JPH08193256A - Method for nitriding steel - Google Patents

Method for nitriding steel

Info

Publication number
JPH08193256A
JPH08193256A JP12678395A JP12678395A JPH08193256A JP H08193256 A JPH08193256 A JP H08193256A JP 12678395 A JP12678395 A JP 12678395A JP 12678395 A JP12678395 A JP 12678395A JP H08193256 A JPH08193256 A JP H08193256A
Authority
JP
Japan
Prior art keywords
gas
steel
nitriding
fluorine
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12678395A
Other languages
Japanese (ja)
Other versions
JP3428776B2 (en
Inventor
Kenzo Kitano
憲三 北野
Akio Hashigami
昭男 橋上
Takashi Muraoka
隆 村岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Hoxan Inc
Original Assignee
Daido Hoxan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Hoxan Inc filed Critical Daido Hoxan Inc
Priority to JP12678395A priority Critical patent/JP3428776B2/en
Priority to US08/648,852 priority patent/US5650022A/en
Priority to CN96110008A priority patent/CN1106454C/en
Priority to DE69619725T priority patent/DE69619725T2/en
Priority to TW085105835A priority patent/TW387943B/en
Priority to KR1019960017168A priority patent/KR960041404A/en
Priority to EP96303542A priority patent/EP0744471B1/en
Publication of JPH08193256A publication Critical patent/JPH08193256A/en
Application granted granted Critical
Publication of JP3428776B2 publication Critical patent/JP3428776B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE: To prevent the occurrence of uneven nitriding at the time of nitriding treatment and also to remarkably reduce the cost of nitriding treatment. CONSTITUTION: This method is a method for nitriding a steel by allowing nitrogen to react with the surface of the steel and forming a hard nitrided layer. At this time, prior to nitriding, the steel is treated as follows: (A) The steel is heated and held in a gaseous atmosphere containing fluorine compound gas or fluorine gas and also containing air in the amount equivalent to 0.5-20vol.% of the whole or oxygen gas equivalent to 0.1-4vol.% of the whole; (B) The steel is heated and held in a gaseous atmosphere containing fluorine compound gas or fluorine gas and then heated and held in a gaseous atmosphere containing air in the amount equivalent to 0.5-2Ovol.% of the whole or oxygen gas equivalent to 0.1-4vol.% of the whole; (C) The steel is heated and held in a gaseous atmosphere containing air in the amount equivalent to 0.5-100vol.% of the whole or oxygen gas equivalent to 0.1-20vol.% of the whole and then heated and held in a gaseous atmosphere containing fluorine compound gas or fluorine gas.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、鋼の表面に窒化層を
形成して耐磨耗性等を向上させる鋼の窒化方法に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a steel nitriding method for forming a nitride layer on the surface of steel to improve wear resistance and the like.

【0002】[0002]

【従来の技術】耐摩耗性、耐食性、疲労強度等の機械的
性質を向上させる目的で、鋼の表面に窒化物の層を形成
する窒化法あるいは、浸炭窒化法として従来採用されて
きた方法は次のようなものである。 (イ) NaCN、KCNO等のシアン系溶融塩による
方法(タフトライド法) (ロ) グロー放電による窒化(イオン窒化) (ハ) アンモニアまたはアンモニアと炭素源を有する
ガス(例えばRXガス)との混合ガスによる窒化(ガス
窒化、ガス軟窒化)
2. Description of the Related Art For the purpose of improving mechanical properties such as wear resistance, corrosion resistance, and fatigue strength, the nitriding method for forming a nitride layer on the surface of steel or the carbonitriding method conventionally adopted is It looks like this: (A) Method using cyanated molten salt such as NaCN, KCNO (tuftride method) (b) Nitrogen (ion nitriding) by glow discharge (c) Ammonia or mixed gas of ammonia and gas having carbon source (for example, RX gas) Nitriding (gas nitriding, gas soft nitriding)

【0003】これらのうち、(イ)の方法は、有害な溶
融塩を用いるので作業環境、廃棄物処理等の点で将来的
に好ましくない。また、(ロ)の方法は、低真空のN2
+H 2 雰囲気中でグロー放電により窒化するもので、ス
パッタリングに伴う清浄化作用により酸化皮膜の影響は
少なくなるが、局部的な温度差による窒化ムラが発生し
やすい。また、この方法は、処理物の形状寸法に制約が
大きく、コスト高となるという問題点がある。さらに、
上記(ハ)の方法は、窒化ムラが生じやすい等、処理の
安定性に問題があり、しかも深い窒化層を得るためには
長時間を要するという問題点もある。
Of these, the method (a) is a harmful solution.
Since molten salt is used, it has a future potential in terms of work environment, waste treatment, etc.
Not good for In addition, the method of (b) is a low vacuum N2
+ H 2It is nitrided by glow discharge in an atmosphere.
The effect of the oxide film due to the cleaning action accompanying the putting
Although it will decrease, uneven nitriding will occur due to local temperature difference.
Cheap. In addition, this method has restrictions on the shape and size of the processed object.
There is a problem that the cost is large and the cost is high. further,
The method of (c) above is a process
There is a problem with stability, and to obtain a deep nitrided layer,
There is also a problem that it takes a long time.

【0004】一般に、鋼は500℃以上の温度で窒化さ
れるが、鋼表面層への窒素の吸着,拡散には、金属表面
の活性度が高いことが必要で、有機,無機系の汚れは勿
論、酸化皮膜やO2 の吸着皮膜が存在しないことが望ま
しい。また、酸化皮膜の存在は、窒化ガスであるアンモ
ニアの解離度を助長する点でも好ましくない。しかしな
がら、実際にはガス窒化法において酸化皮膜の形成を防
止することは不可能であり、例えばクロムを多量に含ま
ない肌焼鋼や構造用鋼の場合でも400℃〜500℃の
温度では、NH3 やNH3 +RXの雰囲気下でも薄い酸
化物質が形成される。クロム等酸素との親和力の大きい
元素を多量に含む鋼種ではこの傾向が更に強くなる。
In general, steel is nitrided at a temperature of 500 ° C. or higher. However, adsorption and diffusion of nitrogen on the surface layer of the steel requires high activity of the metal surface, and organic and inorganic fouling is prevented. Of course, it is desirable that there be no oxide film or O 2 adsorption film. Further, the presence of the oxide film is not preferable because it promotes the dissociation degree of ammonia which is a nitriding gas. However, it is actually impossible to prevent the formation of an oxide film in the gas nitriding method. For example, even in the case of case-hardening steel or structural steel not containing a large amount of chromium, at a temperature of 400 ° C to 500 ° C, NH A thin oxide material is formed even in an atmosphere of 3 or NH 3 + RX. This tendency is further strengthened in steel types containing a large amount of elements such as chromium having a high affinity for oxygen.

