JPH0772302B2 - Manufacturing method of steel bar for magnetic scale - Google Patents

Manufacturing method of steel bar for magnetic scale

Info

Publication number
JPH0772302B2
JPH0772302B2 JP25253286A JP25253286A JPH0772302B2 JP H0772302 B2 JPH0772302 B2 JP H0772302B2 JP 25253286 A JP25253286 A JP 25253286A JP 25253286 A JP25253286 A JP 25253286A JP H0772302 B2 JPH0772302 B2 JP H0772302B2
Authority
JP
Japan
Prior art keywords
weight
flux density
magnetic
solution
magnetic flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP25253286A
Other languages
Japanese (ja)
Other versions
JPS63105952A (en
Inventor
孝 塚本
忠三 須藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP25253286A priority Critical patent/JPH0772302B2/en
Publication of JPS63105952A publication Critical patent/JPS63105952A/en
Publication of JPH0772302B2 publication Critical patent/JPH0772302B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • C21D8/065Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Heat Treatment Of Articles (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はメカトロニクス分野で用いられる磁気目盛用の
鋼棒を製造する方法の改良に関するものである。
TECHNICAL FIELD The present invention relates to an improvement in a method for manufacturing a steel rod for a magnetic scale used in the field of mechatronics.

(従来の技術及びその問題点) 近年メカトロニクスの発展に伴い、位置検出機構として
第10図に示すような磁気目盛が使用される様になってき
たが従来は18Cr−7Ni系の鋼棒が使用されていた。な
お、第10図中1は母材部、2は溶体化(非磁性)部、3
は位置検出センサーを示す。
(Prior art and its problems) With the development of mechatronics in recent years, a magnetic scale as shown in Fig. 10 has come to be used as a position detection mechanism, but conventionally a 18Cr-7Ni steel bar was used. It had been. In FIG. 10, 1 is a base metal part, 2 is a solution-ized (non-magnetic) part, 3
Indicates a position detection sensor.

しかしながら前記18Cr−7Ni系のものは溶体化状態での
非磁性が不十分な場合があり、特に加工誘起磁性を高め
るためにNiを低目調整した場合はこの傾向が顕著になる
欠点があった。
However, the above 18Cr-7Ni system may have insufficient non-magnetism in the solution state, and this tendency becomes remarkable especially when Ni is adjusted to a low level in order to enhance the process-induced magnetism. .

また、High−Ni系のものはコスト的に不利であるためNi
をMnで置き替えたMn−Cr系の使用が検討されたがHighMn
−HighCr系のものでは、溶体化時にδフェライトが発生
して非磁性が保たれず、またεマルテンサイトが発生す
るため加工誘起による強磁性化特性が不足する等の欠点
を有するため実用化が阻害されていた。
In addition, since the High-Ni type is disadvantageous in terms of cost,
The use of Mn-Cr system in which
-HighCr-based ones have drawbacks such as δ-ferrite being generated during solution treatment and non-magnetism cannot be maintained, and ε-martensite is generated, resulting in lack of processing-induced ferromagnetization properties. It was hindered.

すなわち、磁気目盛用材料は、溶体化状態での非磁性確
保、冷間伸線加工による強磁性化の2つの要求を満たす
ものでなければならなず、また組織的にはδフェライ
ト、εマルテンサイトの発生を押え冷間加工によるα′
マルテンサイトの生成を促進するものでなければならな
いのである。
That is, the magnetic grading material must meet the two requirements of ensuring non-magnetism in the solution state and ferromagnetization by cold drawing, and structurally δ ferrite and ε martens Holds the occurrence of the site and α'by cold working
It must promote the production of martensite.

一方、本発明者らの実験研究によりMn、Cr、C、Nの成
分比を変えることでこれらの諸特性が変化する事が判明
した。
On the other hand, it has been found by experiments conducted by the present inventors that these characteristics are changed by changing the composition ratio of Mn, Cr, C and N.

すなわち、本発明は前記諸要求を満足し、コストダウン
と磁気目盛特性の改善を図り得るMn−Cr系の磁気目盛用
鋼棒の製造方法を提供せんとするものである。
That is, the present invention provides a method of manufacturing a steel rod for magnetic grading of Mn-Cr system which can satisfy the above-mentioned requirements, reduce cost and improve magnetic grading characteristics.

