JPH08195435A - Manufacture of dielectric isolation type semiconductor substrate - Google Patents

Manufacture of dielectric isolation type semiconductor substrate

Info

Publication number
JPH08195435A
JPH08195435A JP442795A JP442795A JPH08195435A JP H08195435 A JPH08195435 A JP H08195435A JP 442795 A JP442795 A JP 442795A JP 442795 A JP442795 A JP 442795A JP H08195435 A JPH08195435 A JP H08195435A
Authority
JP
Japan
Prior art keywords
polishing
semiconductor substrate
oxide film
silicon substrate
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP442795A
Other languages
Japanese (ja)
Inventor
Katsujiro Tanzawa
沢 勝二郎 丹
Katsuyoshi Kojima
島 勝 義 小
Masafumi Miyagawa
川 雅 文 宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP442795A priority Critical patent/JPH08195435A/en
Publication of JPH08195435A publication Critical patent/JPH08195435A/en
Pending legal-status Critical Current

Links

Landscapes

  • Element Separation (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

PURPOSE: To provide a manufacturing method of a dielectric isolation type semiconductor substrate whose flatness is excellent and to provide a method in which a polishing operation is automated. CONSTITUTION: A polysilicon layer which is to be used as an element formation region on a dielectric isolation type semiconductor substrate is polished by using a polishing liquid in which an alcohol-based amine is added to coloidal silica so as to be diluted and in which the concentration of the alcohol-based amine is within a range of 1 to 2% and by using a polishing cloth whose JIS standard hardness is at 85 or higher. At this time, the polysilicon layer is polished while the surface temperature of the polishing cloth or the temperature on the surface of a semiconductor substrate on a side to be polished is maintained so as not to exceed 60 deg.C without a cooling operation. In addition, after three minutes or more elapsed after the start of a polishing operation, the polishing operation is finished within three minutes after the temperature on the surface of the semiconductor substrate on the side to be polished reaches a highest temperature. By this method, it is possible to obtain the dielectric isolation type semiconductor substrate whose flatness is excellent, and the finish of the polishing operation can be automated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、誘電体分離型半導体基
板の製造方法に関し、特に研磨工程における過剰研磨の
防止に好適なものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a dielectric isolation type semiconductor substrate, and is particularly suitable for preventing excessive polishing in the polishing step.

【0002】[0002]

【従来の技術】バイポーラデバイスでは、I2 Lを除
き、互いに電気的に絶縁分離された素子形成領域に個々
の素子を形成する。素子分離法には、pn接合分離法、
選択酸化分離法、溝充填分離法、選択エピタキシャル
法、誘電体分離法等がある。pn接合分離法、選択酸化
分離法、溝充填分離法、選択エピタキシャル法等におい
ては、pn接合の降伏電圧により分離耐圧が決まるの
で、高耐圧化には限界がある。そのため、特に高耐圧を
必要とする用途用の素子分離には、素子形成領域を完全
に絶縁分離する誘電体分離法が用いられている。
2. Description of the Related Art In a bipolar device, except for I 2 L, individual elements are formed in element forming regions electrically isolated from each other. The element isolation method includes a pn junction isolation method,
There are a selective oxidation separation method, a groove filling separation method, a selective epitaxial method, a dielectric separation method, and the like. In the pn junction isolation method, the selective oxidation isolation method, the groove filling isolation method, the selective epitaxial method, etc., the isolation breakdown voltage is determined by the breakdown voltage of the pn junction. Therefore, a dielectric isolation method for completely insulating and isolating an element formation region is used for element isolation for applications requiring a high breakdown voltage.

【0003】図5は、誘電体分離法による半導体基板の
製造工程の説明図である。図5を構成する(a)から
(h)の各図面は、それぞれ製造工程中の一過程におけ
る半導体基板の略断面図である。また、図6は、誘電体
分離法により半導体基板を作製した場合に生ずる問題点
を示す説明図であり、当該半導体基板の略断面図であ
る。以下、これらの図を参照しながら、誘電体分離法の
工程について説明する。
FIG. 5 is an explanatory view of a manufacturing process of a semiconductor substrate by a dielectric separation method. Each of the drawings (a) to (h) constituting FIG. 5 is a schematic cross-sectional view of the semiconductor substrate in one process in the manufacturing process. Further, FIG. 6 is an explanatory diagram showing a problem that occurs when a semiconductor substrate is manufactured by a dielectric separation method, and is a schematic cross-sectional view of the semiconductor substrate. Hereinafter, the steps of the dielectric separation method will be described with reference to these drawings.

【0004】最初に、図5(a)に示すように、厚さ約
1μmの酸化膜20,40が形成された素子側ウェーハ
30と、これを保持して基台となる支持基板側ウェーハ
10とを、素子側ウェーハ30表面に形成された厚さ約
1μmの酸化膜20を介して直接接着法により張り合わ
せ一体化した接着ウェーハ(図5(a)全体をいう。)
を作製し、素子側ウェーハ30を厚さが約50μmにな
るように酸化膜40側から研磨する。図5(b)は、支
持基板側ウェーハ10及び酸化膜20上の、約50μm
に研磨された素子側ウェーハ31を示している。
First, as shown in FIG. 5A, a device-side wafer 30 on which oxide films 20 and 40 having a thickness of about 1 μm are formed, and a supporting substrate-side wafer 10 which holds the device-side wafer 30 and serves as a base. And (3) are bonded and integrated by a direct bonding method with the oxide film 20 having a thickness of about 1 μm formed on the surface of the element-side wafer 30 integrated (refer to the whole of FIG. 5A).
Then, the device-side wafer 30 is polished from the oxide film 40 side so as to have a thickness of about 50 μm. FIG. 5B shows about 50 μm on the supporting substrate side wafer 10 and the oxide film 20.
The element-side wafer 31 that has been polished is shown.