【0005】このような酸化物の形成は、同一部品でも
表面状態や加工条件等によって変化し、結果的に不均一
な窒化層を形成していた。典型的な例として、たとえば
オーステナイト系のステンレスの冷間加工品等の場合
は、処理炉に挿入する前にフッ硝酸により洗浄して表面
の不働態皮膜を完全に除去しても、満足な窒化層を形成
するのはほとんど不可能である。なお、窒化ムラについ
てはガス軟窒化のみでなく、窒化鋼やステンレス鋼に対
するアンモニアのみによる窒化(ガス窒化)においても
同様に発生する。また、通常の構造用鋼の場合でも歯車
のごとき形状の複雑な部品の場合窒化ムラが発生し易い
という基本的な問題がある。
The formation of such an oxide varies depending on the surface condition and processing conditions of the same component, resulting in the formation of a non-uniform nitrided layer. As a typical example, in the case of cold-worked austenitic stainless steel, for example, even if the passivation film on the surface is completely removed by washing with hydrofluoric nitric acid before inserting it into the processing furnace, satisfactory nitriding is possible. It is almost impossible to form layers. Note that uneven nitriding occurs not only in gas soft nitriding but also in nitriding steel or stainless steel with only ammonia (gas nitriding). Further, even in the case of ordinary structural steel, there is a basic problem that uneven nitriding is likely to occur in the case of a complicated part such as a gear.

【0006】上記のようなガス窒化、ガス軟窒化の本質
的な問題点を改良する手段として、塩化ビニル樹脂を処
理物(ワーク)とともに炉に挿入する方法や、CH3
l等をふりかけて200〜300℃に加熱し、HClを
発生させて酸化物の発生を防止するとともにその除去を
はかる方法、あるいは予め表面にメッキを施して酸化物
を抑制する方法等が過去に提唱されたことがあるが、ほ
とんど実用化されていないのが現状である。HClによ
って鋼表面にFeCl2 、FeCl3 等の塩化物が析出
するが、これらは窒化温度以下の温度で極めて脆く、し
かも昇華、蒸発しやすいため、塩化物膜は形成されず、
若干の酸化皮膜抑制効果はあるものの取扱いそのものの
煩雑さや炉材の損傷が著しいことと相まって実用的には
有効とはいえないのである。
As a means for improving the above-mentioned essential problems of gas nitriding and gas soft nitriding, a method of inserting a vinyl chloride resin into a furnace together with a treated material (work), or CH 3 C
In the past, a method of sprinkling 1 or the like and heating to 200 to 300 ° C. to generate HCl to prevent the generation of an oxide and remove it, or a method of plating the surface in advance to suppress the oxide has been used in the past. Although it has been proposed, it is the current situation that it has not been put to practical use. Chlorides such as FeCl 2 and FeCl 3 are precipitated on the surface of steel by HCl, but these are extremely brittle at temperatures below the nitriding temperature and easily sublimate and evaporate, so that no chloride film is formed.
Although it has some effect of suppressing the oxide film, it is not practically effective due to the complexity of handling itself and the significant damage to the furnace material.

【0007】[0007]

【発明が解決しようとする課題】このように、従来の方
法は、窒化処理前洗浄後の残存による無機異物や、被処
理物の酸化被膜による窒化ムラ等の発生という問題を有
しているのであり、このような問題を効果的に解消する
目的で、本発明者らは、窒化に先立って、鋼をフッ素化
合物もしくは、フッ素を含むガス(以下「フッ素系ガ
ス」と称する)からなる雰囲気中に加熱保持して鋼の表
面層にフッ化物膜を生成させることが有効であることを
見いだし、すでに特許出願(特願平1−177660
号)している。このように、フッ素系ガスで処理する
と、活性化したフッ素原子により鋼表面に付着していた
無機・有機物の汚染物質が破壊除去されて表面が浄化さ
れるとともに、このフッ素原子が酸化被膜と反応しフッ
化物膜に変化して鋼表面がフッ化物膜で被覆保護された
状態となる。このフッ化物膜は、次工程の窒化処理によ
り分解消失し同時に、鋼表面が活性化された状態とな
る。そして、この活性化された鋼表面に、窒素原子が浸
透、拡散して、迅速かつ均一な窒化層が形成されるよう
になる。ところが、実際に操業を続ける過程で、上記フ
ッ素系ガスが高価であり、その消費量もかなり大きいこ
とから、窒化処理自体のコストが高くなり、これの改善
が強く求められるようになった。
As described above, the conventional method has a problem that inorganic foreign matters due to the residual after cleaning before nitriding treatment and uneven nitriding due to the oxide film of the object to be treated are generated. For the purpose of effectively solving such a problem, the inventors of the present invention, prior to nitriding, have made steel an atmosphere of a fluorine compound or a gas containing fluorine (hereinafter referred to as “fluorine-based gas”). It was found that it is effective to form a fluoride film on the surface layer of steel by heating and holding it for a long time, and already applied for a patent (Japanese Patent Application No. 1-177660).
No.) In this way, when treated with a fluorine-based gas, the activated fluorine atoms destroy and remove the pollutants of inorganic and organic substances adhering to the steel surface to clean the surface, and the fluorine atoms react with the oxide film. Then, it changes into a fluoride film and the steel surface is covered and protected by the fluoride film. The fluoride film is decomposed and disappeared by the nitriding treatment in the next step, and at the same time, the steel surface is activated. Then, nitrogen atoms permeate and diffuse into the activated steel surface, and a rapid and uniform nitride layer is formed. However, in the process of actually continuing the operation, the above-mentioned fluorine-based gas is expensive and its consumption is considerably large, so that the cost of the nitriding treatment itself becomes high, and improvement thereof has been strongly demanded.

【0008】[0008]

【課題を解決するための手段】上記の目的を達成するた
め、この発明の鋼の窒化方法は、鋼の表面に窒素を反応
させて硬質の窒化層を形成する鋼の窒化方法であって、
窒化に先立ち、下記(A),(B)または(C)のフッ
化処理を行うという構成をとる。 (A) フッ素化合物ガスもしくはフッ素ガスを含むガ
ス雰囲気であって、全体の0.5〜20容量%に相当す
る空気または0.1〜4容量%に相当する酸素ガスを含
有するガス雰囲気中に、鋼を加熱保持する。 (B) フッ素化合物ガスもしくはフッ素ガスを含むガ
ス雰囲気中に鋼を加熱保持したのち、全体の0.5〜2
0容量%に相当する空気または0.1〜4容量%に相当
する酸素ガスを含有するガス雰囲気中に鋼を加熱保持す
る。 (C) 全体の0.5〜100容量%に相当する空気ま
たは0.1〜20容量に相当する酸素ガスを含有するガ
ス雰囲気中に鋼を加熱保持したのち、フッ素化合物ガス
もしくはフッ素ガスを含むガス雰囲気中に鋼を加熱保持
する。
To achieve the above object, the method for nitriding steel according to the present invention is a method for nitriding steel in which nitrogen is reacted on the surface of the steel to form a hard nitriding layer.
Prior to nitriding, the following fluorination treatment (A), (B) or (C) is performed. (A) In a gas atmosphere containing a fluorine compound gas or a fluorine gas, the gas atmosphere containing 0.5 to 20% by volume of air or 0.1 to 4% by volume of oxygen gas. , Keep the steel heated. (B) After heating and holding the steel in a gas atmosphere containing a fluorine compound gas or a fluorine gas, 0.5 to 2 of the whole
The steel is heated and held in a gas atmosphere containing air corresponding to 0% by volume or oxygen gas corresponding to 0.1 to 4% by volume. (C) After heating and holding the steel in a gas atmosphere containing 0.5 to 100% by volume of air or 0.1 to 20% by volume of oxygen gas, a fluorine compound gas or a fluorine gas is included. The steel is heated and held in a gas atmosphere.

