JPH09250981A - Surface plasmon resonance sensor - Google Patents

Surface plasmon resonance sensor

Info

Publication number
JPH09250981A
JPH09250981A JP10071896A JP10071896A JPH09250981A JP H09250981 A JPH09250981 A JP H09250981A JP 10071896 A JP10071896 A JP 10071896A JP 10071896 A JP10071896 A JP 10071896A JP H09250981 A JPH09250981 A JP H09250981A
Authority
JP
Japan
Prior art keywords
light
thin film
surface plasmon
plasmon resonance
metal thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10071896A
Other languages
Japanese (ja)
Inventor
Kenichi Uchiyama
兼一 内山
Taiji Osada
泰二 長田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
Original Assignee
Toto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd filed Critical Toto Ltd
Priority to JP10071896A priority Critical patent/JPH09250981A/en
Publication of JPH09250981A publication Critical patent/JPH09250981A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • G01N21/552Attenuated total reflection
    • G01N21/553Attenuated total reflection and using surface plasmons

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a sensor which effectively functions even with a molecule of sample matrix for calculating concentration of substance by providing a semiconductor thin film to at least a part of a metal thin film of translucent light transparent medium which reflects light, under the condition of geometric total reflection, in a light reflecting surface provided with the metal thin film. SOLUTION: A surface plasmon resonance sensor 1 is constituted in such a way that a light transparent medium 2 is provided with a metal thin film 3 and a semiconductor thin film 4 is so provided as to cover at least a part of the thin film 3. The semiconductor thin film 4 is brought into contact with sample matrix in sample solution, and it interacts with molecules to-be-detected, to cause variation in band structure and carrier concentration in the semiconductor. Continuously, an incident plane 2a of the medium 2 is irradiated with light from a light source unit 5, and the light is so converged that the focus is placed on a light reflecting surface 2b. Change of evanescent wave formed with the medium 2 and the thin film 3 is detected with a photodetecting unit 6 comprising a CCD image pickup element provided on a light-emitting surface 2c, etc., and converted into an electric signal with a control means, as an output signal of the sensor.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、光学系を用いて被
測定溶液中の測定対象基質を測定する光のエバネッセン
ト波を利用する表面プラズモン共鳴センサに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface plasmon resonance sensor utilizing an evanescent wave of light for measuring a substrate to be measured in a solution to be measured using an optical system.

【0002】[0002]

【従来の技術】一般に、バイオセンサでは、血液中の特
定蛋白や抗原等の血液中成分、或いは尿中のグルコー
ス,アスコルビン酸等の尿中成分である測定対象基質
を、これら基質に対する識別機能を有し当該基質と生物
化学的反応を起こす生体物質が用いられている。そし
て、この生物化学的反応の進行に伴う種々の物理化学的
な変位量を物理化学デバイスにより検出し、測定対象基
質の特定やその濃度等が検出される。例えば、生物化学
的反応により消費或いは生成する電極活性物質の電極反
応を介して基質濃度を検出するものや、生物化学的反応
の進行に伴って起きるエンタルピー変化をサーミスタで
検出して基質濃度を検出するものなどがあり、これらの
バイオセンサは早くから実用化されている。
2. Description of the Related Art Generally, in a biosensor, a substrate to be measured, which is a blood component such as a specific protein or antigen in blood, or a urine component such as glucose or ascorbic acid in urine, has a function of discriminating these substrates. A biological substance that has a biochemical reaction with the substrate is used. Then, various physicochemical displacements associated with the progress of this biochemical reaction are detected by the physicochemical device, and the specification of the measurement target substrate, its concentration, etc. are detected. For example, one that detects the substrate concentration through the electrode reaction of an electrode active substance that is consumed or produced by a biochemical reaction, or one that detects the enthalpy change that occurs with the progress of the biochemical reaction with a thermistor to detect the substrate concentration. These biosensors have been put to practical use since early on.