(問題点を解決するための手段) 前記第10図に示される如き代表的な磁気目盛部の具備す
べき特性としては、 母材部は強磁性体で、少くとも5000G以上の飽和磁束
密度を有すること。
(Means for Solving Problems) As a characteristic that a typical magnetic scale portion as shown in FIG. 10 should have, a base material portion is a ferromagnetic material and a saturation magnetic flux density of at least 5000 G or more is required. To have.

溶体化部は非磁性体であり透磁率1.02以下であるこ
と。
The solution-treated part must be non-magnetic and have a magnetic permeability of 1.02 or less.

母材は構造部材としての役目を果たしており特に使用
中の繰り返し衝撃に耐えるため延性、耐衝撃性を有する
こと(RA≧30%)。
The base material plays a role as a structural member and has ductility and impact resistance (RA ≧ 30%) in order to withstand repeated impact during use.

構造部材として使用できる様、低合金鋼レベルのコス
トであること。
Low alloy steel cost so that it can be used as a structural member.

が必要である。is necessary.

本発明者らはこれらの要求を満す鋼棒を成分元素の調整
及び加工条件の選定により実現すべく、種々の実験研究
を試みた。
The present inventors tried various experimental studies in order to realize a steel rod satisfying these requirements by adjusting constituent elements and selecting processing conditions.

一般に、一種の成分系を有する鋼棒の強磁性と非磁性の
相反する特性を要求することは困難である。しかしなが
ら18−8ステンレスに代表される不安定オーステナイト
鋼にみられる様に溶体化状態で非磁性を有し、冷間加工
後は強磁性を具備させることは困難であり、この特性を
利用すれば、冷間加工により強磁性化した後、レーザー
照射等の方法により局部的に再溶体化して当該箇所のみ
を非磁性化することで前記の諸要求を実現することが可
能である。
Generally, it is difficult to request the contradictory properties of ferromagnetism and non-magnetism of a steel rod having one kind of component system. However, it is difficult to have ferromagnetism in the solution state as seen in unstable austenitic steels represented by 18-8 stainless steel, and it is difficult to have ferromagnetism after cold working. It is possible to realize the above-described requirements by making the material ferromagnetic by cold working and then locally re-solutionizing it by a method such as laser irradiation to demagnetize only that portion.

しかして、この様な特性を有する可能性のあるものとし
ては、Cr−Ni系の不安定オーステナイト鋼が考えられ18
Cr−7Niの成分系の実用化が既に検討されたのである
が、当該成分系では、 汎用される低合金鋼に比べ、コスト高である。
Therefore, Cr-Ni-based unstable austenitic steel is considered to have the potential to have such properties.
Although the practical application of the Cr-7Ni component system has already been examined, the cost of this component system is higher than that of commonly used low alloy steel.

溶体化状態での非磁性が不安定であり位置検出の精度
が低い。
The non-magnetism in the solution state is unstable and the position detection accuracy is low.

等の問題が残った。Etc. remained the problem.

そこで本発明者らはMn−Cr系による不安定オーステナイ
トに注目し成分元素の調整、加工条件の選定により、こ
れらの問題を克服した磁気目盛用鋼棒を得、本発明を成
立せしめたのである。
Therefore, the inventors of the present invention focused on unstable austenite by Mn-Cr system, adjusted the component elements, selected the processing conditions to obtain a steel rod for magnetic graduation that overcomes these problems, and established the present invention. .

まず、コスト高の問題はNiを使わず、代りにMnを使用す
ることにより大幅に改善され、ほぼ解決することが期待
できたので残る問題である磁気目盛材として具備すべき
機能を有する成分系、加工条件を見出すべく、種々の実
験、研究を行った。
First of all, the problem of high cost was greatly improved by using Mn instead of Ni, and it was expected that it could be almost solved.Therefore, the remaining problem is a component system having the function to be equipped as a magnetic scale material. We conducted various experiments and researches to find out the processing conditions.

高Mn、高Cr系で得られる不安定オーステナイト鋼は一般
には、 溶体化状態でδフェライトが生成し易く、非磁性化が
難しい。
Unstable austenitic steels obtained with high Mn and high Cr systems generally tend to form δ ferrite in the solution state and are difficult to demagnetize.

非磁性化するためにδフェライトの生成を抑制できて
もεマルテンサイトが残る。εマルテンサイトは非磁性
であり溶体化状態での特性としては問題ないが、冷間加
工による強磁性化を阻害する。
Even if the production of δ ferrite can be suppressed due to the non-magnetization, ε martensite remains. Although ε-martensite is non-magnetic and has no problem as a property in a solution state, it inhibits ferromagnetization by cold working.