【0009】[0009]

【作用】すなわち、本発明者らは、先の提案法の改善を
目的に、一連の研究を重ねた。その結果、鋼の窒化物に
先立って、まず鋼を炉内で加熱保持しながら、その状態
で炉中にフッ素系ガスを導入してフッ化処理するに際
し、雰囲気ガスとして、フッ素系ガスだけではなく、フ
ッ素系ガス雰囲気の0.5〜20容量%の空気、もしく
は、0.1〜4容量%(以下「%」と略す)に相当する
酸素ガスを含有させ、このようなガス雰囲気中でフッ化
処理すると、先の提案法よりもフッ素系ガスの消費量を
低減でき、しかも、先の提案法と同程度か、むしろそれ
以上の効果〔(フッ素原子による、鋼表面に付着してい
た無機・有機物の汚染物質の破壊除去効果),(鋼材表
面の酸化皮膜とフッ素原子が反応してフッ化物膜に変化
し、鋼表面がフッ化物膜で被覆保護された状態となる効
果),(フッ化物膜は、次工程の窒化処理により、分解
消失するため、鋼表面が活性化された状態となり、窒素
原子の浸透拡散の迅速かつ均一化を達成する効果)〕が
得られることを見いだした。また、必ずしも、上記のよ
うに、フッ素系ガスと空気等とを共存させた状態でフッ
化処理を行わなくてもよい。すなわち、フッ素系ガスか
らなるガス雰囲気中に、鋼を加熱保持し鋼表面にフッ化
物膜を形成させたのち、もしくは、形成させると同時
に、上記空気または酸素を、窒素または、アンモニアと
混合し混合ガスの形で炉内に導入してガス雰囲気をつく
り、このガス雰囲気中に鋼を加熱処理してもよい。さら
に空気または、酸素を窒素ガス等と混合させ、混合ガス
の形で導入して、このガス雰囲気中に鋼を加熱保持した
のち、次いで上記フッ素系ガスを炉内に導入し、このガ
ス雰囲気中で鋼を加熱保持してもよい。このようにして
も、フッ素系ガス、と空気または酸素とを同時に使用す
る場合と同様の効果が得られることを見いだした。
ACTIONS That is, the present inventors have conducted a series of studies for the purpose of improving the previously proposed method. As a result, prior to the nitriding of steel, while heating and holding the steel in the furnace first, when introducing the fluorine-based gas into the furnace and performing the fluorination treatment in that state, the fluorine-based gas alone is not used as the atmosphere gas. However, 0.5 to 20% by volume of air in a fluorine-based gas atmosphere, or 0.1 to 4% by volume (hereinafter abbreviated as "%") of oxygen gas is contained in the atmosphere. The fluorination treatment can reduce the consumption of the fluorine-based gas as compared with the previously proposed method, and has the same effect as the previously proposed method, or even more than that [(the fluorine atoms are attached to the steel surface (Effects of destructive removal of pollutants of inorganic and organic substances), (Effects of oxide film on the steel surface reacting with fluorine atoms to change to a fluoride film, and the steel surface is covered and protected by the fluoride film), ( Fluoride film, by the nitriding treatment of the next step, To the solution disappears, a state where the steel surface is activated, the effect of achieving rapid and uniform penetration diffusion of nitrogen atoms)] found that can be obtained. Further, as described above, the fluorination treatment does not necessarily have to be performed in the state where the fluorine-based gas and the air coexist. That is, in a gas atmosphere consisting of a fluorine-based gas, after heating and holding the steel to form a fluoride film on the steel surface, or at the same time as forming it, the air or oxygen is mixed with nitrogen or ammonia to mix. The gas may be introduced into the furnace to create a gas atmosphere, and the steel may be heat-treated in this gas atmosphere. Further, air or oxygen is mixed with nitrogen gas or the like, introduced in the form of a mixed gas, and the steel is heated and held in this gas atmosphere, and then the above-mentioned fluorine-based gas is introduced into the furnace, and in this gas atmosphere The steel may be heated and held at. It has been found that even in this case, the same effect as when the fluorine-based gas and air or oxygen are used simultaneously can be obtained.

【0010】つぎに本発明を詳しく説明する。Next, the present invention will be described in detail.

【0011】この発明で使用されるフッ素系ガス(フッ
素化合物ガスまたはフッ素ガスを含有するガス)として
は、フッ素化合物、例えばNF3 ,BF3 ,CF4 ,S
6等のフッ素化合物ガスや、F2 ガスを含むガスがあ
げられる。通常は、このフッ素化合物ガス,F2 ガスと
それを希釈する希釈ガス(N2 ガス等)でフッ素系ガス
が構成される。これらフッ素系ガスに用いられる、フッ
素化合物ガス,F2 ガスのうち、反応性、取扱い性等の
面でNF3 が最も優れており、実用的である。上記フッ
素系ガス雰囲気下で、鋼等の被加工物を、例えばNF3
の場合、250〜600℃の温度に加熱保持し、被加工
物を表面処理した後、公知の窒化用ガス、例えばアンモ
ニアを用いて窒化処理(または浸炭窒化処理)が行われ
る。通常、上記NF3 等は、先に述べたように、窒素ガ
スで希釈されて用いられる。このようなフッ化処理にお
いて、フッ素系ガス雰囲気中のフッ素化合物またはフッ
素の濃度は、容量基準で、1000〜100000pp
m(以下同じ)である。
The fluorine-based gas (fluorine compound gas or gas containing fluorine gas) used in the present invention is a fluorine compound such as NF 3 , BF 3 , CF 4 , S.
Examples thereof include fluorine compound gas such as F 6 and gas containing F 2 gas. Usually, a fluorine-based gas is composed of the fluorine compound gas, the F 2 gas and a diluent gas (N 2 gas or the like) for diluting the F 2 gas. Among the fluorine compound gas and the F 2 gas used for these fluorine-based gases, NF 3 is the most excellent and practical in terms of reactivity, handleability and the like. Under the above fluorine-based gas atmosphere, a workpiece such as steel is treated with, for example, NF 3
In this case, after heating and holding at a temperature of 250 to 600 ° C. to surface-treat the workpiece, nitriding treatment (or carbonitriding treatment) is performed using a known nitriding gas such as ammonia. Usually, the NF 3 and the like are used after being diluted with nitrogen gas, as described above. In such a fluorination treatment, the concentration of the fluorine compound or fluorine in the fluorine-based gas atmosphere is 1000 to 100000 pp on a volume basis.
m (same below).

