JPH08193946A - Biosensor - Google Patents

Biosensor

Info

Publication number
JPH08193946A
JPH08193946A JP7021332A JP2133295A JPH08193946A JP H08193946 A JPH08193946 A JP H08193946A JP 7021332 A JP7021332 A JP 7021332A JP 2133295 A JP2133295 A JP 2133295A JP H08193946 A JPH08193946 A JP H08193946A
Authority
JP
Japan
Prior art keywords
light
biosensor
light receiving
reflected
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7021332A
Other languages
Japanese (ja)
Inventor
Taiji Osada
泰二 長田
Kenichi Uchiyama
兼一 内山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
Original Assignee
Toto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd filed Critical Toto Ltd
Priority to JP7021332A priority Critical patent/JPH08193946A/en
Publication of JPH08193946A publication Critical patent/JPH08193946A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • G01N21/552Attenuated total reflection
    • G01N21/553Attenuated total reflection and using surface plasmons

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE: To reduce the size of a biosensor while enhancing the sensitivity of measurement. CONSTITUTION: The biosensor 10 comprises a prism 12 having upper surface mounted with a sample plate 16 through a matching oil 14. Upper surface of the sample plate 16 is deposited with Au thin film 18 to provide a light reflection surface 20 and an evanescent wave coupling is formed. The biosensor 10 condenses the light emitted from a light source, e.g. an LED, through a condenser lens 24 and irradiates the light reflection surface 20 with a light condensed linearly. A CCD image pickup element 26 is disposed through a concave lens 28 on the side where the total reflection light from the light reflection surface 20 leaves the prism 12. Since the advancing path of light is altered by the concave lens 28, the reflection light is introduced to the CCD image pickup element 26 over a wide range.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光学系を用いて被測定
溶液中の測定対象基質を測定するバイオセンサに関し、
詳しくは、金属薄膜が設けられた光反射面において幾何
学的な全反射条件で光を反射する透光性の光透過媒体を
有し、該光透過媒体と前記金属薄膜でエバネッセント波
結合を形成する光学系を用いたものに関する。
TECHNICAL FIELD The present invention relates to a biosensor for measuring a substrate to be measured in a solution to be measured by using an optical system,
More specifically, a light-reflecting surface provided with a metal thin film has a light-transmitting light-transmitting medium that reflects light under geometric total reflection conditions, and the light-transmitting medium and the metal thin film form an evanescent wave coupling. The present invention relates to one using an optical system.

【0002】[0002]

【従来の技術】一般に、バイオセンサでは、血液中の特
定蛋白や抗原等の血液中成分、或いは尿中のグルコー
ス,アスコルビン酸等の尿中成分である測定対象基質
を、これら基質に対する識別機能を有し当該基質と生物
化学的反応を起こす生体物質が用いられている。そし
て、この生物化学的反応の進行に伴う種々の物理化学的
な変位量を物理化学デバイスにより検出し、測定対象基
質の特定やその濃度等が検出される。例えば、生物化学
的反応により消費或いは生成する電極活性物質の電極反
応を介して基質濃度を検出するものや、生物化学的反応
の進行に伴って起きるエンタルピー変化をサーミスタで
検出して基質濃度を検出するものなどがあり、これらの
バイオセンサは早くから実用化されている。
2. Description of the Related Art Generally, in a biosensor, a substrate to be measured, which is a blood component such as a specific protein or antigen in blood, or a urine component such as glucose or ascorbic acid in urine, has a function of discriminating these substrates. A biological substance that has a biochemical reaction with the substrate is used. Then, various physicochemical displacements associated with the progress of this biochemical reaction are detected by the physicochemical device, and the specification of the measurement target substrate, its concentration, etc. are detected. For example, one that detects the substrate concentration through the electrode reaction of an electrode active substance that is consumed or produced by a biochemical reaction, or one that detects the enthalpy change that occurs with the progress of the biochemical reaction with a thermistor to detect the substrate concentration. These biosensors have been put to practical use since early on.

【0003】その一方で、近年では、生物化学的反応の
進行に伴う誘電率の変化に着目し、光学的なデバイスを
用いて被測定溶液中の測定対象基質を測定するバイオセ
ンサが提案されている(特開平1−138443,特許
出願公表平4−501462)。このバイオセンサで
は、光学系として、金属薄膜が設けられた光反射面にお
いて幾何学的な全反射条件で光を反射する透光性の光透
過媒体を有し、この光透過媒体と金属薄膜でエバネッセ
ント波結合を形成する光学系が用いられている。その測
定原理は、次の通りである。
On the other hand, in recent years, attention has been paid to changes in the dielectric constant with the progress of biochemical reactions, and biosensors have been proposed for measuring a substrate to be measured in a solution to be measured using an optical device. (Japanese Patent Application Laid-Open No. 1-138443, Japanese Patent Application Publication No. 4-501462). In this biosensor, as an optical system, a light-transmitting light-transmitting medium that reflects light under a geometrical total reflection condition is provided on a light-reflecting surface provided with a metal thin film. An optical system that forms an evanescent wave coupling is used. The measuring principle is as follows.

【0004】エバネッセント波結合を形成する光学系の
光透過媒体、例えばプリズムにp偏光を全反射条件を満
たした種々の入射角で光反射面に照射すると、入射角が
ある値のときに特異な現象が起きる。即ち、p偏光が光
反射面に照射されると、金属薄膜のプリズム側膜面には
入射角θを変数とする波数のエバネッセント波が生じ
る。そして、金属は固体プラズマと見なすことができる
ので、金属薄膜の反プリズム側膜面(以下、薄膜外表面
という)には、量子論的な電荷密度の波としての表面プ
ラズモン波が光のトンネル効果により生じる。この表面
プラズモン波は、薄膜外表面を境界面として金属薄膜と
接触する媒質との間の波動として生じる。
When a light-transmitting medium of an optical system for forming an evanescent wave coupling, for example, a prism, is irradiated with a p-polarized light on a light-reflecting surface at various incident angles satisfying the condition of total reflection, it is peculiar when the incident angle has a certain value. The phenomenon occurs. That is, when the p-polarized light is applied to the light reflecting surface, an evanescent wave having a wave number with the incident angle θ as a variable is generated on the prism-side film surface of the metal thin film. Since metal can be regarded as a solid plasma, a surface plasmon wave as a quantum charge density wave is generated on the anti-prism side film surface of the metal thin film (hereinafter referred to as the thin film outer surface) by the tunnel effect of light. Caused by. This surface plasmon wave is generated as a wave between the medium contacting the metal thin film with the outer surface of the thin film as a boundary surface.

【0005】そして、入射角θがある値のときには、こ
のエバネッセント波と表面プラズモン波とがその波数が
一致して共鳴する表面プラズモン共鳴現象が起き、光の
エネルギが表面プラズモン波の励起エネルギに使われ
る。この際、エネルギ的には、光反射面に入射した光の
エネルギは表面プラズモン波の励起に使われたエネルギ
と反射面からの反射光のエネルギの和に等しいという関
係がある。このため、反射角とエネルギ(光量)の変化
の様子を例えばマルチチャンネル式の受光機器を用いて
測定して、表面プラズモン共鳴現象の有無、延いては当
該現象が起きた時の入射角を求めることができる。
When the incident angle θ has a certain value, a surface plasmon resonance phenomenon occurs in which the wave numbers of the evanescent wave and the surface plasmon wave coincide with each other, and the light energy is used as the excitation energy of the surface plasmon wave. Be seen. At this time, in terms of energy, there is a relation that the energy of the light incident on the light reflecting surface is equal to the sum of the energy used to excite the surface plasmon wave and the energy of the reflected light from the reflecting surface. For this reason, the state of changes in the reflection angle and the energy (light amount) is measured by using, for example, a multi-channel light receiving device, and the presence or absence of the surface plasmon resonance phenomenon, and consequently the incident angle when the phenomenon occurs, are obtained. be able to.