等の問題が有り、磁気目盛材としての使用は難しいと考
えられていた。
Therefore, it was considered difficult to use as a magnetic scale material.

そこで本発明者らは前記の磁気目盛材の具備すべき4つ
の条件を次の様に整理し、従来見過されていた範囲を含
めて、成分、加工条件の検討を行った。
Therefore, the present inventors arranged the four conditions that the magnetic scale material should have as follows, and examined the components and processing conditions including the range that was conventionally overlooked.

まず、溶体化状態での非磁性確保、次に加工による
飽和磁束密度5000G以上の確保、加工後の鋼棒の延性
の確保、である。
First, ensuring non-magnetism in the solution state, then ensuring a saturation flux density of 5000 G or more by working, and ensuring the ductility of the steel rod after working.

その結果、Mn、Cr、C、Nの成分比に於いてMnを14.0〜
19.0重量%、Crを3.0〜10.0重量%、C+Nを0.3〜0.5
重量%とし、この様な成分からなる鋼棒を溶体化後、Rd
=20〜25%の加工度に伸線することで、前記の3条件を
満足することが明らかとなり本発明を成立させたのであ
る。
As a result, in the composition ratio of Mn, Cr, C and N, Mn was set from 14.0 to
19.0 wt%, Cr 3.0 to 10.0 wt%, C + N 0.3 to 0.5
% By weight, and Rd after solutionizing a steel rod composed of such components
It was clarified that the above-mentioned three conditions were satisfied by drawing the wire to a workability of 20 to 25%, and the present invention was established.

すなわち本発明に係る磁気目盛用鋼棒の製造方法は、M
n;14.0〜19.0重量%、Cr;3.0〜10.0重量%、C+N;0.3
〜0.4重量%で残部がFeおよび不可避的不純物からなる
鋼棒を溶体化処理後、冷間で20〜25%伸線して5KG以上
の飽和磁束密度を保有せしめ、しかる後当該鋼棒の非磁
性化せんとする部分を局所加熱して溶体化することによ
り当該部分を完全非磁性化することを保障したことを要
旨とするものである。
That is, the manufacturing method of the steel rod for magnetic graduation according to the present invention is M
n; 14.0 to 19.0 wt%, Cr; 3.0 to 10.0 wt%, C + N; 0.3
~ 0.4% by weight, the balance of which is Fe and unavoidable impurities, after solution heat treatment, 20-25% cold drawing is carried out to have a saturated magnetic flux density of 5KG or more. The gist is to ensure that the portion to be magnetized is locally non-magnetized by locally heating it to form a solution.

次に成分、加工条件の限定理由について具体的に述べ
る。
Next, the reasons for limiting the components and processing conditions will be specifically described.

1)Mnについて オーステナイト安定化元素であり第1図に示すように14
重量%未満では溶体化状態(1050℃)での非磁性確保
(透磁率μ≦1.02)が困難となるので14.0重量%以上と
した。
1) Mn is an austenite-stabilizing element and as shown in Fig. 14
If it is less than 10% by weight, it becomes difficult to secure non-magnetic property (permeability μ ≦ 1.02) in the solution state (1050 ° C.), so it is set to 14.0% by weight or more.

また一方、19重量%を超えると伸線加工性が劣化すると
共にオーステナイトが安定化しフェライトの加工誘起が
減少する。その結果、第2図に示すように加工する強磁
性化が困難(Rd≧20%の加工不可、飽和磁束密度4KG以
上不可)となるため19重量%以下とした。
On the other hand, if it exceeds 19% by weight, wire drawing workability is deteriorated, austenite is stabilized, and ferrite work induction is reduced. As a result, it becomes difficult to make it ferromagnetic as shown in FIG. 2 (processing impossible for Rd ≧ 20%, saturation magnetic flux density of 4 KG or more is not possible), so the content was made 19 wt% or less.

なお、第1図及び第2図に示す結果は、Crが5.0重量
%、C+Nが0.3重量%の場合のものである。
The results shown in FIGS. 1 and 2 are for the case where Cr is 5.0% by weight and C + N is 0.3% by weight.

