JPH08193251A - Powdery material of nonmagnetic stainless steel - Google Patents

Powdery material of nonmagnetic stainless steel

Info

Publication number
JPH08193251A
JPH08193251A JP401895A JP401895A JPH08193251A JP H08193251 A JPH08193251 A JP H08193251A JP 401895 A JP401895 A JP 401895A JP 401895 A JP401895 A JP 401895A JP H08193251 A JPH08193251 A JP H08193251A
Authority
JP
Japan
Prior art keywords
stainless steel
less
steel
corrosion resistance
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP401895A
Other languages
Japanese (ja)
Inventor
Yoshihisa Kato
喜久 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP401895A priority Critical patent/JPH08193251A/en
Publication of JPH08193251A publication Critical patent/JPH08193251A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To obtain a fine powdery material of a nonmagnetic economical austenitic stainless steel having satisfactory corrosion resistance. CONSTITUTION: An austenitic stainless steel consist.ing of, by weight, 0.17-0.4% C, 8-13% Ni, 16-26% Cr, <=0.10% P and <=0.10% S as alloying elements and the balance Fe with an element added for deoxidation and inevitable impurities is water- or gas-atomized to obtain the object fine powder having <=100μm, preferably <=50μm particle diameter. The stainless steel may further contain 1-6wt.% Mo. The steel is nonmagnetic as atomized, has satisfactory corrosion resistance and is economical.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、金属微粉末と合成樹脂
材料等を混合して成形する複合材料、低融点金属焼結複
合材料等の非磁性骨材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-magnetic aggregate such as a composite material formed by mixing fine metal powder and a synthetic resin material, and a low melting metal sintered composite material.

【0002】[0002]

【従来の技術】導電性樹脂材料や電磁遮蔽用樹脂材料な
ど金属微粉末と合成樹脂を混合成形してなる複合材料の
骨材として非磁性で耐食性がよいオーステナイト系ステ
ンレス鋼の微粉末が注目されている。また、オーステナ
イト系ステンレス鋼の微粉末は低融点金属焼結複合材料
等の非磁性骨材としても有用と考えられる。
2. Description of the Related Art Fine powder of austenitic stainless steel, which is non-magnetic and has excellent corrosion resistance, has been attracting attention as an aggregate of a composite material obtained by mixing and molding fine metal powder such as conductive resin material and resin material for electromagnetic shielding and synthetic resin. ing. Further, it is considered that the fine powder of austenitic stainless steel is also useful as a non-magnetic aggregate such as a low melting point metal sintered composite material.

【0003】従来、磁気を嫌う用途に、しばしばSUS
304、SUS316等のオーステナイト系ステンレス
鋼鋼材が用いられているが、これらの鋼は、高温から急
冷されてδ−フェライトが多く形成されたり、強い塑性
加工を受けたりすると着磁するので、通常、1000〜
1150℃の加熱による溶体化処理によって金属組織を
整え、加工ひずみを除去して磁気を帯び難い(非磁性)
状態として用いられている。
[0003] Conventionally, SUS is often used for applications where magnetism is disliked.
Although 304, SUS316, and other austenitic stainless steel materials are used, these steels are usually magnetized when rapidly cooled from high temperature to form a large amount of δ-ferrite, or when subjected to strong plastic working. 1000 ~
It is difficult to be magnetized by aligning the metal structure by solution treatment by heating at 1150 ° C and removing processing strain (non-magnetic)
It is used as a state.

【0004】SUS304あるいはSUS316相当鋼
の微粉末は水噴霧法、ガス噴霧法あるいは遠心噴霧法な
ど、いずれも、溶湯から直接微粉末化されるので、粉末
状態では磁性を帯びることが避けられない。これらの微
粉末を焼結体として用いる場合には、焼結後に溶体化処
理を行うことによって非磁性化することができる。しか
し、微粉末のままの状態で溶体化処理を行うと微粉末は
焼結してしまうという問題があり、経済的な方法で非磁
性ステンレス鋼粉末を得ることはできなかった。
The fine powder of SUS304 or SUS316 equivalent steel is pulverized directly from the molten metal by any of the water atomizing method, the gas atomizing method, the centrifugal atomizing method and the like, so that magnetism is inevitable in the powder state. When these fine powders are used as a sintered body, they can be made non-magnetic by performing solution treatment after sintering. However, if the solution treatment is performed in the state of the fine powder, the fine powder has a problem of sintering, and it has been impossible to obtain the non-magnetic stainless steel powder by an economical method.