【0006】その一方、表面プラズモン共鳴現象が起き
る際の入射角と媒質の屈折率とは相関関係にあり、この
屈折率は、マクスウェルの方程式から媒質の誘電率で規
定でき、生体物質による生物化学的反応の進行と誘電率
とは相関関係にある。よって、反射光の光量が急激に減
少したときの反射角からその時の入射角が決まり、上記
の各相関関係から生体物質による生物化学的反応の進行
の程度、即ち基質濃度が算出される。
On the other hand, there is a correlation between the incident angle when the surface plasmon resonance phenomenon occurs and the refractive index of the medium, and this refractive index can be defined by the dielectric constant of the medium from Maxwell's equation, and the biochemistry by biological substances. There is a correlation between the progress of the static reaction and the dielectric constant. Therefore, the angle of incidence at that time is determined from the angle of reflection when the amount of reflected light suddenly decreases, and the degree of progress of the biochemical reaction by the biological substance, that is, the substrate concentration is calculated from the above correlations.

【0007】ところで、このようなバイオセンサにあっ
ては、金属薄膜の薄膜外表面のごく近傍、詳しくはトン
ネル効果を起こすエバネッセント領域(約100nm)
において基質と生体物質との生物化学的反応が起こる必
要がある。このため、特許出願公表平4−501605
に提案されているように、生体物質を固定した層いわゆ
るリガンド層を金属薄膜の上記膜面に固定化することが
一般に行なわれている。
By the way, in such a biosensor, the metal thin film is very close to the outer surface of the thin film, specifically, the evanescent region (about 100 nm) that causes the tunnel effect.
In, it is necessary for the biochemical reaction between the substrate and the biological substance to occur. For this reason, the patent application publication No. 4-501605
As has been proposed in US Pat. No. 5,968,967, it is generally practiced to immobilize a layer on which a biological substance is immobilized, a so-called ligand layer, on the above-mentioned membrane surface of a metal thin film.

【0008】このように、エバネッセント波結合を形成
する光学系を用いて被測定溶液中の測定対象基質を測定
するバイオセンサは、被測定溶液の着色程度や不透明さ
などの影響を受けない、或いは金属薄膜の薄膜外表面に
基質と生物化学的反応を起こす生体物質を固着しておく
だけでよい等の利点を有するので、急速に普及しつつあ
る。
As described above, the biosensor for measuring the substrate to be measured in the solution to be measured using the optical system that forms the evanescent wave bond is not affected by the degree of coloring or opacity of the solution to be measured, or Since it has the advantage that it is sufficient to fix a biological substance that causes a biochemical reaction with the substrate on the outer surface of the thin metal film, it is rapidly spreading.

【0009】[0009]

【発明が解決しようとする課題】上記したバイオセンサ
にあっては、金属薄膜の薄膜外表面近傍の誘電率の変化
検知をその測定原理としている。よって、リガンド層へ
の低分子量分子の基質の吸着や当該層への基質吸着が少
量の場合には、誘電率変化が少ないため測定感度が低下
する。
In the above biosensor, the measurement principle is to detect the change in the dielectric constant of the metal thin film near the outer surface of the thin film. Therefore, when the adsorption of the substrate of the low molecular weight molecule to the ligand layer or the adsorption of the substrate to the layer is small, the change in the dielectric constant is small and the measurement sensitivity is lowered.

【0010】測定感度の向上を図るための一つの方策と
しては、反射光強度(受光光量)−反射角曲線の角度分
解能を高めることが考えられる。この角度分解能は、マ
ルチチャンネル受光機器を構成する各受光素子の大きさ
とその間隔とが一定であれば、プリズムから当該受光機
器の離間距離で規定される。そして、受光機器がプリズ
ムから離れればその受光領域が広がって受光素子の並び
に沿った受光光量の分布を拡散できるため、反射角の角
度分解能を高めることができる。例えば、約20μmの
大きさの受光素子をできるだけ近接して配置したマルチ
チャンネル受光機器では、プリズムから20cm離れた
場合の各受光素子の分解能は0.1m度に相当する。と
ころが、受光機器をプリズムから40cm離すと、その
分解能は0.05m度となり約2倍の分解能となる。
As one measure for improving the measurement sensitivity, it is considered that the angular resolution of the reflected light intensity (amount of received light) -reflection angle curve is increased. This angular resolution is defined by the distance from the prism to the light receiving device, provided that the size of each light receiving element forming the multi-channel light receiving device and the distance between the light receiving elements are constant. When the light receiving device is separated from the prism, its light receiving region is widened and the distribution of the amount of received light along the line of the light receiving element can be diffused, so that the angular resolution of the reflection angle can be improved. For example, in a multi-channel light receiving device in which light receiving elements having a size of about 20 μm are arranged as close to each other as possible, the resolution of each light receiving element at a distance of 20 cm from the prism corresponds to 0.1 m degrees. However, when the light receiving device is separated from the prism by 40 cm, the resolution is 0.05 m, which is about twice the resolution.

【0011】このように受光機器をプリズムから離せば
容易に角度分解能を高めて測定感度を向上させることが
できるが、受光機器を離間させる都合上、センサが大型
化する。その反面、センサを小型化すれば、受光機器が
プリズムに近づくので測定感度の向上が図れない。な
お、受光素子を小さくすれば受光機器を離間させなくて
も角度分解能を高めることができまたセンサの小型化を
図ることができるが、受光素子の微細化にも物理的限界
がある都合上、小型化と分解能の向上は制限される。
By thus separating the light receiving device from the prism, the angular resolution can be easily increased and the measurement sensitivity can be improved. However, the size of the sensor becomes large because the light receiving device is separated. On the other hand, if the sensor is downsized, the light receiving device approaches the prism, so that the measurement sensitivity cannot be improved. It should be noted that if the light receiving element is made small, the angular resolution can be improved without separating the light receiving device and the sensor can be downsized, but there is a physical limit to miniaturization of the light receiving element, Miniaturization and improved resolution are limited.

【0012】本発明は、上記問題点を解決するためにな
され、センサの小型化と測定感度の向上との両立を図る
ことを目的とする。
The present invention has been made to solve the above problems, and an object thereof is to achieve both miniaturization of a sensor and improvement of measurement sensitivity.

【0013】[0013]

【課題を解決するための手段】かかる目的を達成するた
めに請求項1記載のバイオセンサの採用した手段は、金
属薄膜が設けられた光反射面において幾何学的な全反射
条件で光を反射する透光性の光透過媒体を有し、該光透
過媒体と前記金属薄膜でエバネッセント波結合を形成す
る光学系を用いて、前記金属薄膜に接触した被測定溶液
中の測定対象基質を測定するバイオセンサであって、前
記光学系は、光源からの光を前記光透過媒体を透過させ
て前記光反射面に集光して照射する光照射手段と、前記
光反射面で反射し前記光透過媒体から外部に出射する反
射光を受光し、該反射光の光量を検出する受光手段と、
該受光手段と前記光透過媒体との間に介在し、前記光透
過媒体から外部に出射する反射光の進行経路を前記受光
手段の受光領域が拡張する側に変更し、前記受光手段に
該反射光を導く反射光導光手段とを備えることをその要
旨とする。
In order to achieve the above object, the means adopted by the biosensor according to claim 1 is to reflect light under a geometric total internal reflection condition on a light reflecting surface provided with a metal thin film. An optical system having a light-transmitting light-transmitting medium for forming an evanescent wave bond between the light-transmitting medium and the metal thin film is used to measure a measurement target substrate in a solution to be measured in contact with the metal thin film. The biosensor is a biosensor, wherein the optical system transmits light from a light source through the light transmitting medium and collects and irradiates the light on the light reflecting surface, and the light transmitting means reflects the light on the light reflecting surface. Light receiving means for receiving the reflected light emitted from the medium to the outside and detecting the amount of the reflected light,
Interposing between the light receiving means and the light transmitting medium, the traveling path of the reflected light emitted from the light transmitting medium to the outside is changed to a side where the light receiving area of the light receiving means is expanded, and the light receiving means reflects the reflected light. The gist of the present invention is to provide a reflected light guide means for guiding light.