【0012】この発明は、上記フッ素系ガスによる作用
と、空気または酸素ガスによる作用とを組合わせたもの
であり、これが最大の特徴である。この発明では、上記
空気または酸素ガスとフッ素系ガスとの組合せについ
て、つぎの3とおりの態様がある。第1の態様は、上記
フッ素系ガス中に空気または、酸素を導入し混合する態
様である。このように、フッ素系ガスと、空気または酸
素とを混合する場合にはフッ素系ガスおよびそれに混合
される空気等との全体中に、空気が0.5〜20%含有
されるように設定される。また、酸素の場合には、上記
全体中に、酸素が0.1〜4%含有されるように設定さ
れる。第2の態様は、フッ素系ガスからなるガス雰囲気
中に鋼を加熱保持し、鋼表面にフッ化物膜を形成させる
と同時、または形成させたのち、全体(雰囲気ガスの全
体)中に、空気が0.5〜20%または、酸素が0.1
〜4%存在するように空気または酸素を、例えば窒素ガ
スまたは、NH3 ガスとの混合ガスの形で導入する態様
である。さらに、第3の態様は、上記フッ素系ガスの導
入に先立ち、空気または酸素を、窒素ガス等の不活性ガ
スと混合した混合ガスの形で炉内に導入し、この雰囲気
ガス中に鋼を加熱保持した後、上記フッ素系ガスを炉内
に導入し、鋼表面にフッ化物膜を形成させる態様があ
る。この場合フッ素系ガスの導入に先立って、炉中に導
入される空気または、酸素をその炉中の雰囲気ガス全体
中に、空気が0.5〜100%含有されるように設定さ
れる。酸素の場合には上記全体中に、酸素が0.1〜2
0%含有されるように設定される。
The present invention is a combination of the action of the above-mentioned fluorine-based gas and the action of air or oxygen gas, which is the greatest feature. In this invention, there are the following three modes for the combination of the air or oxygen gas and the fluorine-based gas. The first mode is a mode in which air or oxygen is introduced into the fluorine-based gas and mixed. As described above, when the fluorine-based gas is mixed with air or oxygen, the total amount of the fluorine-based gas and the air or the like mixed with the fluorine-based gas is set to include 0.5 to 20% of air. It Further, in the case of oxygen, it is set so that 0.1 to 4% of oxygen is contained in the above whole. In the second aspect, the steel is heated and held in a gas atmosphere composed of a fluorine-based gas to form a fluoride film on the steel surface at the same time or after the formation of the fluoride film, and then the whole (entire atmosphere gas) is exposed to air. Is 0.5 to 20% or oxygen is 0.1
This is a mode in which air or oxygen is introduced so as to be present at ˜4%, for example, in the form of a mixed gas with nitrogen gas or NH 3 gas. Furthermore, in the third aspect, prior to the introduction of the fluorine-based gas, air or oxygen is introduced into the furnace in the form of a mixed gas mixed with an inert gas such as nitrogen gas, and steel is introduced into this atmosphere gas. After heating and holding, there is a mode in which the fluorine-based gas is introduced into the furnace to form a fluoride film on the steel surface. In this case, prior to the introduction of the fluorine-based gas, the air introduced into the furnace or oxygen is set so that the entire atmosphere gas in the furnace contains 0.5 to 100% of air. In the case of oxygen, the total amount of oxygen is 0.1 to 2
It is set to contain 0%.

【0013】上記第1ないし第2の態様において、上記
空気が上記の範囲をはずれても、酸素が上記の範囲をは
ずれても、良好な効果が得られない。この場合、使用す
る空気は、通常、浄化されたもので、炭化水素類や、水
分,炭酸ガス等の不純物の含有量が低減されたものが用
いられる。また、酸素ガスは、純酸素ガスをそのまま用
いてもよいし、もしくは純酸素ガスを他のN2 等の希釈
ガスで希釈したものを用いてもよい。この場合にも、純
酸素量が、全体の0.1〜4%に相当するように設定さ
れる。
In the first and second aspects, no good effect can be obtained even if the air deviates from the above range or the oxygen deviates from the above range. In this case, the air to be used is usually purified air, which has a reduced content of hydrocarbons and impurities such as water and carbon dioxide. As the oxygen gas, pure oxygen gas may be used as it is, or pure oxygen gas diluted with another diluent gas such as N 2 may be used. Also in this case, the amount of pure oxygen is set so as to correspond to 0.1 to 4% of the whole.

【0014】上記雰囲気中での保持時間は、鋼種,ワー
クの形状寸法,加熱温度等に応じて適当な時間を選べば
よく、通常は十数分〜数十分である。
As the holding time in the atmosphere, an appropriate time may be selected depending on the type of steel, the shape and size of the work, the heating temperature, etc., and it is usually ten minutes to several tens of minutes.

【0015】本発明の方法をより具体的に説明すると、
鋼製のワークを例えば脱脂洗浄し、図1に示すような熱
処理炉1に挿入する。この炉1は、外殻2内に設けたヒ
ータ3の内側にステンレス製内容器4を入れたピット炉
で、ガス導入管5と排気管6が挿入されている。ガス導
入管5には、ボンベから流量計17,バルブ18等を経
由してガスが供給される。内部の雰囲気ガスは、モータ
7で回転するファン8によって攪拌される。ワーク10
は、金網製のコンテナ11に入れて炉内に挿入される。
図中、13は真空ポンプ、14は除害装置である。この
炉中に、ボンベからフッ素系ガス、例えばNF3 とN2
の混合ガスを導入するとともに、ボンベから空気を導入
し、所定の反応温度に加熱する。NF3 は、250〜6
00℃の温度で活性基のFを発生し、このFが表面に残
存している有機無機の異物を除去すると共に、鋼表面の
Fe,Cr素地、あるいはFeO,Fe3 4 ,Cr2
3 等の酸化物と迅速に反応して、例えば下記の式に示
すごとく、表面にFeF2,FeF3 ,CrF2 ,Cr
4 等の化合物を含むごく薄いフッ化膜が形成される。
The method of the present invention will be described more specifically.
For example, degreasing and cleaning a steel work, and heat it as shown in Fig. 1.
Insert into the processing furnace 1. This furnace 1 is equipped with a heater installed inside the outer shell 2.
Pit furnace with stainless steel inner container 4 inside
Then, the gas introduction pipe 5 and the exhaust pipe 6 are inserted. Gas guidance
Into the inlet pipe 5, a cylinder, a flow meter 17, a valve 18, etc.
Therefore, the gas is supplied. The atmosphere gas inside is the motor
It is agitated by a fan 8 rotating at 7. Work 10
Is placed in a wire mesh container 11 and inserted into the furnace.
In the figure, 13 is a vacuum pump, and 14 is an abatement device. this
Fluorine-based gas such as NF from the cylinder in the furnace3And N2
Introduce air from the cylinder while introducing the mixed gas of
And heat to a predetermined reaction temperature. NF3Is 250-6
At a temperature of 00 ° C, active group F is generated, and this F remains on the surface.
Removes existing organic and inorganic foreign substances and
Fe, Cr substrate, or FeO, Fe3OFour, Cr2
O 3Reacts rapidly with oxides such as
Just like FeF on the surface2, FeF3, CrF2, Cr
FFourA very thin fluoride film containing a compound such as is formed.

【0016】[0016]

【化1】FeO+2F → FeF2 +1/202 Embedded image FeO + 2F → FeF 2 +1/20 2

【0017】[0017]

【化2】 Cr2 3 +4F → 2CrF2 +3/202 Embedded image Cr 2 O 3 + 4F → 2CrF 2 +3/20 2

【0018】このフッ化処理反応により、ワーク表面の
酸化皮膜はフッ化膜に変換され、ワーク表面にフッ化膜
が生成する。この場合、上記雰囲気ガス中に、フッ素化
合物ガス,F2 ガスだけでなく、空気も含有されてお
り、その空気中の酸素(O2 )によって上記生成したフ
ッ化膜表面にO2 膜が生成し、フッ化膜の補強がなされ
ると考えられる。このようなO2 膜がフッ化膜を補強す
るため、次工程の窒化の際に、窒化ムラの発生が防止さ
れると同時に、窒化ムラの発生防止と相関の高い、高価
なフッ素化合物,F2 ガスの消費量を節約し、最終的に
は、窒化のコストの引下げが実現できるようになる。
By this fluorination treatment reaction, the oxide film on the surface of the work is converted into a fluoride film, and a fluoride film is formed on the work surface. In this case, the atmosphere gas contains not only fluorine compound gas and F 2 gas but also air, and oxygen (O 2 ) in the air forms an O 2 film on the surface of the formed fluoride film. However, it is considered that the fluoride film is reinforced. Since such an O 2 film reinforces the fluorinated film, it is possible to prevent uneven nitriding from occurring in the next step of nitriding, and at the same time, to use an expensive fluorine compound, F, which has a high correlation with the prevention of uneven nitriding. It will save the consumption of 2 gas and eventually reduce the cost of nitriding.