【0005】[0005]

【発明が解決しようとする課題】本発明は以上の現状を
背景としてなされたもので、その目的とするところは、
非磁性で耐食性がよい経済的なオーステナイト系ステン
レス鋼の微粉末材料を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made against the background of the above circumstances, and its purpose is to:
An object of the present invention is to provide an economical austenitic stainless steel fine powder material that is non-magnetic and has good corrosion resistance.

【0006】[0006]

【課題を解決するための手段】上記の課題を解決するた
めに、本発明の非磁性ステンレス鋼粉末材料は、 (1)合金元素の含有率が、C :0.17〜0.4w
t%、Ni:8〜13wt%、Cr:16〜26wt
%、P :0.10wt%以下、S :0.10wt%
以下であって、残部がFe、脱酸のために添加する元素
および不可避的不純物からなり、粒径100μm以下で
あることを特徴とする。 (2)前記合金元素に加えて、Mo:1〜6wt%を含
有することを特徴とする。 (3)(1)または(2)において粒径が50μm以下
であることを特徴とする。
In order to solve the above-mentioned problems, the non-magnetic stainless steel powder material of the present invention has (1) an alloy element content ratio of C: 0.17 to 0.4 w.
t%, Ni: 8 to 13 wt%, Cr: 16 to 26 wt
%, P: 0.10 wt% or less, S: 0.10 wt%
The following is characterized in that the balance consists of Fe, an element added for deoxidation and inevitable impurities, and has a particle size of 100 μm or less. (2) It is characterized in that Mo: 1 to 6 wt% is contained in addition to the alloy elements. (3) In (1) or (2), the particle size is 50 μm or less.

【0007】次に本発明における非磁性ステンレス鋼粉
末材料の成分限定理由を説明する。 C:0.17〜0.4wt% Cは鋼の凝固時におけるδ−フェライトの生成を抑制す
る元素であり、また、マルテンサイト変態点を低下させ
ることによってオーステナイトを安定化する元素であっ
て、本発明のステンレス鋼粉末材料を非磁性化するため
に重要な役割を果す。これらの効果を発揮するために
は、0.17wt%以上のCを含有させる必要がある。
しかし過剰に含有させると、Cr、Moと化合して多量
の炭化物を形成して、地鉄中のCr、Moの濃度を低下
させ、鋼の耐食性を損うので、C含有率の上限は0.4
wt%とする。
Next, the reasons for limiting the components of the non-magnetic stainless steel powder material in the present invention will be explained. C: 0.17 to 0.4 wt% C is an element that suppresses the formation of δ-ferrite during solidification of steel, and is an element that stabilizes austenite by lowering the martensite transformation point, It plays an important role in demagnetizing the stainless steel powder material of the present invention. In order to exert these effects, it is necessary to contain 0.17 wt% or more of C.
However, if it is contained excessively, it combines with Cr and Mo to form a large amount of carbides, lowers the concentration of Cr and Mo in the base iron, and impairs the corrosion resistance of steel, so the upper limit of the C content is 0. .4
wt%.

【0008】Ni:8〜13wt% Niは鋼のオーステナイトを安定化するとともに耐食性
を増す元素であり、これらの効果を発揮するためには8
wt%以上のNiを含有させる必要がある。しかし過剰
に含有させてもその効果は飽和し、徒に鋼のコストを高
めるだけなので、Ni含有率の上限は13wt%とす
る。
Ni: 8 to 13 wt% Ni is an element that stabilizes austenite of steel and increases corrosion resistance, and in order to exert these effects, it is 8
It is necessary to contain wt% or more of Ni. However, even if it is contained excessively, the effect is saturated and only the cost of steel is increased, so the upper limit of the Ni content is set to 13 wt%.

【0009】Cr:16〜26wt% Crは鋼に耐食性を付与する元素であり、含有率が16
wt%未満では耐食性は不十分である。しかし、Cr含
有率が26wt%を越えるとこの効果は飽和するので、
上限を26wt%とする。 P:0.10wt%以下 Pはオーステナイト鋼に適量が加えられるとその強度を
増すが、過剰に添加されれば硬脆なりん化物を形成して
鋼の機械的性質を損うので、含有率を0.10wt%以
下に制限する。
Cr: 16 to 26 wt% Cr is an element that imparts corrosion resistance to steel, and its content is 16
If it is less than wt%, the corrosion resistance is insufficient. However, when the Cr content exceeds 26 wt%, this effect saturates.
The upper limit is 26 wt%. P: 0.10 wt% or less P increases its strength when an appropriate amount is added to austenitic steel, but if added in excess, it forms a hard brittle nitride and impairs the mechanical properties of the steel. Is limited to 0.10 wt% or less.

【0010】S:0.10wt%以下 SはFeと化合物を作って鋼を脆くし、Mnと結合して
高融点の非金属介在物を形成して鋼の清浄度を損う。ま
た、Moと化合物を形成して鋼中の固溶Mo量を減じる
ので、Sの含有率は0.1wt%以下に制限する。 Mo:1〜6wt% Moは鋼の耐食性、特に硫酸イオンに対する耐食性を増
す元素で、その効果を表すのには少なくとも1wt%以
上の含有率が必要である。しかし過剰に含有させてもそ
の効果は飽和し、徒に鋼のコストを高めるだけなので、
Mo含有率の上限は6wt%とする。
S: 0.10 wt% or less S forms a compound with Fe to make the steel brittle, and combines with Mn to form a non-metallic inclusion having a high melting point and impair the cleanliness of the steel. Further, since a compound is formed with Mo to reduce the amount of solid solution Mo in the steel, the S content is limited to 0.1 wt% or less. Mo: 1 to 6 wt% Mo is an element that increases the corrosion resistance of steel, particularly the corrosion resistance to sulfate ions, and a content ratio of at least 1 wt% or more is necessary to exhibit its effect. However, even if added too much, the effect will be saturated and it will only increase the cost of steel, so
The upper limit of Mo content is 6 wt%.

【0011】その他、鋼の脱酸元素として0.3wt%
以下のMn、1.5wt%以下のSiおよび0.05w
t%以下のAlを含有してもよい。本発明の非磁性ステ
ンレス鋼粉末材料は、水噴霧法あるいはガス噴霧法によ
って、溶鋼から一気に微細化され急冷されて微粉末に成
形される。このとき、噴霧によって形成される粒径が大
きすぎれば粉末成形時の冷却が緩やかとなり、非磁性化
が十分でなくなる。それゆえ、本発明の非磁性ステンレ
ス鋼粉末材料においては粉末の粒径を100μm以下、
好ましくは50μm以下とする。
In addition, 0.3 wt% as a deoxidizing element of steel
The following Mn, 1.5 wt% or less Si and 0.05 w
You may contain t% or less of Al. The non-magnetic stainless steel powder material of the present invention is instantly atomized from molten steel by a water atomization method or a gas atomization method and rapidly cooled to form a fine powder. At this time, if the particle size formed by spraying is too large, the cooling at the time of powder molding becomes slow, and demagnetization becomes insufficient. Therefore, in the non-magnetic stainless steel powder material of the present invention, the particle size of the powder is 100 μm or less,
The thickness is preferably 50 μm or less.

【0012】[0012]

【実施例】以下、本発明の実施例を具体的に説明する。
表1に示す化学組成を有する合金粉末を水噴霧法または
ガス噴霧法によって製造した。これらの合金粉末の諸特
性を表2に示す。
EXAMPLES Examples of the present invention will be specifically described below.
Alloy powders having the chemical compositions shown in Table 1 were produced by a water atomization method or a gas atomization method. Table 2 shows various properties of these alloy powders.