2)Crについて Mnとの複合添加によりオーステナイトの安定化に有効で
あるがMn本発明範囲(14.0〜19.0重量%)にある場合、
Crが10重量%を超えるとδフェライトを発生し第3図に
示すように溶体化状態(1050℃)での非磁性確保(透磁
率μ≦1.02)が困難となり、また3重量%未満でも同様
に非磁性確保が困難となるため、3.0〜10重量%とし
た。
2) Regarding Cr, which is effective in stabilizing austenite by the combined addition of Mn and Mn within the range of the present invention (14.0 to 19.0 wt%),
When Cr exceeds 10% by weight, δ ferrite is generated, and it becomes difficult to secure nonmagnetic property (permeability μ ≦ 1.02) in the solution state (1050 ° C) as shown in Fig. 3. Since it is difficult to secure non-magnetism, it was set to 3.0 to 10% by weight.

なお第3図に示す結果は、Mnが15.0重量%、C+Nが0.
3重量%の場合のものである。
The results shown in FIG. 3 show that Mn is 15.0% by weight and C + N is 0.
3% by weight.

3)C+Nについて オーステナイト安定化元素であり0.3重量%未満では第
4図に示すように溶体化状態(1050℃)での非磁性確保
が困難となるため0.3重量%以上とした。
3) C + N Since it is an austenite stabilizing element and less than 0.3% by weight, it is difficult to secure non-magnetism in the solution state (1050 ° C.) as shown in FIG.

また、0.5重量%を超えると伸線加工性が劣化すると共
にオーステナイトが安定化しフェライトの加工誘起が減
少する。その結果、第5図に示すように加工による強磁
性化が困難(Rd≧20%の加工不可、飽和磁束密度4KG以
上不可)となるため0.5重量%以下とした。
On the other hand, if it exceeds 0.5% by weight, the wire drawing workability is deteriorated and the austenite is stabilized and the work induction of ferrite is reduced. As a result, as shown in FIG. 5, it becomes difficult to make the material ferromagnetic by processing (processing with Rd ≧ 20% is impossible, saturation magnetic flux density is 4 KG or more is not possible), so 0.5% by weight or less.

なお、第4図及び第5図に示す結果は、Mnが15.0重量
%、Crが5.0重量%の場合のものである。
The results shown in FIGS. 4 and 5 are for Mn of 15.0% by weight and Cr of 5.0% by weight.

4)冷間での加工度について 本発明は前記した成分配分を有する鋼棒を溶体化処理
後、冷間伸線して得られる鋼棒の製造方法に関するもの
である。
4) Cold Workability The present invention relates to a method of manufacturing a steel rod obtained by subjecting a steel rod having the above component distribution to solution treatment and then cold drawing.

この冷間加工により所要の強磁性を有し、しかも局部を
溶体化することにより当該箇所のみ非磁性となすことが
出来るのである。
This cold working has the required ferromagnetism, and by making the local solution, it is possible to make only that part non-magnetic.

しかして、この冷間伸線加工は鋼棒の強磁性と機械的性
質(特に延性)を、所要の範囲に制御するために必要と
される。本発明者らが前述の成分配合を有する鋼棒を冷
間で伸線することにより飽和磁束密度と絞りが変化する
様子を調査した結果を第6図に示す。
Thus, this cold drawing is required to control the ferromagnetism and mechanical properties (especially ductility) of the steel bar to the required range. FIG. 6 shows the results of the investigation conducted by the inventors of the present invention to investigate how the saturation magnetic flux density and the drawing change by cold-drawing a steel rod having the above-described composition.

同図より明らかな如く20%未満では4KG以上の飽和磁束
密度が得られず、また25%を超えると延性(絞り)が極
端に低下することが判る。これらのことより本発明では
加工度を20〜25%の範囲に限定した。
As is clear from the figure, when it is less than 20%, the saturation magnetic flux density of 4KG or more cannot be obtained, and when it exceeds 25%, the ductility (drawing) is extremely lowered. For these reasons, the present invention limits the workability to the range of 20 to 25%.

なお、第6図の結果はMnが15.0重量%、Crが5.0重量
%、C+Nが0.3重量%の場合のものである。
The results shown in FIG. 6 are obtained when Mn is 15.0% by weight, Cr is 5.0% by weight, and C + N is 0.3% by weight.

5)飽和磁束密度について 第10図に示す如き位置検出機構に於いて溶体化部2の非
磁性の程度(透磁率の低さ)と母材部1の強磁性の程度
(飽和磁束密度の高さ)は検出精度に影響する。
5) Saturation magnetic flux density In the position detection mechanism as shown in FIG. 10, the degree of non-magnetism of solution-treated part 2 (low magnetic permeability) and the degree of ferromagnetism of base material 1 (high saturation magnetic flux density) Influences the detection accuracy.