【0019】また、上記のようなフッ化処理反応は、フ
ッ素系ガスと空気,酸素とを同時に混合させる場合に限
らず、炉内において、フッ素系ガス雰囲気中に鋼を加熱
保持した後、空気または酸素ガスを導入し、雰囲気ガス
全体の0.5〜20容量%に相当する空気または、0.
1〜4容量%に相当する酸素ガスを含有するガス雰囲気
をつくりこのガス雰囲気中に鋼を加熱保持生起する。そ
して、上記同時混合と、同様の効果が得られるようにな
る。さらに、上記のようなフッ化処理反応は、フッ素系
ガスの導入に先立って、炉中に空気または、酸素を不活
性ガス等と共に導入し、雰囲気ガス全体の0.5〜10
0容量%に相当する空気、または、0.1〜20容量%
に相当する酸素ガスを含有するガス雰囲気をつくり、こ
のガス雰囲気中に鋼を加熱保持しても得られるようにな
る。
Further, the fluorination reaction as described above is not limited to the case where the fluorine-based gas is mixed with air and oxygen at the same time, and after the steel is heated and held in the fluorine-based gas atmosphere in the furnace, the Alternatively, oxygen gas is introduced, and air equivalent to 0.5 to 20% by volume of the entire atmosphere gas or 0.
A gas atmosphere containing oxygen gas corresponding to 1 to 4% by volume is created, and the steel is heated and held in this gas atmosphere. Then, the same effect can be obtained as with the above simultaneous mixing. Further, in the fluorination treatment reaction as described above, air or oxygen is introduced into the furnace together with an inert gas or the like prior to the introduction of the fluorine-based gas, and 0.5 to 10
Air equivalent to 0% by volume, or 0.1 to 20% by volume
It can be obtained by creating a gas atmosphere containing oxygen gas corresponding to and heating and holding steel in this gas atmosphere.

【0020】このようにして処理したワークは、例えば
2 雰囲気等の非酸化性雰囲気下で引続き480〜70
0℃の窒化温度に加熱され、NH3 あるいはNH3 と炭
素源を有するガス(例えばRXガス)との混合ガスを添
加すると、フッ化膜は、H2または微量の水分によっ
て、例えば下記の式のように還元あるいは破壊され、活
性な金属素地が形成されると推測される。
The workpiece treated in this manner is continuously treated under a non-oxidizing atmosphere such as N 2 atmosphere for 480-70.
When heated to a nitriding temperature of 0 ° C. and added with NH 3 or a mixed gas of NH 3 and a gas having a carbon source (for example, RX gas), the fluorinated film is heated by H 2 or a trace amount of water, for example, the following formula: It is presumed that the active metal matrix is formed by reduction or destruction as described above.

【0021】[0021]

【化3】CrF4 +2H2 → Cr+4HF[Chemical Formula 3] CrF 4 + 2H 2 → Cr + 4HF

【0022】[0022]

【化4】2FeF3 +3H2 → 2Fe+6HFEmbedded image 2FeF 3 + 3H 2 → 2Fe + 6HF

【0023】このように、活性な金属素地が形成される
と同時に活性基のNが吸着されて金属内に侵入、拡散し
てゆき、その結果、表面にCrN,Fe2 N,Fe
3 N,Fe4 N等の窒化物を含有する化合物層が形成さ
れる。
As described above, at the same time when the active metal matrix is formed, N of the active group is adsorbed and penetrates into and diffuses into the metal. As a result, CrN, Fe 2 N, Fe are formed on the surface.
A compound layer containing a nitride such as 3 N or Fe 4 N is formed.

【0024】このような化合物層が形成されるのは、従
来の窒化法でも同様であるが、従来法では、常温より窒
化温度まで昇温する間に形成される酸化皮膜や、このと
き吸着されるO2 分によって表面の活性度が低下してい
るので、Nの表面吸着の度合いが低く、不均一である。
また、このような不均一性は、NH3 の分解の度合い
を、炉内で均一に保つことが実際上困難であることによ
っても拡大されるのである。このように、この発明で
は、鋼表面に生成したフッ化膜が、O2 膜によって補強
されることから、窒化ムラの発生の防止と、高価な主成
分ガスの消費量を節約できるようになる。そして、この
ようにしてフッ化処理を行った結果、この発明では、ワ
ーク表面におけるNの吸着が均一かつ迅速に行われる。
The formation of such a compound layer is the same as in the conventional nitriding method, but in the conventional method, an oxide film formed while the temperature is raised from room temperature to the nitriding temperature, and at this time, it is adsorbed Since the surface activity is lowered by the O 2 content, the degree of N adsorption on the surface is low and the N is non-uniform.
Further, such nonuniformity is magnified by the fact that it is practically difficult to keep the degree of decomposition of NH 3 uniform in the furnace. As described above, in the present invention, since the fluoride film formed on the steel surface is reinforced by the O 2 film, it is possible to prevent the occurrence of uneven nitriding and save the consumption amount of the expensive main component gas. . Then, as a result of performing the fluorination treatment in this manner, in the present invention, the adsorption of N on the surface of the work is performed uniformly and quickly.

【0025】この本発明の操作プロセス上の大きな特徴
の一つは、フッ化膜を形成させる反応ガスとしてのNF
3 のような常温で反応性がなく、ガス状の取扱い易い物
質を用いることにより、メッキ処理や固体のPVC液体
の塩素源を用いるなどの方法に比べて処理が連続操作と
なるなどプロセスがシンプルな点にある。タフトライド
方式は、窒化層の付き廻り性や疲労強度の向上への効果
等ですぐれた方法といえるが作業環境、公害設備等への
大きな費用がかかる点で将来にひらけた方法とはいえな
い。上記プロセスでは処理廃ガスを除害化するための簡
易な装置だけで充分であり、タフトライド方式と同等以
上の付き廻り性で窒化ムラの排除が可能となるほか、タ
フトライド方式が浸窒と同時に浸炭も進行するのに比べ
て、純窒化のみも可能である。
One of the major characteristics of the operating process of the present invention is NF as a reaction gas for forming a fluoride film.
No reactivity at normal temperature, such as 3, by using a gaseous easy to handle material, simple process such as the process compared to methods such as using a chlorine source of PVC liquid plating and solid is continuous operation There is a point. The tufftride method can be said to be an excellent method in terms of the effect of improving the throwing power of the nitrided layer and the fatigue strength, but it cannot be said to be a method open to the future in that it requires a large cost for the work environment and pollution equipment. In the above process, only a simple device for detoxifying the treated waste gas is sufficient, the unevenness of nitriding can be eliminated with the throwing power equivalent to or higher than that of the tufftride method, and the tufftride method can be carburized at the same time as carburizing. However, pure nitriding is also possible.

