポリマー
溶液をメタノールで沈殿、洗浄し、乾燥した後、クロロ
メチル化ポリマー粉末を1Nトリメチルアミンのメタノ
ール溶液に40℃で16時間浸漬してアミノ化反応を行
ってイオン交換容量が2.4ミリ当量/g乾燥樹脂のア
ニオン交換体120gを得た。
Example 4 A styrene-butadiene block copolymer having a butadiene content of 60 mol% (TR20 manufactured by Japan Synthetic Rubber Co., Ltd.)
00) 120 g is dissolved in 3600 g of chloroform,
The solution was poured into stirring methanol to cause precipitation, and the polymer was powdered. 9 g of 100 g of the obtained polymer
It was dipped in 1000 g of 8% by weight sulfuric acid at 60 ° C. for 8 hours to be sulfonated to obtain 120 g of a cation exchanger having an ion exchange capacity of 2.5 meq / g dry resin. Further, 100 g of the styrene-butadiene block copolymer was dissolved in 2000 g of chloroform, 200 g of chloromethyl methyl ether and 20 g of stannic chloride were added, and chloromethylation reaction was carried out at 40 ° C. for 16 hours. After the reaction, the polymer solution was precipitated with methanol, washed, and dried, and then the chloromethylated polymer powder was immersed in a methanol solution of 1N trimethylamine at 40 ° C. for 16 hours to perform an amination reaction to obtain an ion exchange capacity of 2.4 mm. 120 g of anion exchanger of equivalent weight / g dry resin was obtained.

【0026】上記のカチオン交換体粉末40g、アニオ
ン交換体粉末60gおよび未反応のスチレン−ブタジエ
ンブロック共重合体粉末20gを、ジクロロジフルオロ
メタンと混合後加圧発泡成形器で成形し、総イオン交換
容量が2.0ミリ当量/g乾燥樹脂、空隙率80%、厚
さ1mm、目付け量200g/m2 の発泡体シートを作
製した。
40 g of the above cation exchanger powder, 60 g of anion exchanger powder and 20 g of unreacted styrene-butadiene block copolymer powder were mixed with dichlorodifluoromethane and molded by a pressure foam molding machine to obtain a total ion exchange capacity. There 2.0 meq / g dry resin, porosity 80%, thickness 1 mm, to prepare a foam sheet having a basis weight 200 g / m 2.

【0027】このイオン交換体発泡体シートを脱塩室に
入れ、実施例1と同様に水処理試験を行った。原水とし
て電導度5μS/cmの水を用い、ユニットセル当り4
Vの電圧を印加して脱塩を行ったところ、電導度0.0
8μS/cmの処理水が安定して得られた。
The ion-exchange foam sheet was placed in a desalting chamber and a water treatment test was conducted in the same manner as in Example 1. Water with an electric conductivity of 5 μS / cm is used as raw water, and 4 per unit cell is used.
When desalting was performed by applying a voltage of V, the conductivity was 0.0
A treated water of 8 μS / cm was stably obtained.

【0028】比較例1 スチレン−ブタジエンブロック共重合体に代えて、ポリ
スチレンをイオン交換体の基材とした以外は実施例1と
同様にして、イオン交換容量が2.0ミリ当量/g乾燥
樹脂のカチオン交換繊維とイオン交換容量が1.6ミリ
当量/g乾燥樹脂のアニオン交換繊維を得た。このカチ
オン交換繊維40g、アニオン交換繊維60gおよび未
反応の繊維20gを混合分散後190℃で熱ロールプレ
スを行ったが強度が弱く、不織布が作製できなかった。
Comparative Example 1 An ion exchange capacity of 2.0 meq / g dry resin was obtained in the same manner as in Example 1 except that polystyrene was used as the base material of the ion exchanger instead of the styrene-butadiene block copolymer. Anion exchange fiber having a cation exchange fiber and an ion exchange capacity of 1.6 meq / g dry resin was obtained. After 40 g of this cation exchange fiber, 60 g of anion exchange fiber and 20 g of unreacted fiber were mixed and dispersed, hot roll pressing was performed at 190 ° C. However, the strength was weak and a nonwoven fabric could not be produced.