【0014】請求項2記載のバイオセンサでは、前記反
射光導光手段を、凹レンズを有するものとした。
According to another aspect of the biosensor, the reflected light guiding means has a concave lens.

【0015】請求項3記載のバイオセンサでは、前記反
射光導光手段を、反射鏡を有するものとした。
According to a third aspect of the biosensor, the reflected light guiding means has a reflecting mirror.

【0016】請求項4記載のバイオセンサでは、前記反
射鏡を、凸面鏡とした。
In the biosensor according to claim 4, the reflecting mirror is a convex mirror.

【0017】請求項5記載のバイオセンサでは、前記反
射鏡を、凹面鏡とした。
In the biosensor of the fifth aspect, the reflecting mirror is a concave mirror.

【0018】請求項6記載のバイオセンサでは、前記反
射光導光手段を、凸レンズを有するものとし、該凸レン
ズを、前記受光手段よりレンズ側に焦点を結び、前記受
光手段に拡大した像を結像するよう配置した。
In the biosensor according to the sixth aspect, the reflected light guiding means has a convex lens, the convex lens is focused on the lens side of the light receiving means, and an enlarged image is formed on the light receiving means. It was arranged to do.

【0019】[0019]

【作用】上記構成を有する請求項1記載のバイオセンサ
では、光源からの光が光透過媒体に入射して光反射面で
全反射し、光透過媒体から出射するまでの間における光
の挙動は従来と同じである。つまり、照射手段により光
源から光反射面に集光して照射された光は、光透過媒体
の光反射面に到達し当該光反射面で全反射する。そし
て、特定の入射角で入射した入射光については、金属薄
膜の光透過媒体側膜面のエバネッセント波と金属薄膜の
露出面における表面プラズモン波とがその波数が一致し
て共鳴する表面プラズモン共鳴現象を引き起こす。この
表面プラズモン共鳴現象が起きると、光のエネルギは表
面プラズモン波の励起エネルギに使われるので、光反射
面から反射光のエネルギは減少する。この場合、金属薄
膜の露出面が測定対象基質の被測定溶液にリガンド層を
介して接触すると、この基質と生体物質との生物化学的
反応が進行して被測定溶液の誘電率、延いては屈折率が
変化するので、上記入射角θは被測定溶液における基質
濃度が反映したものとなる。
In the biosensor according to claim 1 having the above structure, the behavior of the light from the light source entering the light transmissive medium to being totally reflected by the light reflective surface and being emitted from the light transmissive medium is The same as before. That is, the light condensed and emitted from the light source by the irradiation means to the light reflecting surface reaches the light reflecting surface of the light transmitting medium and is totally reflected by the light reflecting surface. Then, for incident light incident at a specific incident angle, a surface plasmon resonance phenomenon in which the evanescent wave on the light-transmitting medium-side film surface of the metal thin film and the surface plasmon wave on the exposed surface of the metal thin film resonate with their wave numbers matching each other. cause. When this surface plasmon resonance phenomenon occurs, the energy of light is used as the excitation energy of the surface plasmon wave, so the energy of light reflected from the light reflecting surface decreases. In this case, when the exposed surface of the metal thin film comes into contact with the solution to be measured of the substrate to be measured via the ligand layer, the biochemical reaction between this substrate and the biological substance proceeds, and the dielectric constant of the solution to be measured, Since the refractive index changes, the incident angle θ reflects the substrate concentration in the solution to be measured.

【0020】光反射面には集光により種々の入射角の光
が一度に入射して反射するので、光反射面からはそれぞ
れの入射角に対応する種々の反射角で全反射した反射光
が光透過媒体から一度に出射する。この際、上記入射角
θに対応する反射角の反射光のみは、エネルギが損失し
た光量の低い光として光透過媒体から出射し、θ以外の
角度の入射角に対応する反射角の反射光は、エネルギ損
失のない高い光量の光として出射する。
Light of various incident angles is incident on the light reflecting surface at one time by condensing and is reflected. Therefore, reflected light totally reflected at various reflecting angles corresponding to each incident angle is reflected from the light reflecting surface. Emit from the light transmission medium at once. At this time, only the reflected light having the reflection angle corresponding to the incident angle θ is emitted from the light transmissive medium as light with a small amount of energy lost, and the reflected light having the reflection angle corresponding to the incident angle other than θ is generated. , And emits as a high-intensity light without energy loss.

【0021】そして、請求項1記載のバイオセンサで
は、光透過媒体から出射した反射光は、受光手段と光透
過媒体との間に介在する反射光導光手段により、その進
行経路を受光手段の受光領域が拡張する側に変更され
て、受光手段に導かれる。このため、受光手段では、光
透過媒体から離れなくてもその受光領域が拡張するの
で、受光光量の分布が拡散し角度分解能が高まる。そし
て、高い角度分解能の受光手段で入射角ごとの光反射面
からの反射光を受光してその光量を検出する。よって、
入射角とその光量との相関が感度良くとれ、反射光の光
量が最低レベルのときの入射角θを高い精度で求めるこ
とができる。この結果、この入射角θと、この入射角と
媒質の屈折率との相関関係,媒質の屈折率と誘電率との
関係,生体物質による生物化学的反応の進行と誘電率と
の相関関係等から、基質濃度の算出が可能となる。
Further, in the biosensor according to claim 1, the reflected light emitted from the light transmitting medium is received by the light receiving means along its traveling path by the reflected light guiding means interposed between the light receiving means and the light transmitting medium. The area is changed to the expanding side and guided to the light receiving means. Therefore, in the light receiving means, the light receiving area thereof is expanded even if the light receiving means is not separated from the light transmitting medium, so that the distribution of the amount of received light is diffused and the angular resolution is improved. Then, the light receiving means having a high angular resolution receives the reflected light from the light reflecting surface for each incident angle and detects the light amount. Therefore,
The correlation between the incident angle and the light amount thereof can be obtained with high sensitivity, and the incident angle θ when the light amount of the reflected light is at the lowest level can be obtained with high accuracy. As a result, the correlation between this incident angle θ and the refractive index of the medium, the correlation between the refractive index of the medium and the dielectric constant, the correlation between the progress of the biochemical reaction by the biological substance and the dielectric constant, etc. From this, the substrate concentration can be calculated.

【0022】請求項2記載のバイオセンサでは、光透過
媒体から出射した反射光の進行経路変更と受光手段への
導光を凹レンズにて行なって、受光手段における受光領
域の拡張と受光光量の分布拡散を図る。
In the biosensor according to the second aspect, the concave lens is used to change the traveling path of the reflected light emitted from the light transmission medium and guide the light to the light receiving means, thereby expanding the light receiving area in the light receiving means and distributing the received light amount. Promote diffusion.

【0023】請求項3記載のバイオセンサでは、光透過
媒体から出射した反射光を反射鏡で反射してその進行経
路を変更し、光路長を反射鏡での反射を経て確保する。
よって、反射光を反射させる分だけ受光手段と光透過媒
体との間の直線距離を長くする必要がない。そして、光
路長の確保により、受光手段における受光領域の拡張と
受光光量の分布拡散を図る。
In the biosensor according to the third aspect, the reflected light emitted from the light transmitting medium is reflected by the reflecting mirror to change its traveling path, and the optical path length is ensured through the reflection by the reflecting mirror.
Therefore, it is not necessary to lengthen the linear distance between the light receiving means and the light transmitting medium by the amount of reflecting the reflected light. Then, by securing the optical path length, the light receiving area of the light receiving means is expanded and the received light amount is distributed and diffused.