【0013】[0013]

【表1】 [Table 1]

【0014】[0014]

【表2】 [Table 2]

【0015】磁性は次のようにして試験した。紙の上に
適量の合金粉末を置き、紙の下に磁束密度12kGの磁
石を当て、紙面に沿って磁石を移動したとき、紙の上の
合金粉末が動磁石の移動に伴って移動すればその合金粉
末は磁化するものとし、動かなければ磁化しないものと
した。本発明の実施例はいずれも磁化しなかった。C、
Ni、Cr含有率の少ない比較例1は磁化した。また、
合金組成は実施例1と同じであるが粉末粒径の大きい比
較例3は磁化した。
The magnetism was tested as follows. If an appropriate amount of alloy powder is placed on paper, a magnet with a magnetic flux density of 12 kG is applied under the paper, and the magnet is moved along the paper surface, if the alloy powder on the paper moves with the movement of the moving magnet, The alloy powder shall be magnetized, and shall not be magnetized unless it moves. None of the examples of the invention magnetized. C,
Comparative Example 1 having a low Ni and Cr content was magnetized. Also,
The alloy composition was the same as that of Example 1, but Comparative Example 3 having a large powder particle size was magnetized.

【0016】耐食性試験は次のようにして行った。合金
粉末試料2gを脱脂洗浄後、80℃の純水100ml中
に投入して170時間保持したときの溶出鉄分の量を定
量分析(ICP発光分光分析)した。表2において、耐
食性の判定は、SUS316LのFe溶出量を1とし
て、試料のFe溶出量が1以下の場合を◎、1を超えて
10未満の場合を○、10以上15未満の場合を△、1
5を超える場合を×とした。表2より、合金組成が本発
明の範囲を外れる比較例1および比較例2では耐食性が
劣ることが判る。
The corrosion resistance test was conducted as follows. After 2 g of the alloy powder sample was degreased and washed, it was put into 100 ml of pure water at 80 ° C. and held for 170 hours to quantitatively analyze the amount of eluted iron (ICP emission spectroscopy). In Table 2, the corrosion resistance was determined by setting the Fe elution amount of SUS316L to 1, ∘ when the Fe elution amount of the sample was 1 or less, ◯ when it was more than 1 and less than 10, and Δ when 10 or more and less than 15 1
The case where it exceeded 5 was marked with x. From Table 2, it is understood that the corrosion resistance is inferior in Comparative Examples 1 and 2 in which the alloy composition is out of the range of the present invention.

【0017】[0017]

【発明の効果】以上説明したように、本発明によって非
磁性で耐食性がよく、かつ、経済的な非磁性ステンレス
鋼粉末材料が得られる。本発明は導電性樹脂材料や電磁
遮蔽用樹脂材料など金属微粉末と合成樹脂を混合成形し
てなる複合材料の骨材として、また、低融点金属焼結複
合材料等の非磁性骨材などとして有用な材料を提供する
ものといえる。
As described above, according to the present invention, a non-magnetic stainless steel powder material which is non-magnetic, has good corrosion resistance, and is economical can be obtained. INDUSTRIAL APPLICABILITY The present invention is an aggregate of a composite material obtained by mixing and molding a fine metal powder and a synthetic resin such as a conductive resin material or a resin material for electromagnetic shielding, and a non-magnetic aggregate such as a low melting point metal sintered composite material. It can be said to provide a useful material.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 合金元素の含有率が、 C :0.17〜0.4wt%、 Ni:8〜13wt%、 Cr:16〜26wt%、 P :0.10wt%以下、 S :0.10wt%以下であって、残部がFe、脱酸
のために添加する元素および不可避的不純物からなり、
粒径100μm以下であることを特徴とする非磁性ステ
ンレス鋼粉末材料。
1. The content of alloying elements is C: 0.17 to 0.4 wt%, Ni: 8 to 13 wt%, Cr: 16 to 26 wt%, P: 0.10 wt% or less, S: 0.10 wt%. % Or less, the balance consisting of Fe, elements added for deoxidation and inevitable impurities,
A non-magnetic stainless steel powder material having a particle size of 100 μm or less.
【請求項2】 前記合金元素に加えて、Mo:1〜6w
t%を含有することを特徴とする請求項1記載の非磁性
ステンレス鋼粉末材料。
2. In addition to the alloy elements, Mo: 1-6w
The non-magnetic stainless steel powder material according to claim 1, characterized in that it contains t%.
【請求項3】 前記粒径が50μm以下であることを特
徴とする請求項1または請求項2記載の非磁性ステンレ
ス鋼粉末材料。
3. The non-magnetic stainless steel powder material according to claim 1 or 2, wherein the particle size is 50 μm or less.
JP401895A 1995-01-13 1995-01-13 Powdery material of nonmagnetic stainless steel Pending JPH08193251A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP401895A JPH08193251A (en) 1995-01-13 1995-01-13 Powdery material of nonmagnetic stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP401895A JPH08193251A (en) 1995-01-13 1995-01-13 Powdery material of nonmagnetic stainless steel