【0005】次に、図5(c)に示すように、酸化膜5
0を形成後、分離溝形成部60を開口する。この時点に
おいては、支持基板側ウェーハ10の裏面にも酸化膜7
0が形成されている。素子側ウェーハ31は、酸化膜2
0によって垂直方向の分離、すなわち、支持基板側ウェ
ーハ10との分離がなされているが、素子形成領域は、
水平方向においても分離形成する必要があるので、異方
性エッチングにより素子側ウェーハ31表面から酸化膜
20に達する分離溝80を形成し、この分離溝80によ
り分離された素子側ウェーハ32が形成される(図5
(d))。さらに、この分離溝80の側壁に酸化膜51
を形成する(図5(e))。
Next, as shown in FIG. 5C, an oxide film 5 is formed.
After forming 0, the separation groove forming portion 60 is opened. At this point, the oxide film 7 is also formed on the back surface of the supporting substrate side wafer 10.
0 is formed. The device-side wafer 31 is made of the oxide film 2
0 separates in the vertical direction, that is, separates from the wafer 10 on the supporting substrate side.
Since it is necessary to form the separation in the horizontal direction as well, the separation groove 80 reaching the oxide film 20 from the surface of the element side wafer 31 is formed by anisotropic etching, and the element side wafer 32 separated by the separation groove 80 is formed. (Fig. 5
(D)). Further, the oxide film 51 is formed on the sidewall of the isolation trench 80.
Are formed (FIG. 5E).

【0006】図5(f)に示すように、ポリシリコン9
0を約120μm堆積させて分離溝80を埋め、図5
(g)に示すように、グラインダー加工により、酸化膜
50上に約10μmのポリシリコン膜91aが残るよう
に研磨し平坦化する。
As shown in FIG. 5F, polysilicon 9 is used.
0 is deposited to a thickness of about 120 μm to fill the separation groove 80.
As shown in (g), the surface of the oxide film 50 is polished and flattened by a grinder process so that a polysilicon film 91a of about 10 μm remains.

【0007】最後に、図5(h)に示すように、ポリシ
リコン膜91aをメカノケミカル研磨により完全に除去
する表面仕上げを行い、誘電体分離型半導体基板が完成
する。表面仕上げに際しては、素子側ウェーハ32の厚
さを減ずることなく、約50μmの厚さをそのまま確実
に維持する必要がある。そこで、酸化膜50の研磨速度
がポリシリコン膜91aの研磨速度より小さいことを利
用し、素子側ウェーハ32表面の酸化膜50を素子側ウ
ェーハ32の防護膜として、ポリシリコン膜91aを除
去するメカノケミカル研磨、通称「選択研磨」により基
板表面の平坦化を行い、誘電体分離型半導体基板を完成
することができる。
Finally, as shown in FIG. 5H, a surface finish for completely removing the polysilicon film 91a by mechanochemical polishing is performed to complete a dielectric isolation type semiconductor substrate. When finishing the surface, it is necessary to reliably maintain the thickness of about 50 μm as it is without reducing the thickness of the element-side wafer 32. Therefore, utilizing the fact that the polishing rate of the oxide film 50 is lower than the polishing rate of the polysilicon film 91a, a mechanism for removing the polysilicon film 91a is used by using the oxide film 50 on the surface of the element side wafer 32 as a protective film of the element side wafer 32. The dielectric-isolated semiconductor substrate can be completed by flattening the substrate surface by chemical polishing, commonly called “selective polishing”.

【0008】上述の製造工程により誘電体分離型半導体
基板を作製する際に、通常用いられる研磨剤は、コロイ
ダルシリカにアルカリ添加剤として水酸化アンモニウム
(NH4 OH)または水酸化ナトリウム(NaOH)ま
たは非アルコール系アミンを少なくとも一種類以上含有
した研磨液(原液)を約20倍以内の範囲で希釈した研
磨液を用いている。希釈研磨液中のアルカリ添加剤の濃
度は約4%である。
When the dielectric isolation type semiconductor substrate is manufactured by the above-mentioned manufacturing process, the polishing agent usually used is ammonium hydroxide (NH 4 OH) or sodium hydroxide (NaOH) as an alkali additive to colloidal silica. A polishing liquid prepared by diluting a polishing liquid (stock solution) containing at least one non-alcoholic amine within a range of about 20 times or less is used. The concentration of the alkaline additive in the diluted polishing liquid is about 4%.

【0009】研磨布には、不織布(商品名「suba−
400」/JIS硬度規格62)またはスウェード系研
磨布(商品名「surfine−018」/JIS硬度
規格75)を使用する。研磨布及び基板の温度は、水冷
等の冷却手段により約30℃から約40℃の範囲内に保
持して、研磨を行う。
Non-woven cloth (trade name "suba-
400 "/ JIS hardness standard 62) or a suede-based polishing cloth (trade name" surfine-018 "/ JIS hardness standard 75) is used. The temperature of the polishing cloth and the substrate is kept within the range of about 30 ° C. to about 40 ° C. by cooling means such as water cooling, and polishing is performed.

【0010】研磨終了は、作業者の目視検査により判断
していた。
The completion of polishing was judged by visual inspection by the operator.

【0011】[0011]

【発明が解決しようとする課題】しかしながら、上述し
た従来のメカノケミカル研磨法による選択研磨では、酸
化膜に対するポリシリコンの選択研磨レートが大きく、
さらに、研磨布が軟質であるために、図6に示すよう
に、分離溝内のポリシリコン92が過剰に研磨されて凹
み(深さd[μm])が発生し、これに伴い、分離され
た素子側ウェーハ32の基板表面側の角部上の酸化膜5
0aにみられるような欠損が生じやすくなる、という問
題が発生する。
However, in the selective polishing by the above-mentioned conventional mechanochemical polishing method, the selective polishing rate of polysilicon with respect to the oxide film is large,
Further, since the polishing cloth is soft, as shown in FIG. 6, the polysilicon 92 in the separation groove is excessively polished to form a recess (depth d [μm]), which is separated. Oxide film 5 on the corner of the substrate side of the device side wafer 32
There is a problem that a defect such as 0a is likely to occur.

【0012】凹みの発生は、基板表面の平坦性を悪化さ
せて、半導体素子製造工程上の種々の問題発生の原因と
なり、歩留りの低下を招く。例えば、アルミ電極の段切
れの発生等があげられる。通常、分離溝の凹みの深さが
5μm以上となると、素子形成に悪影響を及ぼすといわ
れている。
The formation of the dent deteriorates the flatness of the substrate surface, causes various problems in the semiconductor element manufacturing process, and lowers the yield. For example, there is a step breakage of the aluminum electrode. Usually, it is said that when the depth of the recess of the separation groove is 5 μm or more, it adversely affects the element formation.