【0024】請求項4記載のバイオセンサでは、凸面鏡
により反射光を反射させて、進行経路の変更を通した光
路長の確保と、受光手段の受光領域が拡張する側への反
射光の進行経路の変更とを行なう。これにより、受光手
段における受光領域の拡張と受光光量の分布拡散を図
る。
In the biosensor according to claim 4, the reflected light is reflected by the convex mirror to secure the optical path length through the change of the traveling path, and the traveling path of the reflected light to the side where the light receiving area of the light receiving means is expanded. And change. As a result, the light receiving area of the light receiving unit is expanded and the distribution of the received light amount is diffused.

【0025】請求項5記載のバイオセンサでは、凹面鏡
により反射光を反射させて、進行経路の変更を通した光
路長の確保と、受光手段の受光領域が拡張する側への反
射光の進行経路の変更とを行なう。これにより、受光手
段における受光領域の拡張と受光光量の分布拡散を図
る。
In the biosensor according to the fifth aspect, the reflected light is reflected by the concave mirror to secure the optical path length through the change of the traveling path and the traveling path of the reflected light to the side where the light receiving area of the light receiving means is expanded. And change. As a result, the light receiving area of the light receiving unit is expanded and the distribution of the received light amount is diffused.

【0026】請求項6記載のバイオセンサでは、光透過
媒体から出射した反射光は、凸レンズを通過すると、そ
の進行経路を変更して当該レンズの焦点を通り、受光手
段に導かれる。この凸レンズは、受光手段よりレンズ側
に焦点を結んで受光手段に拡大した像を結像するので、
反射光は、焦点を経て受光手段に導かれる際に、受光手
段における受光領域が拡張する側に拡散して受光手段に
到達する。このため、受光手段では、受光光量の分布が
拡散する。
In the biosensor according to the sixth aspect, the reflected light emitted from the light transmitting medium passes through the convex lens, changes its traveling path, passes through the focal point of the lens, and is guided to the light receiving means. Since this convex lens focuses on the lens side of the light receiving means and forms an enlarged image on the light receiving means,
When the reflected light is guided to the light receiving means via the focal point, it diffuses to the side where the light receiving region of the light receiving means expands and reaches the light receiving means. Therefore, in the light receiving means, the distribution of the amount of received light is diffused.

【0027】[0027]

【実施例】次に、本発明に係るバイオセンサの好適な実
施例について、図面に基づき説明する。図1は第1実施
例のバイオセンサ10の概略側面図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, preferred embodiments of the biosensor according to the present invention will be described with reference to the drawings. FIG. 1 is a schematic side view of the biosensor 10 of the first embodiment.

【0028】図示するように、バイオセンサ10は、プ
リズム12を備え、このプリズム12の上面には、マッ
チングオイル14を介在させてサンプルプレート16が
載置されている。サンプルプレート16は、プリズム1
2と同質の光透過性材料から形成されており、その屈折
率は、プリズム12と同一である。また、マッチングオ
イル14は、その屈折率がプリズム12やサンプルプレ
ート16と同程度のオイルであり、プリズム12とマッ
チングオイル14との間の屈折率の整合を取るよう機能
する。よって、当該機能を果たし得るものであれば、マ
ッチングオイル14に替えて、ゲル,疎水性高分子等を
用いることもできる。
As shown in the figure, the biosensor 10 is provided with a prism 12, and a sample plate 16 is placed on the upper surface of the prism 12 with a matching oil 14 interposed. The sample plate 16 is the prism 1
It is made of the same light-transmitting material as that of No. 2 and its refractive index is the same as that of the prism 12. The matching oil 14 is an oil whose refractive index is similar to that of the prism 12 and the sample plate 16, and functions to match the refractive index between the prism 12 and the matching oil 14. Therefore, gel, hydrophobic polymer, or the like can be used instead of the matching oil 14 as long as it can fulfill the function.

【0029】サンプルプレート16の上面には、金の薄
膜(Au薄膜)18が50nmの膜厚で蒸着形成されて
おり、サンプルプレート16上面は、このAu薄膜18
の蒸着範囲に亘って幾何学的な全反射条件で光を反射す
る全反射面の光反射面20となる。そして、サンプルプ
レート16とこのAu薄膜18で、光反射面20におい
てエバネッセント波結合が形成されている。更に、この
Au薄膜18の露出膜面(以下、単に表面という)に
は、測定対象基質に対する識別機能を有し該基質と生物
化学的反応を起こす生体物質を固定化したリガンド層2
2が形成されている。なお、このリガンド層22は、紙
面の手前側と奥側とで2分割されており、手前側のリガ
ンド層22は活性のある生体物質を固定化したリガンド
層とされ、奥側他方のリガンド層22は失活した生体物
質を固定化したリガンド層とされている。つまり、基質
測定用センサ部としては手前側のリガンド層22が用い
られ、その補正用センサ部には奥側のリガンド層22が
用いられる。この場合、生体物質の失活は、強酸や強ア
ルカリにより、或いは紫外線等の電子線照射や超音波処
理,70℃程度での加熱処理等の失活処理によりなされ
る。
A gold thin film (Au thin film) 18 having a film thickness of 50 nm is formed on the upper surface of the sample plate 16 by vapor deposition. The Au thin film 18 is formed on the upper surface of the sample plate 16.
The light reflection surface 20 is a total reflection surface that reflects light under the geometrical total reflection condition over the vapor deposition range. The sample plate 16 and the Au thin film 18 form evanescent wave coupling on the light reflecting surface 20. Further, on the exposed film surface of the Au thin film 18 (hereinafter, simply referred to as a surface), a ligand layer 2 on which a biological substance having a function of discriminating against a measurement target substrate and causing a biochemical reaction with the substrate is immobilized.
2 is formed. The ligand layer 22 is divided into two parts on the front side and the back side of the paper surface, and the ligand layer 22 on the front side is a ligand layer on which an active biological substance is immobilized, and the other ligand layer on the back side. Reference numeral 22 is a ligand layer on which an inactivated biomaterial is immobilized. That is, the front side ligand layer 22 is used as the substrate measurement sensor section, and the back side ligand layer 22 is used as the correction sensor section. In this case, the biological material is inactivated by a strong acid or a strong alkali, or by electron beam irradiation such as ultraviolet rays, ultrasonic treatment, or heat treatment at about 70 ° C.

【0030】この他、バイオセンサ10は、LED(発
光ダイオード)等の単一波長の光をライン状に発する図
示しない光源を備え、この光源からプリズム12に向け
て光を照射する。光源とプリズム12との間には、プリ
ズム12の手前において集光レンズ24が、更に光源と
集光レンズ24との間には図示しないp偏光板が配置さ
れている。そして、集光レンズ24は、当該レンズを通
過した光が光反射面20にライン状に集光するようその
位置が調整されている。従って、光源から照射された光
は、p偏光された後に集光レンズ24に到り、その後
は、p偏光としてプリズム12を透過し光反射面20に
ライン状に集光される。よって、この光反射面20に
は、p偏光が、集光レンズ24の焦点距離Fや開口長
D,集光レンズ24の光軸の角度等で定まる所定範囲の
入射角(θ1 〜θ2 )で到達する。
In addition, the biosensor 10 includes a light source (not shown) that linearly emits light of a single wavelength such as an LED (light emitting diode), and irradiates the prism 12 with light from this light source. A condenser lens 24 is arranged between the light source and the prism 12 in front of the prism 12, and a p polarizing plate (not shown) is arranged between the light source and the condenser lens 24. The position of the condenser lens 24 is adjusted so that the light passing through the condenser lens 24 is condensed in a line on the light reflection surface 20. Therefore, the light emitted from the light source reaches the condenser lens 24 after being p-polarized, and thereafter passes through the prism 12 as p-polarized light and is linearly condensed on the light reflection surface 20. Therefore, the p-polarized light is incident on the light reflection surface 20 at an incident angle (θ1 to θ2) within a predetermined range determined by the focal length F of the condenser lens 24, the aperture length D, the angle of the optical axis of the condenser lens 24, and the like. To reach.