【0029】そこで得られたイオン交換体繊維を上記と
同じ割合で混合して脱塩室に入れ、実施例1と同様に水
処理試験を行った。原水として電導度5μS/cmの水
を用い、ユニットセル当り4Vの電圧を印加して脱塩を
行ったところ、電導度0.5μS/cmの処理水しか得
られなかった。
The ion-exchanger fibers obtained there were mixed in the same proportion as above and put in a desalting chamber, and a water treatment test was conducted in the same manner as in Example 1. When water having an electric conductivity of 5 μS / cm was used as raw water to apply desalting by applying a voltage of 4 V per unit cell, only treated water having an electric conductivity of 0.5 μS / cm was obtained.

【0030】[0030]

【発明の効果】本発明の電気透析型脱イオン水製造方法
は、イオン交換体の機械的強度が高く、イオン交換性能
にも優れるため、純度の安定した処理水が得られる。ま
た、このイオン交換体は製造が容易であり、特に複雑な
工程を必要としない。
INDUSTRIAL APPLICABILITY According to the electrodialysis type deionized water production method of the present invention, since the ion exchanger has high mechanical strength and excellent ion exchange performance, treated water with stable purity can be obtained. Further, this ion exchanger is easy to manufacture and does not require a particularly complicated process.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI // C08J 5/20 C02F 1/46 103 (56)参考文献 特開 平6−79268(JP,A) 特開 平3−26390(JP,A) 特開 平5−230130(JP,A) 特開 平5−131120(JP,A) (58)調査した分野(Int.Cl.7,DB名) C02F 1/469 B01D 61/44 B01D 61/48 B01J 43/00 C02F 1/42 C08J 5/20 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI // C08J 5/20 C02F 1/46 103 (56) References JP-A-6-79268 (JP, A) JP-A-3- 26390 (JP, A) JP 5-230130 (JP, A) JP 5-131120 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) C02F 1/469 B01D 61 / 44 B01D 61/48 B01J 43/00 C02F 1/42 C08J 5/20

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】陰極と陽極の間に陽イオン交換膜と陰イオ
ン交換膜とを交互に配列させた電気透析装置の脱塩室に
イオン交換体を充填してなる脱イオン水製造装置の脱塩
室に被処理水を流しながら通電することにより脱イオン
水を製造する方法において、該イオン交換体として、ス
チレンまたは4−ビニルピリジンの少なくとも1種と、
ブタジエンまたはイソプレンの少なくとも1種とのブロ
ック共重合体またはその水素添加物に、イオン交換基を
導入した構造を含有するポリマーを用いる電気透析型脱
イオン水製造方法。
Claim: What is claimed is: 1. A deionized water producing apparatus comprising: a desalting chamber of an electrodialysis apparatus, in which a cation exchange membrane and an anion exchange membrane are alternately arranged between a cathode and an anode, filled with an ion exchanger. In the method of producing deionized water by energizing while flowing water to be treated in a salt chamber, as the ion exchanger, at least one of styrene or 4-vinylpyridine,
An electrodialysis-type deionized water production method using a polymer having a structure in which an ion exchange group is introduced into a block copolymer with at least one of butadiene or isoprene or a hydrogenated product thereof.
【請求項2】イオン交換体の基材となる上記ブロック共
重合体またはその水素添加物において、ブタジエンまた
はイソプレンの少なくとも1種からなるモノマー成分
が、モノマー成分の含有量として、共重合体のモノマー
成分の合計量に対して20〜90モル%含有される請求
項1記載の電気透析型脱イオン水製造方法。
2. A base material for an ion exchangerthe aboveBoth blocks
PolymerOr its hydrogenated productIn butadiene or
Is a monomer consisting of at least one of isoprenecomponent
But,As the content of the monomer component, the copolymer monomer
For the total amount of ingredients20-90 mol%ContainedRequest
Item 1DescriptionMethod for producing electrodialysis-type deionized water of.
【請求項3】イオン交換体が、布状物または発泡体で
る請求項1または2記載の電気透析型脱イオン水製造方
法。
Wherein the ion exchanger is, cloth-like material or Ah <br/> Ru claim 1 or 2 electrodialysis type deionized water production method according with the foam.
JP00672195A 1995-01-19 1995-01-19 Electrodialysis type deionized water production method Expired - Fee Related JP3513955B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00672195A JP3513955B2 (en) 1995-01-19 1995-01-19 Electrodialysis type deionized water production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00672195A JP3513955B2 (en) 1995-01-19 1995-01-19 Electrodialysis type deionized water production method