すなわち、溶体化部2の非磁性が完全に確保されている
場合には検出精度は母材部1の飽和磁束密度に比例する
のである。その様子を調査した結果を第7図(イ)に示
す。
That is, when the non-magnetic property of the solution heat treated portion 2 is completely ensured, the detection accuracy is proportional to the saturation magnetic flux density of the base material portion 1. The result of the investigation of the situation is shown in FIG.

同図より明らかな如く5KG以上で検出精度を示す往復誤
差は高い一定レベルに安定する。このことから本発明で
は5KG以上の飽和磁束密度を必要とした。
As is clear from the figure, the round trip error showing the detection accuracy at 5 kg or more is stabilized at a high constant level. Therefore, the present invention requires a saturation magnetic flux density of 5 KG or more.

なお、第7図(イ)の結果はMnが15.0重量%、Crが6.0
重量%、C+Nが0.3重量%の場合のものであり、同図
(イ)の縦軸の往復誤差βは同図(ロ)に示す記号を使
用した場合、 で表わされる。また、同図(ロ)において実線は往、破
線は復を示し、縦軸のEは検出センサー3に付与する起
動力を示す。
In addition, the result of FIG. 7 (a) shows that Mn is 15.0 wt% and Cr is 6.0.
%, And C + N is 0.3% by weight. The round-trip error β on the vertical axis of FIG. 9 (a) is as shown in FIG. It is represented by. Further, in FIG. 4B, the solid line indicates the forward direction, the broken line indicates the backward direction, and E on the vertical axis indicates the starting force applied to the detection sensor 3.

(実 施 例) その1) 本発明の効果を実施例により説明する。下記表に掲げる
成分の鋼No.1〜24を150kg真空溶解炉で溶製して32φの
棒材に熱間圧延した後、25φに外削し、試験に供した。
(Examples) Part 1) The effects of the present invention will be described with reference to Examples. Steel Nos. 1 to 24 having the components shown in the following table were melted in a 150 kg vacuum melting furnace, hot-rolled into a 32φ bar material, externally cut to 25φ, and subjected to a test.

実施例No.1〜6では、Mnの効果及び限定理由について実
証した。
In Examples No. 1 to 6, the effect of Mn and the reason for limitation were demonstrated.

すなわち、前記25φの供試鋼を1050℃で溶体化処理後透
磁率を測定し、さらに伸線後絞り及び飽和磁束密度につ
いて測定したのである。
That is, the 25φ test steel was subjected to solution treatment at 1050 ° C., the magnetic permeability was measured, and the drawing after drawing and the saturation magnetic flux density were measured.

その結果、比較例であるNo.1、5、6では各々、Mn配合
率の低いNo.1は溶体化時の透磁率が高く、また高いNo.
5、6は伸線後の飽和磁束密度が低かった。
As a result, in Comparative Examples Nos. 1, 5 and 6, No. 1 having a low Mn compounding ratio has a high magnetic permeability during solution treatment, and a high No.
In Nos. 5 and 6, the saturation magnetic flux density after wire drawing was low.

これに対し、発明例であるNo.2、3、4では透磁率、飽
和磁束密度共満足する値が得られている。
On the other hand, in the invention examples Nos. 2, 3 and 4, values satisfying both the magnetic permeability and the saturation magnetic flux density were obtained.

次に実施例No.7〜12ではCrの効果及び限定理由について
実証した。
Next, in Examples Nos. 7 to 12, the effect of Cr and the reason for limitation were verified.

すなわち、前記25φの供試鋼を1050℃で溶体化処理後、
透磁率を測定したのである。
That is, after the solution treatment of the 25φ test steel at 1050 ° C,
The magnetic permeability was measured.

その結果、比較例であるNo.7、11、12では各々Cr配合率
の低いNo.7及び高いNo.11、12共透磁率が高く非磁性が
確保されなかった。
As a result, in Comparative Examples Nos. 7, 11 and 12, No. 7 having a low Cr content and Nos. 11 and 12 having a high Cr content had high co-permeabilities and non-magnetism was not secured.

これに対し、発明例であるNo.8、9、10では完全に非磁
性化されている。
In contrast, the invention examples Nos. 8, 9 and 10 are completely demagnetized.

次に実施例No.13〜20ではC+Nの効果及び限定理由に
ついて実証した。
Next, in Examples Nos. 13 to 20, the effect of C + N and the reason for limitation were demonstrated.