【0026】つぎに、実施例について比較例と併せて説
明する。
Next, examples will be described together with comparative examples.

【0027】[0027]

【実施例1および比較例1〜3】SUS305系線材に
より圧造成形された「ネジ」をフロン洗浄したのち、図
1に示すような処理炉1に入れ、NF3 を40000p
pm含有し、空気を50000ppm(5容量%)含有
するN2 ガス雰囲気で320℃で15分間保持した。そ
の後580℃に加熱し、50%NH3 +50%N2 の混
合ガスを炉内に導入して3時間窒化処理を行い、しかる
のち空冷して取り出した。
After being heading formed by Example 1 and Comparative Examples 1 to 3] SUS305-based wire to "screw" washed Freon, placed in a treatment furnace 1 as shown in FIG. 1, the NF 3 40000p
It was kept at 320 ° C. for 15 minutes in an N 2 gas atmosphere containing pm and 50,000 ppm (5% by volume) of air. After that, the mixture was heated to 580 ° C., a mixed gas of 50% NH 3 + 50% N 2 was introduced into the furnace to carry out nitriding treatment for 3 hours, and then air-cooled and taken out.

【0028】得られたワークの窒化層の厚みは均一で、
その硬度は、ねじ山の部分の断面硬度がHv=350〜
360であるのに対し、全体の表面硬度はHv=120
0〜1250であった。
The nitrided layer of the obtained workpiece has a uniform thickness,
The hardness is such that the cross-sectional hardness of the thread portion is Hv = 350-
While 360, the overall surface hardness is Hv = 120
It was 0-1250.

【0029】これに対し、比較例1として、同じワーク
をフロン洗浄後上記炉に入れ、75%NH3 中で570
℃3時間加熱したが、ほとんど窒化層が形成されていな
かった。
On the other hand, as Comparative Example 1, the same work was washed with chlorofluorocarbon and put in the above-mentioned furnace, and 570 in 75% NH 3.
After heating at ℃ for 3 hours, almost no nitride layer was formed.

【0030】また、比較例2として、上記実施例1にお
いて、上記空気をこの発明の範囲である0.5〜20%
の範囲をはずれる0.4%に変えた以外は、実施例1と
同様にして処理した。この様に処理されたワークの窒化
層は不均一で、表面硬度は、Hv=480〜1250
と、大きくばらついており、実施例1よりも大幅に性能
が低下していることがわかる。
Further, as Comparative Example 2, in the above-mentioned Example 1, the air is added in an amount of 0.5 to 20%, which is within the range of the present invention.
Was treated in the same manner as in Example 1 except that the range was changed to 0.4%. The nitride layer of the workpiece thus treated is non-uniform, and the surface hardness is Hv = 480-1250.
It can be seen that there is a large variation, and the performance is significantly lower than in Example 1.

【0031】また、比較例3として、上記実施例1にお
いて、空気を本発明の上限である21%に設定した以外
は、上記実施例1と同様にして処理した。この様に処理
されたワークの窒化層も、不均一で全体の表面硬度もば
らついており、実施例1よりも大幅に性能が低下してい
ることがわかる。
As Comparative Example 3, the same treatment as in Example 1 was carried out except that in Example 1 air was set to 21%, which is the upper limit of the present invention. It can be seen that the nitrided layer of the workpiece thus treated is also non-uniform and the surface hardness of the whole also varies, and the performance is significantly lower than that of Example 1.

【0032】[0032]

【実施例2および比較例4,5】SUS305のタッピ
ングネジを、アセトン洗浄後、図1に示す炉にいれ、N
3 を35000ppm、および、O2 を7000pp
m(0.7%)含有するN2 雰囲気下で300℃15分
間保持、その後500℃に昇温し、N2 +90%H2
で30分間保持した後、20%NH3 +80%RX(メ
タン,プロパン等を空気中で不完全燃焼させてH2 Oと
CO2 を除去したもので、組成はおおむねN2 +CO
(20%)+H2 (30%)である。)にて3時間窒化
し、取り出した。このものでは、40〜50μmの窒化
層がねじ表面全体に均一に形成されていた。
Example 2 and Comparative Examples 4 and 5 After tapping the SUS305 tapping screw with acetone, put it in the furnace shown in FIG.
F 3 of 35000ppm and O 2 of 7000pp
m (0.7%)-containing N 2 atmosphere, the temperature was kept at 300 ° C. for 15 minutes, then the temperature was raised to 500 ° C., and the temperature was kept at N 2 + 90% H 2 for 30 minutes, and then 20% NH 3 + 80% RX ( H 2 O and CO 2 are removed by incomplete combustion of methane, propane, etc. in air, and the composition is roughly N 2 + CO.
(20%) + H 2 (30%). ) For 3 hours and taken out. In this case, a nitride layer of 40 to 50 μm was uniformly formed on the entire screw surface.

【0033】また、比較例4として、上記酸素の濃度を
この発明の酸素の範囲である0.1〜4%をはずれる
0.05%に変えた以外は、実施例2と同様にして処理
したが、得られたワークは窒化層の厚みが不均一で、そ
の硬度は、ねじ頭部の表面硬度がHv=430〜120
0と、大きくばらついているなど、実施例2のものより
も大幅に性能が落ちていた。
Further, as Comparative Example 4, the same treatment as in Example 2 was carried out except that the concentration of oxygen was changed to 0.05%, which was out of the range of 0.1 to 4% in the present invention. However, in the obtained work, the nitride layer has a non-uniform thickness, and the hardness is such that the surface hardness of the screw head is Hv = 430 to 120.
The performance was significantly lower than that of Example 2, such as a large variation of 0.

【0034】また、比較例5として、上記酸素の濃度を
この発明の酸素の範囲である0.1〜4%をはずれる5
%に変えた以外は、実施例2と同様にして処理したが、
得られたワークは窒化層の厚みが不均一で、その硬度
は、ねじ頭部の表面硬度がHv=430〜1150と、
大きくばらついているなど、実施例2のものよりも大幅
に性能が落ちていた。
As Comparative Example 5, the oxygen concentration deviates from the oxygen range of the present invention of 0.1 to 4%.
The treatment was performed in the same manner as in Example 2 except that the percentage was changed to
The obtained work has a non-uniform thickness of the nitrided layer, and the hardness is such that the surface hardness of the screw head is Hv = 430 to 1150.
The performance was significantly lower than that of Example 2, such as large variations.

【0035】[0035]

【実施例3および比較例6,7】強冷間伸張加工を経た
うえ、表面に強切削研磨仕上げを加えた、SUS304
のシャフトを図1に示す炉に入れ、NF3 を25000
ppm,O2 を5000ppm(0.5%)含有するN
2 雰囲気中で、320℃で10分間加熱してフッ化処理
したのち、580℃まで加熱し、50%NH3 +50%
RXの混合ガスで2時間保持して取り出した。その結
果、表面硬度Hv=1150〜1280(基材硬度Hv
=350〜420)厚さ40μmの均一な窒化層が得ら
れた。
[Example 3 and Comparative Examples 6 and 7] SUS304, which has been subjected to strong cold stretching and then subjected to strong cutting polishing finish on the surface
Put the shaft furnace shown in FIG. 1, NF 3 25,000
N containing 5000 ppm (0.5%) of ppm and O 2
2 In atmosphere, heat at 320 ° C for 10 minutes to fluorinate, then heat to 580 ° C, 50% NH 3 + 50%
The mixed gas of RX was held for 2 hours and taken out. As a result, the surface hardness Hv = 1150 to 1280 (base material hardness Hv
= 350-420) A uniform nitride layer having a thickness of 40 μm was obtained.