【0031】また、光反射面20で全反射した反射光が
プリズム12から出射する側には、受光した光量を検出
して電気信号に変換するCCD撮像素子26が、凹レン
ズ28を介在させて配置されている。CCD撮像素子2
6は、2048ビットの受光素子をライン状に配列して
なるリニアイメージセンサである。従って、光反射面2
0で全反射した光(p偏光)は、プリズム12を通過し
て外部に出射し凹レンズ28に到り、この凹レンズ28
により光の進行経路が図示するように変更されてCCD
撮像素子26に導かれる。そして、このCCD撮像素子
26により、その光量が検出される。光反射面20で反
射した反射光は、光反射面20における入射光と同様、
入射面内の振幅の波動であり、CCD撮像素子26で
は、反射角ごとの光量、即ち上記範囲の入射角(θ1 〜
θ2 )ごとの光量がCCD撮像素子26の受光範囲の受
光素子により検出される。
On the side where the reflected light totally reflected by the light reflecting surface 20 is emitted from the prism 12, a CCD image pickup device 26 for detecting the amount of received light and converting it into an electric signal is arranged with a concave lens 28 interposed. Has been done. CCD image sensor 2
Reference numeral 6 is a linear image sensor in which 2048-bit light receiving elements are arranged in a line. Therefore, the light reflecting surface 2
The light (p-polarized light) totally reflected at 0 passes through the prism 12 and is emitted to the outside and reaches the concave lens 28.
As a result, the traveling path of light is changed as shown in FIG.
It is guided to the image sensor 26. Then, the CCD image pickup device 26 detects the amount of light. The reflected light reflected by the light reflecting surface 20 is the same as the incident light on the light reflecting surface 20.
It is a wave of amplitude within the incident plane, and in the CCD image pickup device 26, the amount of light for each reflection angle, that is, the incident angle (θ1
The amount of light for each θ 2) is detected by the light receiving element in the light receiving range of the CCD image pickup element 26.

【0032】この場合、サンプルプレート16における
Au薄膜18の表面では、被測定溶液の誘電率が生体物
質の活性の有無により以下に説明するよう変化して変化
後の値に安定し、この様子がそれぞれのCCD撮像素子
26から検出される。
In this case, on the surface of the Au thin film 18 on the sample plate 16, the dielectric constant of the solution to be measured changes as described below depending on the presence or absence of the activity of the biological substance and stabilizes at the value after the change. It is detected from each CCD image pickup device 26.

【0033】活性のある生体物質が固定されたリガンド
層22の側では、この生体物質と測定対象基質との生物
化学的反応が基質濃度で規定される程度だけ進行するの
で、被測定溶液の誘電率、延いてはその屈折率は、生物
化学的反応の進行に伴い変化し基質濃度で規定される値
になると安定する。この際の被測定溶液の誘電率、延い
てはその屈折率の変化は、サンプルプレート16とAu
薄膜18とで形成されるエバネッセント波結合により、
表面プラズモン共鳴現象が起きた場合の反射光のエネル
ギの現象として観察される。
On the side of the ligand layer 22 to which the active biological substance is fixed, the biochemical reaction between the biological substance and the substrate to be measured proceeds to the extent defined by the substrate concentration. The index, and thus its refractive index, changes as the biochemical reaction progresses and stabilizes at a value defined by the substrate concentration. At this time, the change in the dielectric constant of the solution to be measured, and thus in the refractive index, is different from that of the sample plate 16 and Au.
By the evanescent wave coupling formed with the thin film 18,
It is observed as a phenomenon of energy of reflected light when the surface plasmon resonance phenomenon occurs.

【0034】つまり、光源から照射されたp偏光は、集
光レンズ24により集光されて上記した範囲(θ1 〜θ
2 )の入射角で、エバネッセント波結合が形成された光
反射面20に到る。このとき、上記した範囲のうちのあ
る角度(θS1)の入射角で入射したp偏光は、Au薄膜
18の光反射面20側膜面のエバネッセント波とAu薄
膜18の被測定溶液側の表面プラズモン波とを、その波
数を一致させて共鳴させ表面プラズモン共鳴現象を引き
起こす。この表面プラズモン共鳴現象が起きると、入射
角がθS1の光のエネルギは表面プラズモン波の励起エネ
ルギに使われて、光反射面20からの反射角がθS1の反
射光のエネルギは減少する。
That is, the p-polarized light emitted from the light source is condensed by the condenser lens 24 and is in the above range (θ1 to θ).
At the incident angle of 2), the light reaches the light reflecting surface 20 where the evanescent wave coupling is formed. At this time, the p-polarized light that is incident at an incident angle of a certain angle (θS1) within the above range is an evanescent wave on the film surface of the light reflecting surface 20 of the Au thin film 18 and a surface plasmon of the Au thin film 18 on the measured solution side. The waves are caused to resonate with their wave numbers matched to cause a surface plasmon resonance phenomenon. When this surface plasmon resonance phenomenon occurs, the energy of light with an incident angle of θS1 is used as the excitation energy of the surface plasmon wave, and the energy of reflected light with a reflection angle of θS1 from the light reflecting surface 20 decreases.

【0035】このため、入射角(θ1 〜θ2 )ごとの光
反射面からの反射光をθ1 〜θ2 の反射角で受光してい
るCCD撮像素子26における受光光量の様子は、図2
に模式的に示すように、θS1の反射光のエネルギ(光
量)が最低となる(図2(A))。
Therefore, the state of the amount of light received by the CCD image pickup device 26 which receives the reflected light from the light reflecting surface for each incident angle (θ1 to θ2) at the reflection angle of θ1 to θ2 is shown in FIG.
As schematically shown in FIG. 2, the energy (light amount) of the reflected light at θS1 is the lowest (FIG. 2 (A)).

【0036】一方、失活した生体物質が固定されたリガ
ンド層22の側では、測定対象基質との生物化学的反応
は進行しないので、被測定溶液の誘電率、延いてはその
屈折率は初期の値のまま一定である。しかし、ある角度
(θS0)の入射角で入射したp偏光により表面プラズモ
ン共鳴現象は起き、この場合のCCD撮像素子26にお
ける受光光量の様子は、θS0の反射光のエネルギが最低
となる(図2(B))。
On the other hand, on the side of the ligand layer 22 to which the inactivated biological substance is fixed, the biochemical reaction with the substrate to be measured does not proceed, so that the dielectric constant of the solution to be measured, and hence its refractive index, is initially set. The value of is constant. However, the surface plasmon resonance phenomenon occurs due to p-polarized light incident at an incident angle of a certain angle (θS0), and in this case, the amount of received light in the CCD image pickup device 26 is such that the energy of reflected light at θS0 becomes the minimum (FIG. 2). (B)).