【0013】また、研磨にはμm単位の精度が要求され
るにもかかわらず、研磨終了は、作業者が研磨を停止し
て目視検査により判断していたので、完成した個体間の
品質、信頼性等にばらつきがあった。
Further, although the accuracy of the unit of μm is required for the polishing, the operator judges the completion of the polishing by visual inspection after stopping the polishing. There were variations in sex.

【0014】本発明は、上記問題点に鑑みてなされたも
ので、誘電体分離型半導体基板の過剰研磨を防止し、作
業終了時も所定条件に基づき判断することができる誘電
体分離型半導体基板の製造方法を提供することを目的と
する。
The present invention has been made in view of the above-mentioned problems, and prevents the dielectric isolation type semiconductor substrate from being excessively polished so that the dielectric isolation type semiconductor substrate can be judged based on a predetermined condition even at the end of the work. It aims at providing the manufacturing method of.

【0015】[0015]

【課題を解決するための手段】本発明によれば、半導体
素子が形成される第一のシリコン基板に、第一のシリコ
ン基板を支持して基台となる第二のシリコン基板を第一
のシリコン酸化膜を介して直接接着により接合するシリ
コン基板接合工程と、第一のシリコン基板に素子形成領
域を分離形成するために、第一のシリコン基板表面から
第一のシリコン酸化膜に達する分離溝を形成する分離溝
形成工程と、第一のシリコン基板の表面及び分離溝の表
面にそれぞれ形成された酸化膜上に少なくとも分離溝を
埋める程度にポリシリコン層を堆積するポリシリコン層
堆積工程と、コロイダルシリカにアルコール系アミンを
添加して希釈し、アルコール系アミンの濃度を1%から
2%の範囲内とした研磨液と、JIS硬度規格が85以
上の研磨布とを用いて、酸化膜上及び分離溝上に堆積さ
れたポリシリコン層を研磨して素子形成領域を分離形成
する研磨工程とを含むことを特徴とする。
According to the present invention, a first silicon substrate on which a semiconductor element is formed is provided with a second silicon substrate which is a base for supporting the first silicon substrate. A silicon substrate bonding step of bonding by direct adhesion through a silicon oxide film, and a separation groove reaching the first silicon oxide film from the surface of the first silicon substrate to separately form an element formation region on the first silicon substrate. An isolation groove forming step of forming a polysilicon layer deposition step of depositing a polysilicon layer on the oxide film formed on the surface of the first silicon substrate and on the oxide film formed on the surface of the isolation groove at least to fill the isolation groove, Use a polishing liquid with alcohol amine concentration diluted to 1% to 2% by adding alcohol amine to colloidal silica, and a polishing cloth with JIS hardness standard of 85 or more. Te, characterized in that it comprises a polishing step of separating forming an element forming region by polishing the polysilicon layer deposited oxide film and separated on the groove.

【0016】研磨工程は、研磨布の表面温度または半導
体基板被研磨側表面の温度を冷却することなしに60℃
以下に維持しながら研磨を行うこととすると良い。
The polishing step is performed at 60 ° C. without cooling the surface temperature of the polishing cloth or the surface of the semiconductor substrate to be polished.
It is advisable to carry out polishing while maintaining the following.

【0017】さらに、研磨工程は、研磨を開始してから
3分以上経過した後、半導体基板被研磨側表面の温度が
最高温度に達してから3分以内に研磨を終了することと
すると良い。
Further, in the polishing step, it is preferable to finish the polishing within 3 minutes after the temperature of the surface to be polished of the semiconductor substrate reaches the maximum temperature after 3 minutes or more have passed since the polishing was started.

【0018】または、半導体素子が形成される第一のシ
リコン基板に、第一のシリコン基板を支持して基台とな
る第二のシリコン基板を第一のシリコン酸化膜を介して
直接接着により接合するシリコン基板接合工程と、第一
のシリコン基板に素子形成領域を分離形成するために、
第一のシリコン基板表面から第一のシリコン酸化膜に達
する分離溝を形成する分離溝形成工程と、第一のシリコ
ン基板の表面及び分離溝の表面にそれぞれ形成された酸
化膜上に少なくとも分離溝を埋める程度にポリシリコン
層を堆積するポリシリコン層堆積工程と、コロイダルシ
リカにアルコール系アミンを添加して希釈し、アルコー
ル系アミンの濃度を1%から2%の範囲内とした研磨液
と、JIS硬度規格が85以上の研磨布とを用いて、研
磨布の表面温度または半導体基板被研磨側表面の温度を
冷却することなしに60℃以下に維持しながら酸化膜上
及び分離溝上に堆積されたポリシリコン層を研磨して素
子形成領域を分離形成する研磨工程とを含み、研磨工程
は、研磨を開始してから3分以上経過した後、半導体基
板被研磨側表面の温度が最高温度に達してから3分以内
に研磨を終了することを特徴とする。
Alternatively, a second silicon substrate, which supports the first silicon substrate and serves as a base, is bonded to the first silicon substrate on which a semiconductor element is formed by direct adhesion through a first silicon oxide film. In order to separately form the element formation region on the first silicon substrate,
A separation groove forming step of forming a separation groove reaching the first silicon oxide film from the surface of the first silicon substrate, and at least a separation groove on the oxide film formed on the surface of the first silicon substrate and the surface of the separation groove, respectively. A polysilicon layer deposition step of depositing a polysilicon layer to such an extent that it fills up with a colloidal silica, and an alcohol amine is added to the colloidal silica to dilute it, and the concentration of the alcohol amine is within the range of 1% to 2%; Using a polishing cloth having a JIS hardness standard of 85 or more, the surface temperature of the polishing cloth or the surface of the semiconductor substrate to be polished is maintained at 60 ° C. or lower without being cooled and deposited on the oxide film and the separation groove. Polishing step of polishing the polysilicon layer to separate and form the element formation region, and the polishing step includes the step of polishing the surface of the semiconductor substrate to be polished after 3 minutes or more have elapsed since the polishing was started. Degree is equal to or to terminate the polishing after reaching the maximum temperature within 3 minutes.