Publications (2)

Publication Number Publication Date
JPH08192163A JPH08192163A (en) 1996-07-30
JP3513955B2 true JP3513955B2 (en) 2004-03-31

Family

ID=11646132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00672195A Expired - Fee Related JP3513955B2 (en) 1995-01-19 1995-01-19 Electrodialysis type deionized water production method

Country Status (1)

Country Link
JP (1) JP3513955B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4065664B2 (en) 1998-03-24 2008-03-26 株式会社荏原製作所 Electric desalination equipment
AU2003272371A1 (en) * 2002-09-12 2004-04-30 Ionics, Incorporated Sparse media edi apparatus and method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0326390A (en) * 1989-06-26 1991-02-04 Kurita Water Ind Ltd Pure water producing device
DE4127861A1 (en) * 1991-08-22 1993-02-25 Bayer Ag LOW BASIC ANION EXCHANGER, METHOD FOR THE PRODUCTION THEREOF BY AMINOLYSIS AND THEIR USE FOR THE REMOVAL OF SULFATIONS FROM AQUEOUS LIQUIDS
JP2504885B2 (en) * 1991-11-12 1996-06-05 日本原子力研究所 Ion exchanger manufacturing method
JP3232466B2 (en) * 1992-09-03 2001-11-26 東レ株式会社 Ultrapure water production method

Also Published As

Publication number Publication date
JPH08192163A (en) 1996-07-30

Similar Documents

Publication Publication Date Title
EP0251511B1 (en) Bipolar membranes and method of making same
US5759373A (en) Porous ion exchanger and method for producing deionized water
WO1987007624A2 (en) Bipolar membranes and methods of making same
US4116889A (en) Bipolar membranes and method of making same
US6334941B1 (en) Apparatus for producing deionized water
US4042496A (en) Process for preparing improved cation-exchange membranes
US20010003329A1 (en) Electro-regenerating type apparatus for producing deionized water
JP3947829B2 (en) Deionized water production equipment
US7081484B2 (en) Anion exchange membrane, process for its production and solution treating apparatus
US5936004A (en) Strongly basic anion-exchanging molded bodies and a method of manufacturing the same
JPH08252579A (en) Porous ion exchanger and production of deionized water
JPH08506613A (en) Single film membrane, its manufacturing method and its use
KR101726658B1 (en) Vinylbenzene-styrene based anion exchange composite membranes with nitrile rubber and method for preparing the same
JP3513955B2 (en) Electrodialysis type deionized water production method
JPH10192716A (en) Porous ion exchanger and production of demineralized water
JPH10216717A (en) Porous ion exchanger and preparation of demineralized water
JPH08197060A (en) Production of deionized water
JPH0679268A (en) Production of ultra-pure water
JPH10244169A (en) Porous ion exchanger and production of demineralized water
JP3800706B2 (en) Deionized water production equipment
JPH10192717A (en) Porous ion exchanger and production of demineralized water
JPH08182991A (en) Deionized water producing device
JP2001062312A (en) Production of porous ion exchanger
JP7361174B1 (en) Efficient method for producing iodine component-containing aqueous solution using anion exchange membrane
JPH0644977B2 (en) Desalination method for organic compounds using amphoteric ion exchange membrane

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20031224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040106

LAPS Cancellation because of no payment of annual fees