Publications (1)

Publication Number Publication Date
JPH08193251A true JPH08193251A (en) 1996-07-30

Family

ID=11573241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP401895A Pending JPH08193251A (en) 1995-01-13 1995-01-13 Powdery material of nonmagnetic stainless steel

Country Status (1)

Country Link
JP (1) JPH08193251A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002508807A (en) * 1997-06-17 2002-03-19 ホガナス アクチボラゲット Stainless steel powder
JP2017507251A (en) * 2014-01-27 2017-03-16 ロバルマ, ソシエダッド アノニマRovalma, S.A. Centrifugal spraying of iron alloys

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002508807A (en) * 1997-06-17 2002-03-19 ホガナス アクチボラゲット Stainless steel powder
JP2010196171A (en) * 1997-06-17 2010-09-09 Hoganas Ab Stainless steel powder
JP2017507251A (en) * 2014-01-27 2017-03-16 ロバルマ, ソシエダッド アノニマRovalma, S.A. Centrifugal spraying of iron alloys

Similar Documents

Publication Publication Date Title
JP6093405B2 (en) Nitrogen-containing low nickel sintered stainless steel
Yang et al. Influence of Mn additions on the microstructure and magnetic properties of FeNiCr/60% WC composite coating produced by laser cladding
JP4327214B2 (en) Sintered soft magnetic powder compact
JP6227871B2 (en) Master alloy for producing sintered hardened steel parts and process for producing sintered hardened parts
Wang et al. Effect of silicon content and aging time on density, hardness, toughness and corrosion resistance of sintered 303LSC–Si stainless steels
JPS61238943A (en) High-strength non-magnetic steel excelling in rust resistance
JPH08193251A (en) Powdery material of nonmagnetic stainless steel
Lozada et al. Controlled densification of boron-containing stainless steels
US4601876A (en) Sintered Fe-Cr-Co type magnetic alloy and method for producing article made thereof
JP2018127647A (en) Soft magnetism flat powder
CN109097679B (en) Marine low-magnetic steel and preparation method thereof
JPS625984B2 (en)
KR880000767B1 (en) Non-magnetic alloy of high hardness
JPS62136557A (en) High strength nonmagnetic steel having rust resistance
CN109338242B (en) Corrosion-resistant soft magnetic amorphous steel
JP6998431B2 (en) Co-based alloy for soft magnetic layer of magnetic recording medium
JPS61261463A (en) Work hardening-type nonmagnetic stainless steel
JP6784733B2 (en) Co-based alloy for soft magnetic layer of magnetic recording medium
JPS61147846A (en) High permeability &#39;pb permalloy(r)&#39;
Hamataka et al. Corrosion properties of the Fe-Cr-based soft magnetic alloys fabricated by metal injection molding
JP2009084695A (en) Sintered soft magnetism powder compact
JPH0772302B2 (en) Manufacturing method of steel bar for magnetic scale
JP2021169652A (en) Iron alloy for projection material
JPH10335127A (en) Alloy powder
Huth et al. Powder Manufacturing & Processing: Diffusion Alloying-A New Manufacturing Method for PM Tool Steels