【0003】その一方で、近年では、生物化学的反応の
進行に伴う誘電率の変化に着目し、光学的なデバイスを
用いて被測定溶液中の測定対象基質を測定するバイオセ
ンサが提案されている(特開平1−138443)。こ
のバイオセンサでは、光学系として、金属薄膜が設けら
れた光反射面において幾何学的な全反射条件で光を反射
する透光性の光透過媒体を有し、この光透過媒体と金属
薄膜でエバネッセント波結合を形成する光学系が用いら
れている。その測定原理は、次の通りである。
On the other hand, in recent years, attention has been paid to changes in the dielectric constant with the progress of biochemical reactions, and biosensors have been proposed for measuring a substrate to be measured in a solution to be measured using an optical device. (JP-A-1-138443). In this biosensor, as an optical system, a light-transmitting light-transmitting medium that reflects light under a geometrical total reflection condition is provided on a light-reflecting surface provided with a metal thin film. An optical system that forms an evanescent wave coupling is used. The measuring principle is as follows.

【0004】エバネッセント波結合を形成する光学系の
光透過媒体にp偏光された光を全反射条件を満たした種
々の入射角で光反射面に照射すると、入射角がある値の
ときに特典な現象が起きる。即ち、p偏光された光が光
反射面に照射されると、金属薄膜の光透過媒体側膜面に
は入射角θを変数とする波数のエバネッセント波が生じ
る。そして、金属は固体プラズマと見なすことができる
ので、金属薄膜の反光透過媒体側膜面には、量子論的な
電荷密度の波としての表面プラズモン波が光のトンネル
効果により生じる。この表面プラズモン波は、金属薄膜
と反光透過媒体側膜面を境界面として接触する媒質との
間の波動として生じる。
When the p-polarized light is irradiated on the light-reflecting surface of the optical transmission medium of the optical system for forming the evanescent wave coupling at various incident angles satisfying the condition of total reflection, it is advantageous when the incident angle has a certain value. The phenomenon occurs. That is, when the p-polarized light is applied to the light reflecting surface, an evanescent wave having a wave number having an incident angle θ as a variable is generated on the light transmitting medium side film surface of the metal thin film. Since the metal can be regarded as a solid plasma, a surface plasmon wave as a wave of quantum charge density is generated by the light tunnel effect on the film surface of the metal thin film on the anti-light transmission medium side. The surface plasmon wave is generated as a wave between the metal thin film and the medium in contact with the film surface on the side opposite to the light-transmitting medium as a boundary surface.

【0005】そして、入射角θがある値のときには、こ
のエバネッセント波と表面プラズモン波とがその波数が
一致して共鳴する表面プラズモン共鳴現象が起き、光の
エネルギが表面プラズモン波の励起エネルギに使われ
る。この際、エネルギ的には、光反射面に入射した光の
エネルギは表面プラズモン波の励起に使われたエネルギ
と反射面からの反射光のエネルギの和に等しいという開
係がある。このため、反射角とエネルギ(光量)の変化
の様子を測定することで、表面プラズモン共鳴現象の有
無、延いては当該現象が起きた時の入射角を求めること
ができる。その一方、表面プラズモン共鳴現象が起きる
際の入射角と媒質の屈折率とは相関開係にあり、この屈
折率は、マクスウェルの方程式から媒質の誘電率で規定
でき、生体物質による生物化学的反応の進行と誘電率と
は相関関係にある。よって、反射光の光量が急激に減少
したときの反射角からその時の入射角が決まり、上記の
各相関関係から生体物質による生物化学的反応の進行の
程度、即ち基質濃度が算出される。
When the incident angle θ has a certain value, a surface plasmon resonance phenomenon occurs in which the wave numbers of the evanescent wave and the surface plasmon wave coincide with each other, and the light energy is used as the excitation energy of the surface plasmon wave. Be seen. At this time, in terms of energy, there is a relationship that the energy of the light incident on the light reflecting surface is equal to the sum of the energy used to excite the surface plasmon wave and the energy of the reflected light from the reflecting surface. Therefore, by measuring the state of changes in the reflection angle and the energy (light amount), it is possible to determine the presence or absence of the surface plasmon resonance phenomenon, and consequently the incident angle when the phenomenon occurs. On the other hand, there is a correlation between the incident angle and the refractive index of the medium when the surface plasmon resonance phenomenon occurs, and this refractive index can be defined by the permittivity of the medium from Maxwell's equation, and the biochemical reaction by biological substances. Is correlated with the dielectric constant. Therefore, the angle of incidence at that time is determined from the angle of reflection when the amount of reflected light suddenly decreases, and the degree of progress of the biochemical reaction by the biological substance, that is, the substrate concentration is calculated from the above correlations.