すなわち、実施例No.13〜17では、前記25φの供試鋼を1
050℃で溶体化処理後、透磁率を測定した。また、実施
例No.18〜20では溶体化後さらに伸線し、絞り及び飽和
磁束密度を測定したのである。
That is, in Examples Nos. 13 to 17, the test steel of 25φ was 1
After solution treatment at 050 ° C, the magnetic permeability was measured. Further, in Examples Nos. 18 to 20, after solution treatment, wire drawing was performed, and the diaphragm and the saturation magnetic flux density were measured.

その結果、比較例であるNo.13、14、15、18、19、20で
は,各々C+N配合率の低いNo.13、14、15は溶体化状
態の透磁率が高く、又C+Nの高いNo.18、19、20は伸
線後の絞り、飽和磁束密度が低かった。
As a result, in Comparative Examples Nos. 13, 14, 15, 18, 19, and 20, Nos. 13, 14, and 15 having a low C + N compounding ratio, respectively, have a high magnetic permeability in a solution state and a high C + N ratio. .18, 19, and 20 had low saturation magnetic flux density after drawing.

これに対し、発明例であるNo.16、17では溶体化状態で
の透磁率は低く、また伸線後の絞りや飽和磁束密度も高
い値を示している。
On the other hand, in the invention examples Nos. 16 and 17, the magnetic permeability in the solution state is low, and the diaphragm after drawing and the saturation magnetic flux density also show high values.

最後に、実施例No.21〜24では伸線加工度及び飽和磁束
密度の限定理由について実証した。
Finally, in Examples Nos. 21 to 24, the reasons for limiting the wire drawing workability and the saturation magnetic flux density were demonstrated.

すなわち、前記25φの供試鋼を1050℃で溶体化処理後伸
線し、絞り及び飽和磁束密度を測定したのである。さら
に、レーザー照射による磁気目盛加工を施し、磁気セン
サーによる検出精度も測定した。
That is, the sample steel of 25φ was subjected to solution treatment at 1050 ° C., drawn, and drawn and the saturation magnetic flux density was measured. Furthermore, magnetic graduation processing by laser irradiation was performed, and the detection accuracy by a magnetic sensor was also measured.

その結果、比較例であるNo.21では磁気目盛部の検出精
度が14.1%と発明例であるNo.22、23の5.0%、4.0%よ
り低い。また比較例であるNo.24では加工度が30%と高
く、絞りが13%まで低下している。
As a result, in No. 21 which is a comparative example, the detection accuracy of the magnetic scale portion is 14.1%, which is lower than 5.0% and 4.0% of Nos. 22 and 23 which are invention examples. Further, in Comparative Example No. 24, the workability was as high as 30% and the drawing was reduced to 13%.

以上の如く下記表に示す実施例では発明例により、磁気
目盛用鋼棒として満足できる特性が得られていることが
判る。
As described above, in the examples shown in the following table, it is understood that the invention examples have obtained satisfactory characteristics as the steel rod for magnetic graduation.

その2) 実施例その1)の前記表にしめすNo.2鋼を用い、1050℃
に溶体化後Rd=24%の伸線加工を行い、得られた鋼棒を
表面研削後、レーザー照射による表層部の溶体化を行っ
た。そして当該鋼棒の溶体化部と母材部の磁化力104Oe
に於ける磁束密度を測定した。
No. 2) Using No. 2 steel shown in the table of Example No. 1), 1050 ° C.
After solution treatment, wire drawing of Rd = 24% was performed, the obtained steel rod was surface-ground, and the surface layer portion was solution-treated by laser irradiation. Then, the magnetizing force of the solution-annealed part of the steel bar and the base metal part 10 4 Oe
Magnetic flux density was measured.

その結果を第8図(イ)(ロ)に示す。同図より明らか
な様に、本発明方法によって製造した鋼棒をレーザー照
射等の方法により局部的に溶体化することにより、当該
箇所(溶体化部2)を非磁性化し、磁気目盛として利用
できることが判る。
The results are shown in Fig. 8 (a) and (b). As is clear from the figure, the steel rod manufactured by the method of the present invention is locally solution-treated by a method such as laser irradiation so that the portion (solution-treated portion 2) can be demagnetized and used as a magnetic scale. I understand.