【0019】[0019]

【作用】アルコール系アミンを1%から2%含有した研
磨液と、JIS硬度規格が85以上の研磨布とを用いた
ので、分離溝の凹みの深さを非常に小さく抑制し、すな
わち、過剰研磨を防止し、品質の優れた信頼性の高い誘
電体分離型半導体基板を得ることができる。
[Function] Since the polishing liquid containing 1% to 2% of alcohol amine and the polishing cloth having JIS hardness standard of 85 or more are used, the depth of the recess of the separation groove is suppressed to a very small value, that is, an excessive amount. It is possible to prevent polishing and obtain a highly reliable dielectric-isolated semiconductor substrate of high quality.

【0020】研磨布の表面温度または研磨する側の半導
体基板表面の温度が冷却することなしに60℃を超えな
いよう維持して研磨を行うこととしたことで、過剰研磨
を効果的に防止することができる。
Since the surface temperature of the polishing cloth or the temperature of the surface of the semiconductor substrate on the side to be polished is kept not to exceed 60 ° C. without cooling, excessive polishing is effectively prevented. be able to.

【0021】研磨を開始してから3分以上経過した後、
研磨する側の半導体基板表面の温度が最高温度に達して
から3分以内に研磨を終了することとしたので、研磨工
程を自動的に終了させることができる。
After 3 minutes or more have passed from the start of polishing,
Since the polishing is completed within 3 minutes after the temperature of the surface of the semiconductor substrate on the polishing side reaches the maximum temperature, the polishing process can be automatically completed.

【0022】アルコール系アミンを1%から2%含有し
た研磨液と、JIS硬度規格が85以上の研磨布とを用
い、研磨布の表面温度または研磨する側の半導体基板表
面の温度が冷却せずに60℃を超えないように研磨を行
い、研磨を開始してから3分以上経過した後、研磨する
側の半導体基板表面の温度が最高温度に達してから3分
以内に研磨を終了することとしたので、分離溝の凹みの
深さを非常に小さく抑制し、すなわち、過剰研磨を防止
し、品質の優れた信頼性の高い誘電体分離型半導体基板
を得ることができ、研磨工程を自動的に終了させること
ができる。
A polishing liquid containing 1% to 2% of an alcohol amine and a polishing cloth having a JIS hardness standard of 85 or more were used, and the surface temperature of the polishing cloth or the temperature of the surface of the semiconductor substrate to be polished was not cooled. The polishing should be performed at a temperature not exceeding 60 ° C, and after 3 minutes or more have passed from the start of polishing, the polishing should be completed within 3 minutes after the temperature of the surface of the semiconductor substrate on the polishing side reaches the maximum temperature. Therefore, the depth of the recess of the separation groove can be suppressed to a very small value, that is, overpolishing can be prevented, and a reliable dielectric isolation type semiconductor substrate with excellent quality can be obtained, and the polishing process can be performed automatically. Can be ended automatically.

【0023】[0023]

【実施例】以下、本発明に係る実施例につき、図面を参
照しながら説明する。図1は、研磨時間を一定とした場
合における研磨液に含有されるアルコール系アミン量
(%)に対する研磨温度(℃)と分離溝の凹みの深さ
(μm)との関係を比較したグラフ、図2は、研磨時間
を一定とした場合における研磨布のJIS硬度と分離溝
の凹みの深さ(μm)との関係を示したグラフ、図3
は、研磨液に含有されるアルコール系アミン量(%)と
シリコン酸化膜及びポリシリコン膜の研磨速度との関係
を示したグラフ、図4は、研磨時間(分)と研磨布の表
面温度(℃)との関係を示したグラフである。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a graph comparing the relationship between the polishing temperature (° C.) and the depth (μm) of the recess of the separation groove with respect to the amount (%) of alcohol amine contained in the polishing liquid when the polishing time is constant. FIG. 2 is a graph showing the relationship between the JIS hardness of the polishing cloth and the depth (μm) of the recess of the separation groove when the polishing time is constant, and FIG.
Is a graph showing the relationship between the amount of alcoholic amine contained in the polishing liquid (%) and the polishing rate of the silicon oxide film and the polysilicon film. FIG. 4 is a graph showing the polishing time (minutes) and the surface temperature of the polishing cloth ( It is a graph showing the relationship with (° C).

【0024】本発明に係る誘電体分離型半導体基板の研
磨法の第一の実施例は、以下のようにして行った。
The first embodiment of the method for polishing a dielectric isolation type semiconductor substrate according to the present invention was performed as follows.

【0025】コロイダルシリカ系研磨剤に加えてアルコ
ール系アミンを1%含む研磨液と、JIS硬度規格85
の発砲ウレタン製研磨布(商品名「MH−S15A」)
とを用い、水冷等の冷却手段を用いることなしに図5
(g)の状態の基板に対して枚葉研磨を実施した。研磨
を開始してから約7分後、基板及び研磨布の温度が57
℃のピーク温度を示してから下降し始めた。ピーク温度
の時点からさらに約2分間研磨を継続した後、終了させ
た。
A polishing liquid containing 1% of alcohol amine in addition to the colloidal silica abrasive, and JIS hardness standard 85
Foam urethane polishing cloth (trade name "MH-S15A")
5 and without using cooling means such as water cooling.
Single-wafer polishing was performed on the substrate in the state of (g). About 7 minutes after starting polishing, the temperature of the substrate and polishing cloth was 57
It showed a peak temperature of ° C and then began to fall. Polishing was continued for about 2 minutes from the time of the peak temperature, and then the polishing was terminated.

【0026】研磨終了後に、基板表面を観察したとこ
ろ、基板表面の酸化膜50上のポリシリコンは完全に除
去されており、一方、基板の凹みの深さ(図6中のd
[μm])は約0.5μmと極めて小さく、分離された
素子側ウェーハ32の基板表面側の角部上の酸化膜50
aに欠損も生じていなかった。さらに、この第一の実施
例により作製した誘電体分離型半導体基板へのデバイス
形成を行ったところ、特に問題が発生することもなく信
頼性も良好であった。
When the surface of the substrate was observed after the polishing was completed, the polysilicon on the oxide film 50 on the surface of the substrate was completely removed, while the depth of the depression of the substrate (d in FIG. 6).
[Μm]) is as small as about 0.5 μm, and the oxide film 50 on the corner of the separated element-side wafer 32 on the substrate surface side.
There was no defect in a. Furthermore, when devices were formed on the dielectric isolation type semiconductor substrate manufactured by the first example, no particular problems occurred and the reliability was good.