【0037】ところで、図2の模式図における横軸の入
射角は、CCD撮像素子26における2048ビットの
受光素子の並びに相当し、このような光量分布は、CC
D撮像素子26に受光される受光領域が変化することで
その様子が変わる。より具体的に説明すると、凹レンズ
28が存在しない従来のバイオセンサでは、図1に二点
鎖線で示すように、CCD撮像素子26の受光領域は図
中SOLD で示されるのに対して、本実施例の場合の受光
領域はSNEW となる。つまり、バイオセンサ10では、
凹レンズ28により光の進行経路が変更されてCCD撮
像素子26への導光が行なわれ、CCD撮像素子26の
受光領域が拡張する。
By the way, the incident angle on the horizontal axis in the schematic view of FIG. 2 corresponds to the arrangement of the 2048-bit light receiving elements in the CCD image pickup element 26, and such a light amount distribution is CC.
The state changes as the light receiving area received by the D image pickup device 26 changes. More specifically, in the conventional biosensor in which the concave lens 28 does not exist, the light receiving area of the CCD image pickup device 26 is indicated by SOLD in the figure as shown by the chain double-dashed line in FIG. In the case of the example, the light receiving area is SNEW. That is, in the biosensor 10,
The concave lens 28 changes the traveling path of light to guide the light to the CCD image pickup device 26, and the light receiving area of the CCD image pickup device 26 is expanded.

【0038】そして、この受光領域におけるCCD撮像
素子26の各受光素子での検出結果が上記の光量分布を
なす。従って、受光領域が狭ければ少ない数の受光素子
でしか光量分布を得られないのに対して、受光領域が拡
張すれば多くの数の受光素子で光量分布を得られる。こ
のため、受光領域が拡張した本実施例のバイオセンサ1
0によれば、CCD撮像素子26の角度分解能を高める
ことができる。その一方、凹レンズ28が存在しない従
来のバイオセンサで本実施例のバイオセンサ10と同一
の受光領域を得るためには、図1に示すようにCCD撮
像素子26をプリズム12から離間させなければならな
いのに対し、バイオセンサ10ではその必要がない。こ
の結果、第1実施例のバイオセンサ10によれば、セン
サの小型化と測定感度の向上とを図ることができる。
Then, the detection result of each light receiving element of the CCD image pickup element 26 in this light receiving area forms the above light amount distribution. Therefore, when the light receiving area is narrow, the light amount distribution can be obtained only by a small number of light receiving elements, whereas when the light receiving area is extended, a light amount distribution can be obtained by a large number of light receiving elements. For this reason, the biosensor 1 of the present embodiment having an expanded light receiving region.
According to 0, the angular resolution of the CCD image pickup device 26 can be improved. On the other hand, in order to obtain the same light receiving area as the biosensor 10 of the present embodiment with the conventional biosensor in which the concave lens 28 does not exist, the CCD image pickup device 26 must be separated from the prism 12 as shown in FIG. On the other hand, the biosensor 10 does not require this. As a result, according to the biosensor 10 of the first embodiment, it is possible to reduce the size of the sensor and improve the measurement sensitivity.

【0039】ここで、上記した本実施例のバイオセンサ
10と凹レンズ28が存在しない従来のバイオセンサと
の対比試験について説明する。なお、これら両センサに
おけるCCD撮像素子26は、2048ビットの受光素
子を有する日本電気社製のリニアイメージセンサ(型
番:μPD35H73)である。また、両センサを対比
試験に供するに当たっては、その測定対象基質を人血清
アルブミンとし、両センサのリガンド層22には活性の
ある生体物質(抗体)として人血清アルブミン抗体を固
定した。
A comparison test between the biosensor 10 of this embodiment and a conventional biosensor having no concave lens 28 will be described below. The CCD image pickup device 26 in each of these sensors is a linear image sensor (model number: μPD35H73) manufactured by NEC Corporation having a 2048-bit light receiving element. Further, in subjecting both sensors to a comparison test, human serum albumin was used as the measurement target substrate, and human serum albumin antibody was immobilized on the ligand layer 22 of both sensors as an active biological substance (antibody).

【0040】まず、バイオセンサ10のリガンド層22
に純水を導入した場合の反射光強度(光量)を測定し
た。次いで、このリガンド層22に濃度が50μg/m
lの人血清アルブミン水溶液を導入して、人血清アルブ
ミンとリガンド層22の生体物質とを5分間接触させた
場合の反射光強度(光量)を測定した。そして、それぞ
れについて、反射光強度と反射角の相関関係とを得た。
その結果を図3(a)に示す。なお、図における横軸は
反射角に相当する各受光素子の位置を示す番号である。
First, the ligand layer 22 of the biosensor 10
The intensity (light quantity) of reflected light when pure water was introduced into was measured. Next, the ligand layer 22 has a concentration of 50 μg / m 2.
The reflected light intensity (light amount) was measured when 1 human aqueous solution of human serum albumin was introduced and the human serum albumin was brought into contact with the biological material of the ligand layer 22 for 5 minutes. Then, the correlation between the reflected light intensity and the reflection angle was obtained for each.
The result is shown in FIG. The horizontal axis in the figure is a number indicating the position of each light receiving element corresponding to the reflection angle.

【0041】次に、凹レンズ28が存在しない従来のバ
イオセンサで、上記と同様に、純水および人血清アルブ
ミン水溶液(50μg/ml)についての反射光強度
(光量)を測定し、反射光強度と反射角の相関関係とを
得た。その結果を図3(b)に示す。
Next, with a conventional biosensor having no concave lens 28, the reflected light intensity (light amount) of pure water and human serum albumin aqueous solution (50 μg / ml) was measured in the same manner as above, and The correlation of the reflection angle was obtained. The result is shown in FIG.

【0042】この図3から判るように、実施例のバイオ
センサ10では、最低の反射光強度となる受光素子の番
号が純水と所定濃度の人血清アルブミン水溶液とで15
5移動しているのに対して、従来のバイオセンサでは4
6であった。従って、実施例のバイオセンサ10によれ
ば、凹レンズ28による光の進行経路の変更並びに受光
領域の拡張を通して、反射光強度変化を大きく発現させ
ることができる。この結果、実施例のバイオセンサ10
によれば、僅かな測定対象基質濃度の変化を大きな反射
光強度変化として捕らえることができ、感度向上を図る
ことができるといえる。
As can be seen from FIG. 3, in the biosensor 10 of the embodiment, the number of the light receiving element that gives the lowest reflected light intensity is 15 for pure water and an aqueous solution of human serum albumin having a predetermined concentration.
5 move, whereas 4 in conventional biosensor
It was 6. Therefore, according to the biosensor 10 of the example, the reflected light intensity change can be greatly expressed by changing the traveling path of light by the concave lens 28 and expanding the light receiving region. As a result, the biosensor 10 of the example
According to the above, it can be said that a slight change in the concentration of the substrate to be measured can be captured as a large change in the intensity of reflected light, and the sensitivity can be improved.

【0043】次に、他の実施例について説明する。な
お、以下の各実施例のバイオセンサでは、上記した第1
実施例のバイオセンサ10とプリズム12,サンプルプ
レート16,CCD撮像素子26等の主要な構成は同一
であり、以下の点でその構成が相違する。なお、以下の
各実施例の説明に当たっては、説明の重複を避ける意味
で、第1実施例と同一の部材については同一の符号を用
いその説明を省略することとする。
Next, another embodiment will be described. In the biosensor of each of the following examples, the first sensor
The biosensor 10 of the embodiment, the prism 12, the sample plate 16, the CCD image pickup device 26, and the like have the same main configuration, but the configurations are different in the following points. In the following description of each embodiment, the same members as those in the first embodiment will be designated by the same reference numerals to avoid duplication of description, and the description thereof will be omitted.