その3) Mn、Cr、C+Nの各配合率による加工誘起磁性の差を第
9図に示す。第9図中○−○はMnが15.0重量%、Crが5.
0重量%、C+Nが0.3重量%のものであり、 は前記と同様に夫々、10.0重量%、1.0重量%、0.2重量
%のもの、●−●は同じく21.0重量%、15.0重量%、0.
5重量%のものを示している。
Part 3) Fig. 9 shows the difference in the work-induced magnetism depending on the compounding ratios of Mn, Cr, and C + N. In Fig. 9, ○-○ is 15.0% by weight of Mn and 5.
0% by weight, C + N is 0.3% by weight, Are the same as above, respectively, 10.0% by weight, 1.0% by weight and 0.2% by weight, and ●-● are also 21.0% by weight, 15.0% by weight and 0.
5% by weight is shown.

同図より明らかな如く、○−○でかつ伸線率が20〜25%
の範囲内のもののみが5KG以上の飽和磁束密度を有し本
発明を満足していることが判る。
As is clear from the figure, ○-○ and wire drawing rate of 20-25%
It can be seen that only those within the range of 5 have a saturation magnetic flux density of 5 KG or more and satisfy the present invention.

(発明の効果) 以上説明したように本発明は、Mn;14.0〜19.0重量%、C
r;3.0〜10.0重量%、C+N;0.3〜0.4重量%で残部がFe
および不可避的不純物からなる材料を溶体化処理後、冷
間で20〜25%伸線して5KG以上の飽和磁束密度を保有せ
しめ、しかる後当該材料の非磁性化せんとする部分を加
熱して溶体化して成る磁気目盛用鋼棒の製造方法である
為、磁気目盛用鋼棒として必要な特性、すなわち溶体化
状態での非磁性確保と冷間伸線加工による強磁性化の2
つの特性を十分満足し、かつコスト的にも有利である。
従って本発明によれば近年、進歩が著しいメカトロニク
ス分野、特にロボット等への要求にも十分応えることが
できる。
(Effect of the invention) As described above, the present invention is Mn; 14.0 to 19.0 wt%, C
r; 3.0 to 10.0% by weight, C + N; 0.3 to 0.4% by weight, with the balance being Fe
After the solution treatment of the material consisting of unavoidable impurities, it is cold drawn to 20 to 25% to have a saturation magnetic flux density of 5KG or more, and then the portion of the material to be non-magnetized is heated. Since it is a method of manufacturing a steel rod for magnetic graduation formed by solution heat treatment, it has two characteristics: properties required for a steel rod for magnetic graduation, namely, ensuring non-magnetism in a solution state and making it ferromagnetic by cold drawing.
The two characteristics are sufficiently satisfied, and it is also advantageous in terms of cost.
Therefore, according to the present invention, it is possible to sufficiently meet the demands in the field of mechatronics, which has made remarkable progress in recent years, especially in robots and the like.

【図面の簡単な説明】[Brief description of drawings]

第1図は溶体化状態での透磁率に及ぼすMnの影響を示す
図、第2図は伸線加工による飽和磁束密度の変化に及ぼ
すMnの影響を示す図、第3図は溶体化状態での透磁率に
及ぼすCrの影響を示す図、第4図は溶体化状態での透磁
率に及ぼすC+Nの影響を示す図、第5図は伸線加工に
よる飽和磁束密度の変化に及ぼすC+Nの影響を示す
図、第6図は伸線による磁気特性と絞りの変化を示す
図、第7図(イ)(ロ)は飽和磁束密度による往復誤差
の変化を示す図、第8図(イ)(ロ)は本発明鋼棒を使
った磁気目盛の一例を示す図、第9図はMn、Cr、C+N
による加工誘起磁性の差を示す図、第10図は磁気目盛に
よる位置検出機構の一例を示す図面である。
Fig. 1 is a diagram showing the effect of Mn on the magnetic permeability in the solution state, Fig. 2 is a diagram showing the effect of Mn on the change of the saturation magnetic flux density by wire drawing, and Fig. 3 is the solution state. Fig. 4 shows the effect of Cr on the magnetic permeability of Fig. 4, Fig. 4 shows the effect of C + N on the magnetic permeability in the solution state, and Fig. 5 shows the effect of C + N on the change of the saturation magnetic flux density by wire drawing. FIG. 6 is a diagram showing changes in magnetic characteristics and aperture due to wire drawing, FIGS. 7 (a) and (b) is a diagram showing changes in round trip error due to saturation magnetic flux density, and FIG. 8 (a) ( (B) is a diagram showing an example of a magnetic scale using the steel rod of the present invention, and FIG. 9 is Mn, Cr, C + N.
FIG. 10 is a view showing a difference in processing-induced magnetism according to FIG. 10, and FIG. 10 is a view showing an example of a position detecting mechanism by a magnetic scale.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 G01D 5/245 101 H ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location G01D 5/245 101 H