【0006】ところで、このようなバイオセンサにあっ
ては、金属薄膜の反光透過媒体側膜面のごく近傍、詳し
くはトンネル効果を起こすエバネッセント領域(約10
0nm)において基質と生体物質との生物化学的反応が
起こる必要がある。このため、特許出願公表平4−50
1605に提案されているように、生体物質を固定した
雇いわゆるリガンド層を金属薄膜の上記膜面に固定化す
ることが一般に行なわれている。
By the way, in such a biosensor, the metal thin film is located in the vicinity of the film surface on the side opposite to the light-transmitting medium, specifically, in the evanescent region (about 10) which causes the tunnel effect.
At 0 nm), a biochemical reaction between the substrate and the biological substance needs to occur. Therefore, the patent application publication No. 4-50
As proposed in 1605, it is common practice to immobilize a so-called ligand layer on which a biological substance is immobilized on the above-mentioned film surface of a metal thin film.

【0007】このように、エバネッセント波結合を形成
する光学系を用いて被測定溶液中の測定対象基質を測定
するバイオセンサは、被測定溶液の着色程度や不透明さ
などの影響を受けない、或いは金属薄膜の反光透過媒体
側膜面に基質と生物化学的反応を起こす生体物質を固着
しておくだけでよい等の利点を有するので、急速に普及
しつつある。
As described above, the biosensor for measuring the substrate to be measured in the solution to be measured using the optical system for forming the evanescent wave bond is not affected by the degree of coloring or opacity of the solution to be measured, or Since it has the advantage that it is only necessary to fix a biological substance that causes a biochemical reaction with a substrate on the surface of the metal thin film on the side of the anti-light transmission medium, it is rapidly spreading.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、被測定
溶液中の測定対象基質の分子の濃度が低い場合や、分子
量が小さい分子の場合には分子が直接エバネッセント波
に影響を与えることは困難であり、前述の各相関関係か
ら生体物質による生物化学的反応の進行の程度、即ち基
質濃度を算出できなかった。
However, when the concentration of the molecule of the substrate to be measured in the solution to be measured is low or when the molecule has a small molecular weight, it is difficult for the molecule to directly affect the evanescent wave. From the above-mentioned correlations, it was not possible to calculate the degree of progress of the biochemical reaction by the biological substance, that is, the substrate concentration.

【0009】従って、本発明の目的は、従来エバネッセ
ント波に影響を与えることが困難とされてきた測定対象
基質の分子に対しても有効に機能し、基質の濃度を算出
できる表面プラズモン共鳴センサを提供することにあ
る。
Therefore, an object of the present invention is to provide a surface plasmon resonance sensor that functions effectively even for molecules of a substrate to be measured, which has been conventionally difficult to affect the evanescent wave, and can calculate the concentration of the substrate. To provide.

【0010】[0010]

【課題を解決するための手段】本発明の表面プラズモン
共鳴センサは、エバネッセント波が生じる金属薄膜上に
半導体薄膜を配置することを特徴とする。金属薄膜は透
光性の光透過媒体上に設けられ光反射面において幾何学
的な全反射条件で光を反射するようになっている。半導
体薄膜は検出したい分子と相互作用をして半導体中のバ
ンド構造やキャリア濃度に変化を生じる。このように半
導体と分子は直接または間接に相互作用をして半導体中
のキャリア(電荷)に変化をもたらす。光透過媒体と金
属薄膜とで形成されるエバネッセント波は半導体中のキ
ャリアの変化の影響を受ける。エバネッセント波の変化
は従来技術の手段で電気信号に変換されセンサの出力信
号となる。
The surface plasmon resonance sensor of the present invention is characterized in that a semiconductor thin film is arranged on a metal thin film where an evanescent wave is generated. The metal thin film is provided on a light-transmitting light-transmitting medium and reflects light on the light-reflecting surface under a geometric total reflection condition. The semiconductor thin film interacts with the molecule to be detected and changes the band structure and carrier concentration in the semiconductor. As described above, the semiconductor and the molecule directly or indirectly interact with each other to change carriers (charges) in the semiconductor. The evanescent wave formed by the light transmission medium and the metal thin film is affected by the change of carriers in the semiconductor. The change in the evanescent wave is converted into an electric signal by the means of the prior art and becomes an output signal of the sensor.

【0011】半導体薄膜の屈折率は光透過媒体の屈折率
よりも小さなっているので、十分に表面プラズモン波の
励起条件を満たすことができる。
Since the refractive index of the semiconductor thin film is smaller than that of the light transmitting medium, it is possible to sufficiently satisfy the excitation condition of the surface plasmon wave.

【0012】半導体薄膜の材質はフッ素化合物、好まし
くはポリテトラフルオロエチレンをスパッタリング法で
形成した物がよい。
The material of the semiconductor thin film is a fluorine compound, preferably polytetrafluoroethylene formed by a sputtering method.

【0013】本発明の上記特徴や効果、ならびに、他の
特徴や利点は、以下の実施例の記載に従い明らかにす
る。
The above-mentioned features and effects of the present invention, as well as other features and advantages, will be made clear by the description of the following embodiments.

【0014】[0014]

【発明の実施の形態】本発明の実施例を表面プラズモン
共鳴センサに適用した構成を第1図に示す。1は本発明
の表面プラズモン共鳴センサであり、光透過媒体2に金
属薄膜3を設け、更に金属薄膜3の少なくとも一部を覆
うように半導体薄膜4を設けている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows a structure in which an embodiment of the present invention is applied to a surface plasmon resonance sensor. Reference numeral 1 is a surface plasmon resonance sensor of the present invention, in which a light transmitting medium 2 is provided with a metal thin film 3, and further a semiconductor thin film 4 is provided so as to cover at least a part of the metal thin film 3.

【0015】光透過媒体2は屈折率1.52のガラス製
であり光の入射面2a、光反射面2b及び光の出射面2
cを備えている。金属薄膜3は金を材質とする膜厚50
mmのものを光透過媒体2の光反射面2bに真空蒸着法
を利用して固定されている。
The light transmitting medium 2 is made of glass having a refractive index of 1.52, and has a light incident surface 2a, a light reflecting surface 2b and a light emitting surface 2
c. The metal thin film 3 is made of gold and has a film thickness of 50.
The thing of mm is fixed to the light reflecting surface 2b of the light transmitting medium 2 by utilizing the vacuum deposition method.

【0016】本発明の特徴である半導体薄膜4は表面プ
ラズモン波を励起させる金属薄膜3上に設けられてお
り、具体的にはPTFE(ポリテトラフルオロエチレ
ン)をターゲットにしてスパッタリング法により形成し
ている。膜厚は約300nmである。この膜の炭素とフ
ッ素の組成比は約1:1となっている。ちなみに単なる
PTFEの組成比は1:2である。膜は緻密でありAF
M(原子間力顕微鏡)で測定してもポーラスな部分は見
つからなかった。この膜の電気的特性を測定するとN型
半導体の特性を示した。
The semiconductor thin film 4, which is a feature of the present invention, is provided on the metal thin film 3 which excites surface plasmon waves. Specifically, it is formed by a sputtering method using PTFE (polytetrafluoroethylene) as a target. There is. The film thickness is about 300 nm. The composition ratio of carbon and fluorine of this film is about 1: 1. By the way, the composition ratio of simple PTFE is 1: 2. The film is dense and AF
No porous portion was found even by measurement with M (atomic force microscope). When the electrical characteristics of this film were measured, it showed the characteristics of an N-type semiconductor.

【0017】本発明の表面プラズモン共鳴センサ1を用
いた測定を行う際には、半導体薄膜4を被測定溶液中の
測定対象基質に接触させ、検出したい分子と相互作用を
して半導体中のバンド構造やキャリア濃度に変化を生じ
させる。このように半導体と分子は直接または間接に相
互作用をして半導体中のキャリア(電荷)に変化をもた
らす。
When carrying out the measurement using the surface plasmon resonance sensor 1 of the present invention, the semiconductor thin film 4 is brought into contact with the substrate to be measured in the solution to be measured, and interacts with the molecule to be detected to cause the band in the semiconductor to be detected. It causes changes in structure and carrier concentration. As described above, the semiconductor and the molecule directly or indirectly interact with each other to change carriers (charges) in the semiconductor.

【0018】続いて、発光ダイオードや半導体レーザか
らなる単一波長の光を発生する光源ユニット5から光透
過媒体2の入射面2aに向けて光を照射し、不図示のレ
ンズ等を利用して光反射面2bに焦点を結ぶように集光
させる。こうして光透過媒体2と金属薄膜3とで形成さ
れるエバネッセント波は半導体中のキャリアの変化の影
響を受ける。エバネッセント波の変化は光の出射面2c
側に設けられたCCD撮像素子等からなる受光ユニット
6で検出され、不図示の制御手段により電気信号に変換
されセンサの出力信号となる。
Subsequently, light is emitted from a light source unit 5 including a light emitting diode or a semiconductor laser, which emits light of a single wavelength, toward the incident surface 2a of the light transmitting medium 2, and a lens or the like (not shown) is used. The light is reflected so that it is focused on the light reflecting surface 2b. Thus, the evanescent wave formed by the light transmitting medium 2 and the metal thin film 3 is affected by the change of carriers in the semiconductor. The change of the evanescent wave is caused by the light emitting surface 2c.
It is detected by the light receiving unit 6 including a CCD image pickup device provided on the side, converted into an electric signal by a control means (not shown), and becomes an output signal of the sensor.

【0019】続いて、本発明の表面プラズモン共鳴セン
サ1を用いて湿度を測定した例を第2図を基に説明す
る。ここでは20℃の標準空気と20℃湿度50%RH
の空気を交互切り替えて流した時の共振角の経時的変化
を測定している。図中で2つの山になっている部分が2
0℃湿度50%RHの空気を流したところである。
Next, an example of measuring humidity using the surface plasmon resonance sensor 1 of the present invention will be described with reference to FIG. Here, standard air of 20 ° C and humidity of 50% RH at 20 ° C
The time-dependent change of the resonance angle when the air is alternately switched and flowed is measured. In the figure, the two mountains are 2
This is where air with 0 ° C. and 50% RH was flowed.

【0020】以上には本発明の特定の実施例を記載した
が、本発明はこれらに限定されるものではなく、例え
ば、半導体と目的とする分子が直接相互作用をしない組
み合わせの場合は分子に選択的に作用する触媒を半導体
表面に固定するなどの手段を講じても良い。また、本発
明は表面プラズモン共鳴センサのみならず光ファイバー
を利用したセンサなどエバネッセント波を利用するセン
サに応用できる。
Although specific embodiments of the present invention have been described above, the present invention is not limited to these. For example, in the case of a combination in which a semiconductor and a target molecule do not directly interact, Means such as fixing a selectively acting catalyst on the semiconductor surface may be taken. Further, the present invention can be applied not only to a surface plasmon resonance sensor but also to a sensor using an evanescent wave such as a sensor using an optical fiber.

【0021】[0021]

【発明の効果】以上に述べたように、本発明は、金属薄
膜が設けられた光反射面において幾何学的な全反射条件
で光を反射する透光性の光透過媒体の前記金属薄膜の少
なくとも一部に半導体薄膜を設けたので、従来測定が困
難であった被測定溶液中の測定対象基質の分子の濃度が
低い場合や、分子量が小さい分子の場合であっても濃度
の測定が可能となった。
As described above, according to the present invention, the metal thin film of the light-transmissive light-transmitting medium which reflects light on the light reflecting surface provided with the metal thin film under the geometrical total reflection condition. Since a semiconductor thin film is provided on at least a part, it is possible to measure the concentration even when the concentration of the molecule of the substrate to be measured in the solution to be measured, which was difficult to measure in the past, is low or when the molecule has a small molecular weight. Became.

【0022】本発明の好ましい実施態様においては、半
導体薄膜としてPTFE(ポリテトラフルオロエチレ
ン)をターゲットにしてスパッタリング法により形成し
たものを採用しているので、大気中の湿度の測定が可能
となった。
In a preferred embodiment of the present invention, a semiconductor thin film formed by sputtering with PTFE (polytetrafluoroethylene) as a target is employed, so that the humidity in the atmosphere can be measured. .

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、本発明の表面プラズモン共鳴センサを
示す概念図である。
FIG. 1 is a conceptual diagram showing a surface plasmon resonance sensor of the present invention.

【図2】図2は、本発明の表面プラズモン共鳴センサを
利用して測定を行った結果を示すグラフである。
FIG. 2 is a graph showing the results of measurement using the surface plasmon resonance sensor of the present invention.

【符号の説明】[Explanation of symbols]

1:表面プラズモン共鳴センサ 2:光透過媒体 3:金属薄膜 4:半導体薄膜 5:光源ユニット 6:受光ユニット 1: Surface plasmon resonance sensor 2: Light transmission medium 3: Metal thin film 4: Semiconductor thin film 5: Light source unit 6: Light receiving unit

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 金属薄膜上に設けられた半導体薄膜と、
前記金属薄膜が設けられた光反射面において幾何学的な
全反射条件で光を反射する透光性の光透過媒体を有し、
該光透過媒体と前記金属薄膜でエバネッセント波結合を
形成する光学系を用いて、前記半導体薄膜に接触した被
測定溶液中の測定対象基質を測定する表面プラズモン共
鳴センサ。
1. A semiconductor thin film provided on a metal thin film,
The light-reflective surface on which the metal thin film is provided has a light-transmissive light-transmissive medium that reflects light under geometric total reflection conditions,
A surface plasmon resonance sensor for measuring a substrate to be measured in a solution to be measured, which is in contact with the semiconductor thin film, by using an optical system that forms an evanescent wave bond between the light transmitting medium and the metal thin film.
【請求項2】 前記半導体薄膜の屈折率が前記光透過媒
体の屈折率よりも小さいことを特徴とする請求項1記載
の表面プラズモン共鳴センサ。
2. The surface plasmon resonance sensor according to claim 1, wherein the semiconductor thin film has a refractive index smaller than that of the light transmitting medium.
【請求項3】 前記半導体薄膜がフッ素化合物からなる
ことを特徴とする請求項1から2記載の表面プラズモン
共鳴センサ。
3. The surface plasmon resonance sensor according to claim 1, wherein the semiconductor thin film is made of a fluorine compound.
【請求項4】 前記半導体薄膜がポリテトラフルオロエ
チレンをスパッタリング法で形成したことを特徴とする
請求項1から3記載の表面プラズモン共鳴センサ。
4. The surface plasmon resonance sensor according to claim 1, wherein the semiconductor thin film is formed of polytetrafluoroethylene by a sputtering method.
【請求項5】 前記光学系が、光源からの光を前記光反
射面に集光して照射する入射側光学系と、前記光反射面
で反射し前記光透過媒体から外部に出射する反射光を受
光し、該反射光の光量を反射光ごとに検出する出射側光
学系とを備えることを特徴とする請求項1から4記載の
表面プラズモン共鳴センサ。
5. An incident-side optical system in which the optical system condenses and irradiates light from a light source on the light reflecting surface, and reflected light reflected by the light reflecting surface and emitted from the light transmitting medium to the outside. 5. The surface plasmon resonance sensor according to claim 1, further comprising: an emission side optical system that receives the light and detects the light amount of the reflected light for each reflected light.
JP10071896A 1996-03-15 1996-03-15 Surface plasmon resonance sensor Pending JPH09250981A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10071896A JPH09250981A (en) 1996-03-15 1996-03-15 Surface plasmon resonance sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10071896A JPH09250981A (en) 1996-03-15 1996-03-15 Surface plasmon resonance sensor

Publications (1)

Publication Number Publication Date
JPH09250981A true JPH09250981A (en) 1997-09-22

Family

ID=14281429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10071896A Pending JPH09250981A (en) 1996-03-15 1996-03-15 Surface plasmon resonance sensor

Country Status (1)

Country Link
JP (1) JPH09250981A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008053016A1 (en) * 2006-11-03 2008-05-08 Commissariat A L'energie Atomique Improved optical detection structure for a plasmon resonance sensor.
CN100412528C (en) * 2005-10-20 2008-08-20 汪胜前 Gas and liquid concentration testing sensor and testing system
JP2009025199A (en) * 2007-07-20 2009-02-05 Univ Soka Optical fiber type surface plasmon humidity sensor, surface plasmon humidity sensor, optical fiber type humidity sensor, and humidity measuring apparatus
WO2010084523A1 (en) * 2009-01-20 2010-07-29 学校法人創価大学 Humidity sensor and humidity measurement device
CN101865841A (en) * 2010-06-28 2010-10-20 北京航空航天大学 High-sensitivity surface plasma resonance sensor
EP2757363A4 (en) * 2011-09-15 2015-06-24 Nitto Denko Corp Spr sensor cell and spr sensor
WO2023189139A1 (en) * 2022-03-30 2023-10-05 京セラ株式会社 Optical device and biosensor

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100412528C (en) * 2005-10-20 2008-08-20 汪胜前 Gas and liquid concentration testing sensor and testing system
WO2008053016A1 (en) * 2006-11-03 2008-05-08 Commissariat A L'energie Atomique Improved optical detection structure for a plasmon resonance sensor.
FR2908186A1 (en) * 2006-11-03 2008-05-09 Commissariat Energie Atomique IMPROVED OPTICAL DETECTION STRUCTURE FOR PLASMON RESONANCE SENSOR
JP2010508527A (en) * 2006-11-03 2010-03-18 コミサリア、ア、レネルジ、アトミク−セーエーアー Improved optical detection mechanism for plasmon resonance sensors
US8031341B2 (en) 2006-11-03 2011-10-04 Commissariat A L'energie Atomique Optical detection structure for a plasmon resonance sensor
JP2009025199A (en) * 2007-07-20 2009-02-05 Univ Soka Optical fiber type surface plasmon humidity sensor, surface plasmon humidity sensor, optical fiber type humidity sensor, and humidity measuring apparatus
WO2010084523A1 (en) * 2009-01-20 2010-07-29 学校法人創価大学 Humidity sensor and humidity measurement device
CN101865841A (en) * 2010-06-28 2010-10-20 北京航空航天大学 High-sensitivity surface plasma resonance sensor
EP2757363A4 (en) * 2011-09-15 2015-06-24 Nitto Denko Corp Spr sensor cell and spr sensor
WO2023189139A1 (en) * 2022-03-30 2023-10-05 京セラ株式会社 Optical device and biosensor

Similar Documents

Publication Publication Date Title
US6710870B1 (en) Method and device for measuring luminescence
US6320991B1 (en) Optical sensor having dielectric film stack
FI76432C (en) Method and apparatus for determining elements in solution with a light conductor
JP5315409B2 (en) Optical waveguide manufacturing method, optical waveguide and sensor arrangement
US20090116020A1 (en) Biosensor, method for producing the same and sensor measurement system
JP4581135B2 (en) Chip for optical waveguide mode sensor
US8068995B2 (en) Biosensing apparatus and system
JP5143668B2 (en) Detection method, detection sample cell and detection kit
JP2010518389A (en) Biosensor using evanescent waveguide and integrated sensor
JPWO2005078415A1 (en) Surface plasmon resonance sensor
JPH06506298A (en) Analysis equipment
JP2001516020A (en) Diffraction anomaly sensor with grating covered with protective dielectric layer
JP2001066248A (en) Surface plasmon sensor
EP1005634A2 (en) Near normal incidence optical assaying method and system having wavelength and angle sensitivity
WO2001090728A1 (en) Differential spr sensor and measuring method using it
US7602496B2 (en) Optical sensor with biologically reactive surface
JP2009210569A (en) Surface plasmon resonance sensor chip
JP2007271597A (en) Optical waveguide mode sensor
JPH09250981A (en) Surface plasmon resonance sensor
JP2007271596A (en) Optical waveguide mode sensor
JP2013509569A (en) A method for directly measuring molecular interactions by detecting light reflected from multilayer functionalized dielectrics
JP2002365210A (en) Method of detecting living-body molecule
JPH09257699A (en) Surface plasmon resonance sensor apparatus
CN1421699A (en) Surface plasma resonance biosensor for detecting several biological signals parallelly
JPH0996605A (en) Biosensor