【0044】第2実施例のバイオセンサ30では、図4
に示すように、バイオセンサ10における凹レンズ28
に替わり、凸レンズ32を有する。この凸レンズ32
は、図示するように、CCD撮像素子26より当該レン
ズに近い位置に焦点fを結び、CCD撮像素子26に拡
大した像を結像するよう配置されている。従って、第2
実施例のバイオセンサ30によっても、凸レンズ32に
よる焦点fを経た光の進行経路の変更並びに受光領域の
拡張を通して、センサの小型化と測定感度の向上とを図
ることができる。
In the biosensor 30 of the second embodiment, as shown in FIG.
As shown in FIG.
Instead, it has a convex lens 32. This convex lens 32
As shown in the figure, the focal point f is located closer to the lens than the CCD image pickup device 26, and is arranged so as to form an enlarged image on the CCD image pickup device 26. Therefore, the second
Also with the biosensor 30 of the embodiment, the sensor can be downsized and the measurement sensitivity can be improved by changing the traveling path of the light passing through the focus f by the convex lens 32 and expanding the light receiving region.

【0045】第3実施例のバイオセンサ40は、図5に
示すように、プリズム12の上面に直接Au薄膜18を
形成して備え、このプリズム12上面を光反射面20と
する。また、プリズム12上面の光反射面20に光源3
4から光を集光して照射するに当たっては、光源34と
プリズム12との間に凸レンズ44,46からなる組み
合わせレンズを用いる。なお、バイオセンサ10と同様
に、プリズム12上面にはマッチングオイル14を介在
させてサンプルプレート16を載置するよう構成するこ
ともできる。
As shown in FIG. 5, the biosensor 40 of the third embodiment is provided with an Au thin film 18 formed directly on the upper surface of the prism 12, and the upper surface of this prism 12 is used as a light reflecting surface 20. Further, the light source 3 is provided on the light reflecting surface 20 on the upper surface of the prism 12.
In collecting and irradiating the light from the light source 4, a combination lens including convex lenses 44 and 46 is used between the light source 34 and the prism 12. Note that, similarly to the biosensor 10, the sample plate 16 may be placed on the upper surface of the prism 12 with the matching oil 14 interposed.

【0046】そして、このバイオセンサ40では、バイ
オセンサ10における凹レンズ28に替わり、凹面鏡4
8を有する。この凹面鏡48は、図示するように、プリ
ズム12から出射した反射光をその凹面鏡面で反射させ
て反射光の進行経路を変更し、CCD撮像素子26の受
光領域を拡張する。このため、第3実施例のバイオセン
サ40によっても、凹面鏡48による光の進行経路の変
更並びに受光領域の拡張を通して、センサの小型化と測
定感度の向上とを図ることができる。
In this biosensor 40, instead of the concave lens 28 in the biosensor 10, the concave mirror 4 is used.
8 As shown in the figure, the concave mirror 48 reflects the reflected light emitted from the prism 12 on the concave mirror surface, changes the traveling path of the reflected light, and expands the light receiving area of the CCD image pickup device 26. Therefore, also with the biosensor 40 of the third embodiment, it is possible to reduce the size of the sensor and improve the measurement sensitivity by changing the traveling path of light by the concave mirror 48 and expanding the light receiving region.

【0047】第4実施例のバイオセンサ50は、図6に
示すように、上記のバイオセンサ40における凹面鏡4
8に替わり、凸面鏡52を有する。この凸面鏡52は、
図示するように、プリズム12から出射した反射光をそ
の凸面鏡面で反射させて反射光の進行経路を変更し、C
CD撮像素子26の受光領域を拡張する。このため、第
4実施例のバイオセンサ50によっても、凹面鏡48に
よる光の進行経路の変更並びに受光領域の拡張を通し
て、センサの小型化と測定感度の向上とを図ることがで
きる。
The biosensor 50 of the fourth embodiment, as shown in FIG. 6, has the concave mirror 4 in the biosensor 40 described above.
Instead of 8, it has a convex mirror 52. This convex mirror 52
As shown, the reflected light emitted from the prism 12 is reflected by the convex mirror surface to change the traveling path of the reflected light, and C
The light receiving area of the CD image pickup device 26 is expanded. Therefore, also by the biosensor 50 of the fourth embodiment, it is possible to reduce the size of the sensor and improve the measurement sensitivity by changing the traveling path of light by the concave mirror 48 and expanding the light receiving region.

【0048】以上本発明のいくつかの実施例について説
明したが、本発明はこの様な実施例になんら限定される
ものではなく、本発明の要旨を逸脱しない範囲において
種々なる態様で実施し得ることは勿論である。
Although some embodiments of the present invention have been described above, the present invention is not limited to such embodiments and can be implemented in various modes without departing from the scope of the present invention. Of course.

【0049】例えば、上記した第3,第4実施例におけ
るバイオセンサにおける凹面鏡48や凸面鏡52に替わ
り、平面反射鏡を用いることもできる。平面反射鏡とす
れば、プリズム12から出射した反射光をこの平面反射
鏡で反射してその進行経路を変更し、センサにおける光
路長を確保することができる。よって、その分だけCC
D撮像素子26とプリズム12との間の直線距離を長く
する必要がない。また、光路長の確保により、CCD撮
像素子26とプリズム12とを余り離さなくてもサンプ
ルプレート16における受光領域を拡張できる。この場
合、2枚以上の平面反射鏡を組み合わせて光路長を確保
すれば、CCD撮像素子26をプリズム12から余り離
さなくても済む。
For example, instead of the concave mirror 48 and the convex mirror 52 in the biosensor in the above-mentioned third and fourth embodiments, a plane reflecting mirror can be used. With the plane reflecting mirror, the reflected light emitted from the prism 12 can be reflected by the plane reflecting mirror to change its traveling path, and the optical path length in the sensor can be secured. Therefore, that much CC
It is not necessary to increase the linear distance between the D image pickup device 26 and the prism 12. Further, by securing the optical path length, the light receiving region in the sample plate 16 can be expanded without separating the CCD image pickup device 26 and the prism 12 so much. In this case, if the optical path length is secured by combining two or more plane reflecting mirrors, the CCD image pickup device 26 need not be separated from the prism 12.

【0050】[0050]

【発明の効果】以上詳述したように請求項1ないし請求
項6に記載した本発明のバイオセンサでは、光反射面で
反射して光透過媒体から出射した反射光を、その進行方
向を受光手段の受光領域が拡張する側に変更して、受光
手段に導く。このため、出射した反射光の受光領域の拡
張を通した角度分解能の向上を、受光手段の光透過媒体
からの離間を行なうことなく実現する。この結果、請求
項1ないし請求項6に記載した本発明のバイオセンサに
よれば、センサの小型化と測定感度の向上とを両立する
ことができる。
As described in detail above, in the biosensor of the present invention described in claims 1 to 6, the reflected light reflected by the light reflecting surface and emitted from the light transmitting medium is received in the traveling direction thereof. The light receiving area of the means is changed to the side where the light receiving area expands, and the light receiving area is guided to the light receiving means. Therefore, the improvement of the angular resolution through the expansion of the light receiving area of the emitted reflected light is realized without separating the light receiving means from the light transmitting medium. As a result, according to the biosensor of the present invention described in claims 1 to 6, both miniaturization of the sensor and improvement in measurement sensitivity can be achieved.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1実施例のバイオセンサ10の概略側面図。FIG. 1 is a schematic side view of a biosensor 10 according to a first embodiment.

【図2】バイオセンサ10におけるCCD撮像素子26
から得られる入射角とその光量との相関関係を示すグラ
フ。
FIG. 2 is a CCD image pickup device 26 in the biosensor 10.
The graph which shows the correlation of the incident angle and its light quantity obtained from.

【図3】実施例のバイオセンサ10と従来のバイオセン
サとの対比試験の結果を説明するためのグラフ。
FIG. 3 is a graph for explaining the results of a comparison test between the biosensor 10 of the example and a conventional biosensor.

【図4】第2実施例のバイオセンサ30の概略側面図。FIG. 4 is a schematic side view of a biosensor 30 according to a second embodiment.

【図5】第3実施例のバイオセンサ40の概略側面図。FIG. 5 is a schematic side view of a biosensor 40 according to a third embodiment.

【図6】第4実施例のバイオセンサ50の概略側面図。FIG. 6 is a schematic side view of a biosensor 50 according to a fourth embodiment.

【符号の説明】[Explanation of symbols]

10,30,40,50…バイオセンサ 12…プリズム 14…マッチングオイル 16…サンプルプレート 18…Au薄膜 20…光反射面 22…リガンド層 24…集光レンズ 26…CCD撮像素子 28…凹レンズ 32…凸レンズ 34…光源 44,46…凸レンズ 48…凹面鏡 52…凸面鏡 10, 30, 40, 50 ... Biosensor 12 ... Prism 14 ... Matching oil 16 ... Sample plate 18 ... Au thin film 20 ... Light reflecting surface 22 ... Ligand layer 24 ... Condensing lens 26 ... CCD image sensor 28 ... Concave lens 32 ... Convex lens 34 ... Light source 44, 46 ... Convex lens 48 ... Concave mirror 52 ... Convex mirror

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 金属薄膜が設けられた光反射面において
幾何学的な全反射条件で光を反射する透光性の光透過媒
体を有し、該光透過媒体と前記金属薄膜でエバネッセン
ト波結合を形成する光学系を用いて、前記金属薄膜に接
触した被測定溶液中の測定対象基質を測定するバイオセ
ンサであって、 前記光学系は、 光源からの光を前記光透過媒体を透過させて前記光反射
面に集光して照射する光照射手段と、 前記光反射面で反射し前記光透過媒体から外部に出射す
る反射光を受光し、該反射光の光量を検出する受光手段
と、 該受光手段と前記光透過媒体との間に介在し、前記光透
過媒体から外部に出射する反射光の進行経路を前記受光
手段の受光領域が拡張する側に変更し、前記受光手段に
該反射光を導く反射光導光手段とを備えることを特徴と
するバイオセンサ。
1. A light-reflecting surface provided with a metal thin film, comprising a light-transmitting light-transmitting medium that reflects light under geometric total reflection conditions, and the light-transmitting medium and the metal thin film couple evanescent waves. A biosensor for measuring a substrate to be measured in a solution to be measured, which is in contact with the metal thin film, by using an optical system for forming the optical system, wherein the optical system transmits light from a light source through the light transmission medium. A light irradiating unit that collects and irradiates the light reflecting surface, and a light receiving unit that receives the reflected light that is reflected by the light reflecting surface and is emitted to the outside from the light transmitting medium, and that detects the light amount of the reflected light, Interposing between the light receiving means and the light transmitting medium, the traveling path of the reflected light emitted from the light transmitting medium to the outside is changed to a side where the light receiving area of the light receiving means is expanded, and the light receiving means reflects the reflected light. And a reflected light guide means for guiding light. Biosensor.
【請求項2】 請求項1記載のバイオセンサであって、 前記反射光導光手段は、凹レンズを有するバイオセン
サ。
2. The biosensor according to claim 1, wherein the reflected light guiding unit has a concave lens.
【請求項3】 請求項1記載のバイオセンサであって、 前記反射光導光手段は、反射鏡を有するバイオセンサ。3. The biosensor according to claim 1, wherein the reflected light guiding unit has a reflecting mirror. 【請求項4】 請求項3記載のバイオセンサであって、 前記反射鏡は、凸面鏡であるバイオセンサ。4. The biosensor according to claim 3, wherein the reflecting mirror is a convex mirror. 【請求項5】 請求項3記載のバイオセンサであって、 前記反射鏡は、凹面鏡であるバイオセンサ。5. The biosensor according to claim 3, wherein the reflecting mirror is a concave mirror. 【請求項6】 請求項1記載のバイオセンサであって、 前記反射光導光手段は、凸レンズを有し、 該凸レンズは、前記受光手段よりレンズ側に焦点を結
び、前記受光手段に拡大した像を結像するよう配置され
ているバイオセンサ。
6. The biosensor according to claim 1, wherein the reflected light guiding unit has a convex lens, and the convex lens is focused on the lens side of the light receiving unit and is an image enlarged on the light receiving unit. A biosensor arranged to image the.
JP7021332A 1995-01-13 1995-01-13 Biosensor Pending JPH08193946A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7021332A JPH08193946A (en) 1995-01-13 1995-01-13 Biosensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7021332A JPH08193946A (en) 1995-01-13 1995-01-13 Biosensor

Publications (1)

Publication Number Publication Date
JPH08193946A true JPH08193946A (en) 1996-07-30

Family

ID=12052189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7021332A Pending JPH08193946A (en) 1995-01-13 1995-01-13 Biosensor

Country Status (1)

Country Link
JP (1) JPH08193946A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100864691B1 (en) * 2005-01-28 2008-10-23 엘지전자 주식회사 A variable focusing Mirror and Camera Module using thereof
US7701582B2 (en) 2003-11-19 2010-04-20 Beanor Oy Method and device for carrying out surface plasmon resonance measurement

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51106453A (en) * 1975-03-15 1976-09-21 Ritsuo Hasumi FUAIBAA BUNKOKI
JPH0323326U (en) * 1989-07-19 1991-03-11
JPH06265336A (en) * 1993-03-15 1994-09-20 Olympus Optical Co Ltd Measuring apparatus utilizing surface plasmon resonance

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51106453A (en) * 1975-03-15 1976-09-21 Ritsuo Hasumi FUAIBAA BUNKOKI
JPH0323326U (en) * 1989-07-19 1991-03-11
JPH06265336A (en) * 1993-03-15 1994-09-20 Olympus Optical Co Ltd Measuring apparatus utilizing surface plasmon resonance

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7701582B2 (en) 2003-11-19 2010-04-20 Beanor Oy Method and device for carrying out surface plasmon resonance measurement
KR100864691B1 (en) * 2005-01-28 2008-10-23 엘지전자 주식회사 A variable focusing Mirror and Camera Module using thereof

Similar Documents

Publication Publication Date Title
US6710870B1 (en) Method and device for measuring luminescence
JP3886153B2 (en) Lens and connectable flow cell
US5776785A (en) Method and apparatus for immunoassay using fluorescent induced surface plasma emission
FI76432C (en) Method and apparatus for determining elements in solution with a light conductor
US6320991B1 (en) Optical sensor having dielectric film stack
JPH0627703B2 (en) Optical sensor for selective detection of substance and detection of change in refractive index in measurement substance
JP2000507350A (en) System for determining analyte concentration
WO2001090728A1 (en) Differential spr sensor and measuring method using it
JP3562912B2 (en) Surface plasmon sensor
US8193516B2 (en) Sensing apparatus
JP2003139694A (en) Measurement plate
JPH0933427A (en) Biosensor and concentration measuring device therewith
JPH06500636A (en) Optical method for selectively detecting specific substances in chemical, biochemical, and biological measurement samples
JPH08193946A (en) Biosensor
JPH09250981A (en) Surface plasmon resonance sensor
JP2003161695A (en) Sensor utilizing attenuation of total reflection
JP3460923B2 (en) Surface plasmon sensor
CA2248189C (en) System for determining analyte concentration
JP4299798B2 (en) Photothermal conversion measuring device, sample cell
JPH08193948A (en) Exciting structure for surface plasmon resonance phenomenon and biosensor
WO2021009995A1 (en) Detection device and detection method
WO2021192735A1 (en) Detection device
JPH07225185A (en) Biosensor
JP2004170286A (en) Differential spr sensor using monochromatic light and measuring method using the same
JP2005221274A (en) Measuring method and measuring instrument