【0027】本発明に係る誘電体分離型半導体基板の研
磨法の第二の実施例は、第一の実施例とは若干条件を変
更して行った。
The second embodiment of the method for polishing a dielectric isolation type semiconductor substrate according to the present invention was carried out by slightly changing the conditions from the first embodiment.

【0028】コロイダルシリカ系研磨剤に加えてアルコ
ール系アミンを2%含む研磨液と、JIS硬度規格95
の緻密発砲ウレタン製研磨布(商品名「IC−100
0」)とを用い、水冷等の冷却手段を用いることなしに
図5(g)の状態の基板に対して枚葉研磨を実施した。
研磨を開始してから約8分後、基板及び研磨布の温度が
58℃のピーク温度を示してから下降し始めた。ピーク
温度の時点からさらに約2.5分間研磨を継続した後、
終了させた。
A polishing liquid containing 2% of alcohol amine in addition to the colloidal silica abrasive, and JIS hardness standard 95
Precise foam urethane polishing cloth (trade name "IC-100
0 ”), and single-wafer polishing was performed on the substrate in the state of FIG. 5G without using a cooling means such as water cooling.
About 8 minutes after the polishing was started, the temperature of the substrate and the polishing cloth showed a peak temperature of 58 ° C. and then started to decrease. After continuing polishing for about 2.5 minutes from the time of peak temperature,
Finished.

【0029】研磨終了後に、基板表面を観察したとこ
ろ、基板表面の酸化膜50上のポリシリコンは完全に除
去されており、一方、基板の凹みの深さ(図6中のd
[μm])は約1μmと非常に小さく、分離された素子
側ウェーハ32の基板表面側の角部上の酸化膜50aに
欠損も生じていなかった。さらに、この第二の実施例に
より作製した誘電体分離型半導体基板にもデバイス形成
を行ったところ、特に問題が発生することもなく信頼性
も良好であった。
When the surface of the substrate was observed after the polishing was completed, the polysilicon on the oxide film 50 on the surface of the substrate was completely removed, while the depth of the depression of the substrate (d in FIG. 6).
[Μm]) was very small, about 1 μm, and no defects were generated in the oxide film 50a on the corners of the separated element-side wafer 32 on the substrate surface side. Further, when devices were formed also on the dielectric isolation type semiconductor substrate manufactured by the second example, no particular problems occurred and the reliability was good.

【0030】いくつかの条件をそれぞれ変化させなが
ら、さらにこの他にも多数の基板について研磨を行い、
研磨時間を一定とした場合における研磨液に含有される
アルコール系アミン量(%)に対する研磨温度(℃)と
分離溝の凹みの深さ(μm)との関係の比較、研磨時間
を一定とした場合における研磨布のJIS硬度と分離溝
の凹みの深さ(μm)との関係、研磨液に含有されるア
ルコール系アミン量(%)とシリコン酸化膜及びポリシ
リコン膜の研磨速度との関係、研磨時間(分)と研磨布
の表面温度(℃)との関係をそれぞれ示したのが、図
1、2、3のグラフである。
Polishing is performed on a large number of other substrates while changing some conditions.
Comparison of the relationship between the polishing temperature (° C.) and the depth (μm) of the groove of the separation groove with respect to the amount (%) of the alcoholic amine contained in the polishing liquid when the polishing time was constant, and the polishing time was constant. In the case, the relationship between the JIS hardness of the polishing cloth and the depth (μm) of the recess of the separation groove, the relationship between the amount of alcohol amine (%) contained in the polishing liquid and the polishing rate of the silicon oxide film and the polysilicon film, The graphs of FIGS. 1, 2, and 3 show the relationship between the polishing time (minutes) and the surface temperature (° C.) of the polishing cloth, respectively.

【0031】図1のグラフに示した、アルコール系アミ
ンをそれぞれ1%、2%、3%、7%含有した研磨液を
用いた場合における研磨時の研磨布の表面温度(℃)と
分離溝の凹みの深さ(μm)との関係から、アルコール
系アミンを1〜2%含有した研磨液を用い、研磨時の研
磨布の表面温度を約60℃以下に維持した場合に、分離
溝の凹みの深さが非常に小さく、品質の優れた基板が得
られていることが分かる。
The surface temperature (° C.) of the polishing cloth and the separation groove at the time of polishing in the case of using the polishing liquid containing 1%, 2%, 3%, and 7% of alcohol amine shown in the graph of FIG. In view of the relationship with the depth (μm) of the dents, when a polishing liquid containing 1 to 2% of alcohol amine was used and the surface temperature of the polishing cloth during polishing was maintained at about 60 ° C. or less, the separation groove It can be seen that the depth of the recess is very small and a substrate of excellent quality is obtained.

【0032】図2のグラフに示した、研磨布のJIS硬
度と分離溝の凹みの深さ(μm)との関係から、JIS
硬度85以上の研磨布を用いた場合に、分離溝の凹みの
深さが非常に小さく、品質の優れた基板が得られている
ことが分かる。
From the relationship between the JIS hardness of the polishing cloth and the depth (μm) of the recess of the separation groove shown in the graph of FIG.
It can be seen that when a polishing cloth having a hardness of 85 or more is used, the depth of the recess of the separation groove is very small, and a substrate of excellent quality is obtained.

【0033】図3のグラフに示した、研磨液中のアルコ
ール系アミン量(%)とシリコン酸化膜及びポリシリコ
ン膜の研磨速度との関係から、アルコール系アミンを1
〜2%含有した研磨液を用いた場合に、分離溝の凹みの
深さが非常に小さく、品質の優れた基板が得られると考
えられる。ポリシリコン膜の研磨速度がシリコン酸化膜
の研磨速度より大きく、かつ、その差があまり大きくな
い場合に、分離溝の凹みの深さが小さく、シリコン酸化
膜の欠損等が生じにくくなるからである。
Based on the relationship between the amount (%) of alcohol amine in the polishing liquid and the polishing rate of the silicon oxide film and the polysilicon film shown in the graph of FIG.
It is considered that when a polishing liquid containing ˜2% is used, the depth of the recess of the separation groove is very small, and a substrate of excellent quality can be obtained. This is because when the polishing rate of the polysilicon film is higher than the polishing rate of the silicon oxide film and the difference is not so large, the depth of the recess of the separation groove is small and the silicon oxide film is less likely to be damaged. .

【0034】図4は、第一または第二の実施例における
誘電体分離型半導体基板の研磨の際の研磨時間と研磨布
の表面温度との関係を示したグラフである。ここでは、
研磨液は、アルコール系アミンを1〜2%含有した研磨
液を用い、研磨布は、JIS硬度85以上の研磨布を用
いている。
FIG. 4 is a graph showing the relationship between the polishing time and the surface temperature of the polishing cloth when polishing the dielectric isolation type semiconductor substrate in the first or second embodiment. here,
As the polishing liquid, a polishing liquid containing 1 to 2% of alcohol amine was used, and as the polishing cloth, a polishing cloth having JIS hardness of 85 or more was used.

【0035】温度変化の状態からグラフをA、B、C、
D、Eの5つの領域に分けて、それぞれの領域における
研磨の進行状態について説明する。
From the state of temperature change, graphs A, B, C,
The progress of polishing in each of the five regions D and E will be described.

【0036】領域Aでは、グラインダー加工した後のポ
リシリコン膜表面を研磨開始した直後であるため、ポリ
シリコン膜表面と研磨布との摩擦力が大きく、温度が急
激に上昇する。
In the region A, since the surface of the polysilicon film after the grind processing is started immediately after the polishing is started, the frictional force between the surface of the polysilicon film and the polishing cloth is large and the temperature rises rapidly.

【0037】領域Bでは、ポリシリコンを研磨した時間
の経過とともに温度が緩やかに上昇する。この段階で
は、まだポリシリコン膜の厚さは厚い。
In the region B, the temperature gradually rises as the time for polishing the polysilicon elapses. At this stage, the polysilicon film is still thick.

【0038】領域Cでは、研磨時間の進行とともに、領
域Bよりもやや大きな割合で温度が上昇しピークに達す
る。この段階では、まだポリシリコン膜の厚さはかなり
薄くなっている。
In region C, the temperature rises at a slightly larger rate than in region B and reaches a peak as the polishing time progresses. At this stage, the polysilicon film is still quite thin.

【0039】領域Dでは、シリコン酸化膜上のポリシリ
コン膜が研磨により部分的に消失して、シリコン酸化膜
が露出し始めた時点で温度が変化がピークに達し、その
後シリコン酸化膜の露出部分の増加に伴って摩擦力が徐
々に低下し、温度も下降し始める。
In region D, the polysilicon film on the silicon oxide film partially disappears due to polishing, and the temperature reaches a peak when the silicon oxide film starts to be exposed, and then the exposed portion of the silicon oxide film is reached. The frictional force gradually decreases as the temperature increases, and the temperature also starts to decrease.

【0040】領域Eでは、さらに研磨が進行してシリコ
ン酸化膜上のポリシリコン膜が完全に消失して、研磨布
との摩擦が急激に低下し、温度も急激に低下する。
In the region E, the polishing is further progressed, the polysilicon film on the silicon oxide film is completely disappeared, the friction with the polishing cloth is drastically lowered, and the temperature is drastically lowered.

【0041】以上のような、研磨時間と温度との関係を
もとに、温度ピークを検出してから所定時間(約3分)
以内の温度の急激な低下後に研磨を終了することによ
り、基板の研磨を自動化することができる。
Based on the relationship between the polishing time and the temperature as described above, a predetermined time (about 3 minutes) after the temperature peak is detected.
The polishing of the substrate can be automated by terminating the polishing after the temperature falls sharply.

【0042】また、本発明に係る研磨法を採用した結
果、シリコン酸化膜表面上のポリシリコン膜が完全に除
去され、かつ、分離溝を埋めているポリシリコンの凹み
が極めて小さい基板を得ることができ、同時に歩留まり
も向上した。
Further, as a result of adopting the polishing method according to the present invention, it is possible to obtain a substrate in which the polysilicon film on the surface of the silicon oxide film is completely removed and the recess of the polysilicon filling the isolation trench is extremely small. The yield was improved at the same time.

【0043】温度ピークを検出してから研磨終了までの
所定時間は、アルコール系アミンを1〜2%含有した研
磨液とJIS硬度85以上の研磨布とを用いた場合に、
分離溝内のポリシリコンの凹みの深さを小さく押さえら
れる時間を実験等から計算して3分以内とした。
The predetermined time from the detection of the temperature peak to the end of polishing is as follows when a polishing liquid containing 1 to 2% of alcohol amine and a polishing cloth having JIS hardness of 85 or more are used.
The time during which the depth of the depression of the polysilicon in the separation groove can be suppressed to a small value was calculated from experiments or the like and was set to within 3 minutes.

【0044】[0044]

【発明の効果】以上説明したように、本発明に係る誘電
体分離型半導体基板の製造方法によれば、分離溝の凹み
の深さを非常に小さく抑制し、すなわち、過剰研磨を防
止し、品質の優れた信頼性の高い誘電体分離型半導体基
板を得ることができる。
As described above, according to the method for manufacturing a dielectric isolation type semiconductor substrate according to the present invention, the depth of the recess of the isolation groove is suppressed to a very small level, that is, excessive polishing is prevented, It is possible to obtain a dielectric isolation type semiconductor substrate having excellent quality and high reliability.

【0045】研磨時における温度条件を制限したので、
過剰研磨をさらに効果的に防止することができる。
Since the temperature conditions during polishing are limited,
Excessive polishing can be prevented more effectively.

【0046】研磨時における温度変化を基に研磨終了時
を設定したので、研磨工程を自動的に終了させることが
できる。
Since the polishing end time is set based on the temperature change during polishing, the polishing process can be automatically ended.

【0047】所定の研磨液と、所定の研磨布とを用い
て、研磨時における温度条件を制限しながら研磨を行
い、さらに、研磨時における温度変化を基に研磨終了時
を設定したので、分離溝の凹みの深さを非常に小さく抑
制し、すなわち、過剰研磨を防止し、品質の優れた信頼
性の高い誘電体分離型半導体基板を得ることができ、研
磨工程を自動的に終了させることができる。
Since a predetermined polishing liquid and a predetermined polishing cloth are used to carry out polishing while limiting the temperature conditions during polishing, and when the end of polishing is set based on the temperature change during polishing, separation is performed. It is possible to suppress the depth of the groove recess to a very small level, that is, prevent excessive polishing, obtain a dielectric isolation type semiconductor substrate of excellent quality and high reliability, and terminate the polishing process automatically. You can

【図面の簡単な説明】[Brief description of drawings]

【図1】研磨時間を一定とした場合における研磨液に含
有されるアルコール系アミン量(%)に対する研磨温度
(℃)と分離溝の凹みの深さ(μm)との関係を比較し
たグラフ。
FIG. 1 is a graph comparing the relationship between the polishing temperature (° C.) and the depth (μm) of the recess of the separation groove with respect to the amount of alcohol amine (%) contained in the polishing liquid when the polishing time is constant.

【図2】研磨時間を一定とした場合における研磨布のJ
IS硬度と分離溝の凹みの深さ(μm)との関係を示し
たグラフ。
[Fig. 2] J of polishing cloth when polishing time is constant
The graph which showed the relationship between IS hardness and the depth (micrometer) of the dent of a separation groove.

【図3】研磨液に含有されるアルコール系アミン量
(%)とシリコン酸化膜及びポリシリコン膜の研磨速度
との関係を示したグラフ。
FIG. 3 is a graph showing the relationship between the amount (%) of alcoholic amine contained in the polishing liquid and the polishing rate of the silicon oxide film and the polysilicon film.

【図4】研磨時間(分)と研磨布の表面温度(℃)との
関係を示したグラフ。
FIG. 4 is a graph showing the relationship between the polishing time (minutes) and the surface temperature (° C.) of the polishing cloth.

【図5】誘電体分離法による半導体基板の製造工程の説
明図。
FIG. 5 is an explanatory diagram of a manufacturing process of a semiconductor substrate by a dielectric separation method.

【図6】誘電体分離法による半導体基板の作製時に生ず
る問題点を示す説明図。
FIG. 6 is an explanatory diagram showing a problem that occurs when a semiconductor substrate is manufactured by a dielectric isolation method.

【符号の説明】[Explanation of symbols]

10 支持基板側ウェーハ 20,40,50,51,70 酸化膜 30,31,32 素子側ウェーハ 60 酸化膜の開口部 80 分離溝 90,91,92 ポリシリコン層 91a ポリシリコン膜 50a 酸化膜欠損部 d 分離溝内のポリシリコン層の凹みの深さ 10 Support substrate side wafer 20, 40, 50, 51, 70 Oxide film 30, 31, 32 Element side wafer 60 Oxide film opening 80 Separation groove 90, 91, 92 Polysilicon layer 91a Polysilicon film 50a Oxide film defect d Depth of depression of polysilicon layer in isolation trench

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 27/12 F ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical indication H01L 27/12 F