【0036】これに対し、比較例6として、同じ部品を
アルコール洗浄したのち、50000ppmのNF3
含有する混合ガスの下でフッ化処理したのち、実施例3
の窒化条件で処理した。また、比較例5として、NF3
の投入濃度は実施例3と同様であるが、O2 分を全く添
加せずに、580℃まで加熱し、実施例3と同様の窒化
条件で窒化処理を実施した。この結果、比較例5のNF
3 を倍増させた場合は、実施例3と同様の均一な硬化層
が形成されていたが、比較例7では、部分的に15〜2
0μmの窒化層しか形成されていないなどの窒化ムラが
生じていた。
On the other hand, in Comparative Example 6, the same parts were cleaned with alcohol and then fluorinated under a mixed gas containing 50,000 ppm of NF 3, and then, Example 3 was used.
Was treated under the nitriding conditions of. In addition, as Comparative Example 5, NF 3
The input concentration was the same as in Example 3, except that no O 2 was added at all and the mixture was heated to 580 ° C. and subjected to the nitriding treatment under the same nitriding conditions as in Example 3. As a result, NF of Comparative Example 5
When 3 was doubled, the same uniform hardened layer as in Example 3 was formed, but in Comparative Example 7, it was partially 15 to 2
There was uneven nitriding such that only a 0 μm nitride layer was formed.

【0037】[0037]

【実施例4】SKD61の鋼質材より加工した研磨サン
プルを洗浄後、図1に示す炉に入れ、NF3 45000
ppm,O2 2000ppm(0.2%)を含むN2
ス中で350℃にて60分間保持し、その後550℃に
昇温して、75%NH3 中で3時間加熱したところ、得
られた窒化層の厚さが0.15mmであった。この窒化
層には、窒化ムラが全くみられなかった。
Example 4 After washing the polished samples processed from steel quality material SKD61, a furnace shown in FIG. 1, NF 3 45000
It was obtained by holding in N 2 gas containing 2000 ppm (0.2%) of O 2 and 350 ° C. for 60 minutes, then raising the temperature to 550 ° C. and heating in 75% NH 3 for 3 hours. The thickness of the nitride layer was 0.15 mm. No uneven nitriding was observed in this nitride layer.

【0038】[0038]

【実施例5】実施例3において使用した供試材の、SU
S304のシャフトをアセトン洗浄したのち、図1に示
す炉に入れ、NF3 を50000ppm含むN2 雰囲気
中で、350℃で20分保持した。その後加熱し、45
0℃に達するまでの30分間、炉内をN2 +6%Air
(空気)の混合ガス雰囲気にした。つぎに、炉内を50
%NH3 +50%RXの窒化雰囲気ガスに切り換え、5
80℃まで昇温させ、その状態で60分保持してシャフ
トを取り出した。その結果、シャフト表面に表面硬度H
v=1150〜1250,厚さ30μmの均一な窒化硬
化層が形成されていた。
[Example 5] SU of the test material used in Example 3
After cleaning the shaft of S304 with acetone, the shaft was put into the furnace shown in FIG. 1 and held at 350 ° C. for 20 minutes in an N 2 atmosphere containing 50,000 ppm of NF 3 . Then heat, 45
N 2 + 6% Air in the furnace for 30 minutes until reaching 0 ° C.
The atmosphere was a mixed gas of (air). Next, in the furnace 50
Switch to nitriding atmosphere gas of% NH 3 + 50% RX, 5
The temperature was raised to 80 ° C., the state was maintained for 60 minutes, and the shaft was taken out. As a result, the surface hardness H on the shaft surface
A uniform nitriding hard layer with v = 1150 to 1250 and a thickness of 30 μm was formed.

【0039】[0039]

【実施例6】実施例3において使用した供試材の、SU
S304のシャフトをアセトン洗浄したのち、図1に示
す炉に入れ、炉内をN2 +6%Air(空気)の混合ガ
ス雰囲気にした。そして、その雰囲気中で、上記シャフ
トを350℃で30分間保持した。次に、炉内にNF3
を50000ppmを含むN2 ガスを導入し、このガス
雰囲気中において350℃で20分保持し、フッ化処理
した。つぎに、炉内を50%NH3 +50%RXの窒化
雰囲気ガスに切り換え、580℃まで昇温させ、その状
態で60分保持してシャフトを取り出した。その結果、
シャフト表面に、表面硬度Hv=1150〜1250,
厚さ30μmの均一な窒化硬化層が形成されていた。
[Example 6] SU of the test material used in Example 3
After cleaning the shaft of S304 with acetone, the shaft was put into the furnace shown in FIG. 1 and the inside of the furnace was made a mixed gas atmosphere of N 2 + 6% Air (air). Then, in the atmosphere, the shaft was held at 350 ° C. for 30 minutes. Next, in the furnace, NF 3
N 2 gas containing 50000 ppm was introduced, and this was held at 350 ° C. for 20 minutes in this gas atmosphere for fluorination treatment. Next, the inside of the furnace was switched to a nitriding atmosphere gas of 50% NH 3 + 50% RX, the temperature was raised to 580 ° C., the state was maintained for 60 minutes, and the shaft was taken out. as a result,
Surface hardness Hv = 1150-1250 on the shaft surface,
A uniform nitriding / hardening layer having a thickness of 30 μm was formed.

【0040】[0040]