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】Mn;14.0〜19.0重量%、Cr;3.0〜10.0重量
%、C+N;0.3〜0.4重量%で残部がFeおよび不可避的不
純物からなる鋼棒を溶体化処理後、冷間で20〜25%伸線
して5KG以上の飽和磁束密度を保有せしめ、その後当該
鋼棒の非磁性化せんとする部分を局部加熱して溶体化す
ることを特徴とする磁気目盛用鋼棒の製造方法。
1. A steel bar containing Mn; 14.0 to 19.0 wt%, Cr; 3.0 to 10.0 wt%, C + N; 0.3 to 0.4 wt% and the balance being Fe and inevitable impurities, and then cold-treated at 20 ~ 25% wire drawing to have a saturation magnetic flux density of 5KG or more, and then the portion of the steel rod to be non-magnetized is locally heated to form a solution, which is a method for manufacturing a steel rod for magnetic graduation. .
JP25253286A 1986-10-22 1986-10-22 Manufacturing method of steel bar for magnetic scale Expired - Lifetime JPH0772302B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25253286A JPH0772302B2 (en) 1986-10-22 1986-10-22 Manufacturing method of steel bar for magnetic scale

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25253286A JPH0772302B2 (en) 1986-10-22 1986-10-22 Manufacturing method of steel bar for magnetic scale

Publications (2)

Publication Number Publication Date
JPS63105952A JPS63105952A (en) 1988-05-11
JPH0772302B2 true JPH0772302B2 (en) 1995-08-02

Family

ID=17238678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25253286A Expired - Lifetime JPH0772302B2 (en) 1986-10-22 1986-10-22 Manufacturing method of steel bar for magnetic scale

Country Status (1)

Country Link
JP (1) JPH0772302B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3311427B2 (en) 1993-06-18 2002-08-05 株式会社デンソー Composite magnetic member, method for producing the same, and solenoid valve using the composite magnetic member
CN1295040C (en) * 2002-07-23 2007-01-17 江南机器厂 Local solution treating method for thin-wall tubular piece of aluminium alloy
GB201103675D0 (en) 2011-03-03 2011-04-20 Rls Merlina Tehnika D O O Method of scale substrate manufacture

Also Published As

Publication number Publication date
JPS63105952A (en) 1988-05-11

Similar Documents

Publication Publication Date Title
KR900006870B1 (en) Ferrite-austenitic stainless steel
JP4399751B2 (en) Composite magnetic member, method for manufacturing ferromagnetic portion of composite magnetic member, and method for forming nonmagnetic portion of composite magnetic member
DE60124368T2 (en) Soft magnetic material of Fe-Cr alloy and process for its production
EP0280996B1 (en) Austenitic stainless steel combining strength and resistance to intergranular corrosion
EP0786140B1 (en) Corrosion-resistant magnetic material
JP5729827B2 (en) High strength non-magnetic steel
JPH0542493B2 (en)
JPH0772302B2 (en) Manufacturing method of steel bar for magnetic scale
JP2574528B2 (en) High hardness low magnetic permeability non-magnetic functional alloy and method for producing the same
JPH0753896B2 (en) High Mn non-magnetic steel with good rust resistance and machinability
JP3429133B2 (en) High magnetic flux density corrosion-resistant soft magnetic material
EP0783595B1 (en) Use of a nonmagnetic stainless steel
JP3676477B2 (en) Composite magnetic member and manufacturing method thereof
JP2004307977A (en) Wire rod of nonmagnetic sulfur free-cutting stainless steel superior in cold drawability and corrosion resistance
US4009025A (en) Low permeability, nonmagnetic alloy steel
JP3693577B2 (en) Torque sensor shaft and torque sensor using the shaft
JP2587520B2 (en) High Mn nonmagnetic steel with excellent local deformability for gas circuit breakers
Gumlich et al. Magnetic properties of iron-carbon and iron-silicon alloys
JPS6123750A (en) Nonmagnetic steel
JP7453796B2 (en) Low magnetic austenitic stainless steel
JP2000036409A (en) Manufacture of actuator composite magnetic member and ferromagnetic part thereof, and forming method of non- magnetic part of actuator composite magnetic member
JPH064905B2 (en) Non-magnetic stainless steel with excellent spring characteristics
JP3425129B2 (en) Free cutting alloy material
JPH0692961B2 (en) Austemper pearlite precipitation determination method for spheroidal graphite cast iron
WO2023074160A1 (en) Semi-hard magnetic steel component