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】半導体素子が形成される第一のシリコン基
板に、前記第一のシリコン基板を支持して基台となる第
二のシリコン基板を第一のシリコン酸化膜を介して直接
接着により接合するシリコン基板接合工程と、 前記第一のシリコン基板に素子形成領域を分離形成する
ために、前記第一のシリコン基板表面から前記第一のシ
リコン酸化膜に達する分離溝を形成する分離溝形成工程
と、 前記第一のシリコン基板の表面及び前記分離溝の表面に
それぞれ形成された酸化膜上に少なくとも前記分離溝を
埋める程度にポリシリコン層を堆積するポリシリコン層
堆積工程と、 コロイダルシリカにアルコール系アミンを添加して希釈
し、前記アルコール系アミンの濃度を1%から2%の範
囲内とした研磨液と、JIS硬度規格が85以上の研磨
布とを用いて、前記酸化膜上及び前記分離溝上に堆積さ
れた前記ポリシリコン層を研磨して前記素子形成領域を
分離形成する研磨工程とを含むことを特徴とする誘電体
分離型半導体基板の製造方法。
1. A second silicon substrate that supports the first silicon substrate and serves as a base is directly bonded to a first silicon substrate on which a semiconductor element is formed through a first silicon oxide film. Silicon substrate bonding step of bonding, and isolation groove formation for forming an isolation groove reaching the first silicon oxide film from the surface of the first silicon substrate to separately form an element formation region on the first silicon substrate A step of depositing a polysilicon layer on the oxide film formed on the surface of the first silicon substrate and on the oxide film formed on the surface of the isolation groove at least to fill the isolation groove; A polishing liquid having an alcohol amine concentration diluted within the range of 1% to 2% by adding an alcohol amine and a polishing cloth having a JIS hardness standard of 85 or more were prepared. There are, dielectric isolation semiconductor substrate manufacturing method which comprises a polishing step of the oxide film and polishing the polysilicon layer deposited on the separation on trench separating the element formation region formed.
【請求項2】請求項1に記載の誘電体分離型半導体基板
の製造方法において、前記研磨工程は、前記研磨布の表
面温度または半導体基板被研磨側表面の温度を冷却せず
に60℃以下に維持しながら研磨を行うことを特徴とす
る誘電体分離型半導体基板の製造方法。
2. The method for manufacturing a dielectric isolation type semiconductor substrate according to claim 1, wherein the polishing step is performed without cooling the surface temperature of the polishing cloth or the surface of the semiconductor substrate to be polished at 60 ° C. or less. A method for manufacturing a dielectric isolation type semiconductor substrate, comprising: polishing while maintaining
【請求項3】請求項2に記載の誘電体分離型半導体基板
の製造方法において、前記研磨工程は、研磨を開始して
から3分以上経過した後、半導体基板被研磨側表面の温
度が最高温度に達してから3分以内に研磨を終了するこ
とを特徴とする誘電体分離型半導体基板の製造方法。
3. The method for manufacturing a dielectric isolation type semiconductor substrate according to claim 2, wherein in the polishing step, the temperature of the surface of the semiconductor substrate to be polished is the highest after 3 minutes or more have passed from the start of polishing. A method for manufacturing a dielectric isolation type semiconductor substrate, wherein polishing is completed within 3 minutes after reaching the temperature.
【請求項4】半導体素子が形成される第一のシリコン基
板に、前記第一のシリコン基板を支持して基台となる第
二のシリコン基板を第一のシリコン酸化膜を介して直接
接着により接合するシリコン基板接合工程と、 前記第一のシリコン基板に素子形成領域を分離形成する
ために、前記第一のシリコン基板表面から前記第一のシ
リコン酸化膜に達する分離溝を形成する分離溝形成工程
と、 前記第一のシリコン基板の表面及び前記分離溝の表面に
それぞれ形成された酸化膜上に少なくとも前記分離溝を
埋める程度にポリシリコン層を堆積するポリシリコン層
堆積工程と、 コロイダルシリカにアルコール系アミンを添加して希釈
し、前記アルコール系アミンの濃度を1%から2%の範
囲内とした研磨液と、JIS硬度規格が85以上の研磨
布とを用いて、前記研磨布の表面温度または半導体基板
被研磨側表面の温度を冷却せずに60℃以下に維持しな
がら前記酸化膜上及び前記分離溝上に堆積された前記ポ
リシリコン層を研磨して前記素子形成領域を分離形成す
る研磨工程とを含み、前記研磨工程は、研磨を開始して
から3分以上経過した後、前記半導体基板被研磨側表面
の温度が最高温度に達してから3分以内に研磨を終了す
ることを特徴とする誘電体分離型半導体基板の製造方
法。
4. A second silicon substrate which supports the first silicon substrate and serves as a base is directly bonded to a first silicon substrate on which a semiconductor element is formed, through a first silicon oxide film. Silicon substrate bonding step of bonding, and isolation groove formation for forming an isolation groove reaching the first silicon oxide film from the surface of the first silicon substrate to separately form an element formation region on the first silicon substrate A step of depositing a polysilicon layer on the oxide film formed on the surface of the first silicon substrate and on the oxide film formed on the surface of the isolation groove at least to fill the isolation groove; A polishing liquid having an alcohol amine concentration diluted within the range of 1% to 2% by adding an alcohol amine and a polishing cloth having a JIS hardness standard of 85 or more were prepared. The surface of the polishing cloth or the surface of the surface to be polished of the semiconductor substrate is maintained at 60 ° C. or lower without being cooled, and the polysilicon layer deposited on the oxide film and the separation groove is polished to And a polishing step of separately forming an element forming region, wherein the polishing step is within 3 minutes after the temperature of the surface to be polished of the semiconductor substrate reaches the maximum temperature after 3 minutes or more have passed from the start of polishing. A method for manufacturing a dielectric isolation type semiconductor substrate, which comprises finishing polishing.
JP442795A 1995-01-13 1995-01-13 Manufacture of dielectric isolation type semiconductor substrate Pending JPH08195435A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP442795A JPH08195435A (en) 1995-01-13 1995-01-13 Manufacture of dielectric isolation type semiconductor substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP442795A JPH08195435A (en) 1995-01-13 1995-01-13 Manufacture of dielectric isolation type semiconductor substrate

Publications (1)

Publication Number Publication Date
JPH08195435A true JPH08195435A (en) 1996-07-30

Family

ID=11583961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP442795A Pending JPH08195435A (en) 1995-01-13 1995-01-13 Manufacture of dielectric isolation type semiconductor substrate

Country Status (1)

Country Link
JP (1) JPH08195435A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7172963B2 (en) 2003-07-04 2007-02-06 Renesas Technology Corp. Manufacturing method of semiconductor integrated circuit device that includes chemically and mechanically polishing two conductive layers using two polishing pads that have different properties

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7172963B2 (en) 2003-07-04 2007-02-06 Renesas Technology Corp. Manufacturing method of semiconductor integrated circuit device that includes chemically and mechanically polishing two conductive layers using two polishing pads that have different properties

Similar Documents

Publication Publication Date Title
US6540935B2 (en) Chemical/mechanical polishing slurry, and chemical mechanical polishing process and shallow trench isolation process employing the same
US6376335B1 (en) Semiconductor wafer manufacturing process
JP5557506B2 (en) Polishing both sides of a semiconductor wafer
US20110256815A1 (en) Method for polishing silicon wafer, method for producing silicon wafer, apparatus for polishing disk-shaped workpiece, and silicon wafer
US8330245B2 (en) Semiconductor wafers with reduced roll-off and bonded and unbonded SOI structures produced from same
KR20000017512A (en) Method for reclaiming wafer substrate and polishing solution composition for reclaiming wafer substrate
KR20160113723A (en) Method for manufacturing semiconductor wafer
US7101801B2 (en) Method of manufacturing semiconductor device using chemical mechanical polishing
EP0853335A2 (en) Slurry and process for the mechano-chemical polishing of semiconductor devices
US6234873B1 (en) Semiconductor mirror-polished surface wafers and method for manufacturing the same
US6537914B1 (en) Integrated circuit device isolation methods using high selectivity chemical-mechanical polishing
JP3496508B2 (en) Bonded silicon wafer and manufacturing method thereof
CN100521108C (en) Method of manufacturing semiconductor device
US5904568A (en) Method of manufacturing a semiconductor wafer
JP2002118083A (en) Method of manufacturing semiconductor integrated circuit device
US20060157450A1 (en) Method for improving hss cmp performance
JPH08195435A (en) Manufacture of dielectric isolation type semiconductor substrate
KR20020081663A (en) Fabrication method of semiconductor integrated circuit device
JP3430499B2 (en) Semiconductor wafer and method of manufacturing the same
US6190999B1 (en) Method for fabricating a shallow trench isolation structure
JP2002270566A (en) Cleaning liquid and method of manufacturing semiconductor device
JP3945130B2 (en) Manufacturing method of bonded dielectric isolation wafer
JP3187216B2 (en) Method for manufacturing semiconductor device
KR100224674B1 (en) Fabricating method of silicon-on-insulator wafer
US7361602B1 (en) CMP process