【発明の効果】以上のように本発明の鋼の窒化方法は、
窒化処理に先立ち、フッ素系ガスと空気または、酸素
との混合ガス中で、鋼を加熱処理してフッ化処理する
か、フッ素ガス雰囲気中に鋼を加熱処理した後、空気
または、酸素を導入してフッ化処理するか、フッ素系
ガスの導入に先立ち、空気または、酸素をN2 等の不活
性ガスと共に炉内に導入して鋼を加熱保持した後、フッ
素系ガスを導入してそのガス雰囲気中に鋼を加熱保持す
る。その結果、活性化したフッ素原子が鋼表面に作用
し、鋼表面の無機・有機物の汚染物質を除去するととも
に、表面の酸化皮膜をフッ化物膜に代えて、鋼の表面
層にフッ化物膜を形成して保護し、ついで窒化処理の
際にフッ化物膜が除去され、活性化された鋼素地が生成
するために、窒化の際に窒素が活性化された鋼素地表面
に、迅速かつ均一に浸透拡散し、良好な窒化層が形成さ
れるというフッ素化合物ガス等の効果が、上記空気,酸
素ガスによって助長されるようになる。すなわち、この
発明では、フッ化処理に際にして、フッ素系ガスと空気
または、酸素とを組合わせて用いる。そのため、生成フ
ッ化膜がO2 膜によって補強され、窒化処理の際の窒化
ムラの発生防止がなされると同時に、窒化ムラの防止と
相関の深い高価なフッ素系ガスの消費量の節約を実現で
き、最終的に窒化処理のコストの大幅な実現を可能にす
る。このため、広範囲な鋼に対して、安価な窒化層の形
成が実現できるようになる。また、この発明は、鋼種、
加工段階、前処理状態等の如何にかかわらず、良好な窒
化層を得ることができ、穴やスリットを有する部品でも
窒化が可能である。さらに、オーステナイト系ステンレ
ス鋼や各種耐熱鋼のような窒化困難な鋼種に対しても、
容易に窒化できる等の利点がある。
As described above, the method for nitriding steel according to the present invention is
Prior to nitriding treatment, steel is heat-treated in a mixed gas of fluorine-based gas and air or oxygen to fluorinate, or steel is heat-treated in a fluorine gas atmosphere and then air or oxygen is introduced. Fluorination treatment, or before introducing the fluorine-based gas, air or oxygen is introduced into the furnace together with an inert gas such as N 2 to heat and hold the steel, and then the fluorine-based gas is introduced. The steel is heated and held in a gas atmosphere. As a result, activated fluorine atoms act on the steel surface to remove contaminants of inorganic and organic substances on the steel surface, replace the oxide film on the surface with a fluoride film, and form a fluoride film on the steel surface layer. It forms and protects, then the fluoride film is removed during the nitriding process and an activated steel matrix is produced, so that the surface of the nitrogen-activated steel matrix during nitriding is rapidly and uniformly applied. The effect of the fluorine compound gas or the like, which penetrates and diffuses to form a favorable nitride layer, is promoted by the air and oxygen gas. That is, in the present invention, a fluorine-based gas and air or oxygen are used in combination during the fluorination treatment. Therefore, the generated fluoride film is reinforced by the O 2 film to prevent uneven nitriding from occurring during the nitriding treatment, and at the same time, to save consumption of expensive fluorine-based gas that is closely related to the prevention of uneven nitriding. In the end, the cost of the nitriding treatment can be greatly realized. Therefore, it becomes possible to form an inexpensive nitride layer on a wide range of steels. In addition, this invention is a steel type,
Regardless of the processing stage, the pretreatment state, etc., a good nitride layer can be obtained, and nitriding is possible even for parts having holes or slits. Furthermore, even for steel types that are difficult to nitride such as austenitic stainless steel and various heat resistant steels,
There are advantages such as easy nitriding.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明で用いる処理炉の1例を表す断面図であ
る。
FIG. 1 is a sectional view showing an example of a processing furnace used in the present invention.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 鋼の表面に窒素を反応させて硬質の窒化
層を形成する鋼の窒化方法であって、窒化に先立ち、下
記(A),(B)または(C)のフッ化処理を行うこと
を特徴とする鋼の窒化方法。 (A) フッ素化合物ガスもしくはフッ素ガスを含むガ
ス雰囲気であって、全体の0.5〜20容量%に相当す
る空気または0.1〜4容量%に相当する酸素ガスを含
有するガス雰囲気中に、鋼を加熱保持する。 (B) フッ素化合物ガスもしくはフッ素ガスを含むガ
ス雰囲気中に鋼を加熱保持したのち、全体の0.5〜2
0容量%に相当する空気または0.1〜4容量%に相当
する酸素ガスを含有するガス雰囲気中に鋼を加熱保持す
る。 (C) 全体の0.5〜100容量%に相当する空気ま
たは0.1〜20容量に相当する酸素ガスを含有するガ
ス雰囲気中に鋼を加熱保持したのち、フッ素化合物ガス
もしくはフッ素ガスを含むガス雰囲気中に鋼を加熱保持
する。
1. A method for nitriding steel in which a hard nitriding layer is formed by reacting nitrogen on the surface of steel, which comprises the following fluorination treatment (A), (B) or (C) prior to nitriding. A method for nitriding steel, which comprises performing. (A) In a gas atmosphere containing a fluorine compound gas or a fluorine gas, the gas atmosphere containing 0.5 to 20% by volume of air or 0.1 to 4% by volume of oxygen gas. , Keep the steel heated. (B) After heating and holding the steel in a gas atmosphere containing a fluorine compound gas or a fluorine gas, 0.5 to 2 of the whole
The steel is heated and held in a gas atmosphere containing air corresponding to 0% by volume or oxygen gas corresponding to 0.1 to 4% by volume. (C) After heating and holding the steel in a gas atmosphere containing 0.5 to 100% by volume of air or 0.1 to 20% by volume of oxygen gas, a fluorine compound gas or a fluorine gas is included. The steel is heated and held in a gas atmosphere.
JP12678395A 1994-11-18 1995-05-25 Steel nitriding method Expired - Fee Related JP3428776B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP12678395A JP3428776B2 (en) 1994-11-18 1995-05-25 Steel nitriding method
CN96110008A CN1106454C (en) 1995-05-25 1996-05-16 Nitrizing for steel
US08/648,852 US5650022A (en) 1995-05-25 1996-05-16 Method of nitriding steel
TW085105835A TW387943B (en) 1995-05-25 1996-05-17 Method of nitriding steel
DE69619725T DE69619725T2 (en) 1995-05-25 1996-05-17 Process for nitriding steel
KR1019960017168A KR960041404A (en) 1995-05-25 1996-05-17 Nitriding method of steel
EP96303542A EP0744471B1 (en) 1995-05-25 1996-05-17 Method of nitriding steel

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP28500094 1994-11-18
JP6-285000 1994-11-18
JP12678395A JP3428776B2 (en) 1994-11-18 1995-05-25 Steel nitriding method

Publications (2)

Publication Number Publication Date
JPH08193256A true JPH08193256A (en) 1996-07-30
JP3428776B2 JP3428776B2 (en) 2003-07-22

Family

ID=26462909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12678395A Expired - Fee Related JP3428776B2 (en) 1994-11-18 1995-05-25 Steel nitriding method

Country Status (1)

Country Link
JP (1) JP3428776B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010265487A (en) * 2009-05-12 2010-11-25 Minebea Co Ltd Martensitic stainless steel and rolling bearing

Also Published As

Publication number Publication date
JP3428776B2 (en) 2003-07-22

Similar Documents

Publication Publication Date Title
KR930003031B1 (en) Method of nitriding steel
JP2501925B2 (en) Pretreatment method for metal materials
JP3161644B2 (en) Method of nitriding austenitic stainless steel products
KR100858598B1 (en) Method for activating surface of metal member
US5254181A (en) Method of nitriding steel utilizing fluoriding
US20070157997A1 (en) Method for surface treatment of metal material
EP0744471B1 (en) Method of nitriding steel
JP2633076B2 (en) Hard austenitic stainless steel screw and its manufacturing method
CN1032375C (en) Steel nitriding method
JPH09302456A (en) High corrosion resistant metallic product and its production
JP3428776B2 (en) Steel nitriding method
JP2881111B2 (en) Steel nitriding method
US5419948A (en) Hard austenitic stainless steel screw and a method for manufacturing the same
JP4921149B2 (en) Metal nitriding method
JP3005952B2 (en) Method for carburizing austenitic metal and austenitic metal product obtained by the method
US5460875A (en) Hard austenitic stainless steel screw and a method for manufacturing the same
JP3396336B2 (en) Method of nitriding steel
JP3005953B2 (en) Steel nitriding method
US5382318A (en) Hard austenitic stainless steel screw and a method for manufacturing the same
AU648081B2 (en) Method of nitriding steel
JP2918716B2 (en) Method of nitriding steel
JP2001098355A (en) Method for nitriding metallic material
CA2043872C (en) Method of nitriding steel
KR100213404B1 (en) Stainless screw and its manufacturing method
JPH06228732A (en) Method for nitriding austenitic stainless steel product

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030422

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090516

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090516

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100516

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120516

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130516

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140516

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees