JPH0692961B2 - Austemper pearlite precipitation determination method for spheroidal graphite cast iron - Google Patents

Austemper pearlite precipitation determination method for spheroidal graphite cast iron

Info

Publication number
JPH0692961B2
JPH0692961B2 JP59007822A JP782284A JPH0692961B2 JP H0692961 B2 JPH0692961 B2 JP H0692961B2 JP 59007822 A JP59007822 A JP 59007822A JP 782284 A JP782284 A JP 782284A JP H0692961 B2 JPH0692961 B2 JP H0692961B2
Authority
JP
Japan
Prior art keywords
pearlite
cast iron
spheroidal graphite
graphite cast
precipitation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59007822A
Other languages
Japanese (ja)
Other versions
JPS60151554A (en
Inventor
允 末永
安興 石原
英治 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP59007822A priority Critical patent/JPH0692961B2/en
Publication of JPS60151554A publication Critical patent/JPS60151554A/en
Publication of JPH0692961B2 publication Critical patent/JPH0692961B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
  • Investigating And Analyzing Materials By Characteristic Methods (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ベイナイトと残留オーステナイトの混合組織
を有するオーステンパー球状黒鉛鋳鉄に析出するパーラ
イトの量を検知するオーステンパー球状黒鉛鋳鉄のパー
ライト析出判別法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention relates to the determination of the amount of pearlite deposited on austempered spheroidal graphite cast iron having a mixed structure of bainite and retained austenite, and the determination of pearlite precipitation on austempered spheroidal graphite cast iron. Concerning the law.

〔従来の技術〕[Conventional technology]

ベイナイトと残留オーステナイトの混合組織を有するオ
ーステンパー球状黒鉛鋳鉄は、抗張力が100kgf/cm2
上、伸びが10%以上を有し、高強度、高靭性鋳鉄とし
て、近年特に注目されている。
Austempered spheroidal graphite cast iron having a mixed structure of bainite and retained austenite has a tensile strength of 100 kgf / cm 2 or more and an elongation of 10% or more, and has recently been particularly noted as a high strength, high toughness cast iron.

このオーステンパー球状黒鉛鋳鉄は、抗張力と伸びが著
しく大きいため、例えば自動車の足廻り備品など、いわ
ゆる重要保安部品として、重量軽減、原価低減などに優
れた効果をもたらすものである。
Since this austempered spheroidal graphite cast iron has remarkably high tensile strength and elongation, it is excellent as a so-called important safety component such as an undercarriage for automobiles in weight reduction and cost reduction.

球状黒鉛鋳鉄の基地組織をベイナイトと残留オーステナ
イトの混合組織としてオーステンパー球状黒鉛鋳鉄にす
るためには、通常、基地がオーステナイト単相となる温
度まで加熱し、その温度で安定なオーステナイト組織と
したものを変態を阻止してそのままフェライトおよびパ
ーライト生成温度以下、マルテンサイト生成温度以上の
温度範囲に保持した熱浴中に急冷し、その温度で変態を
完了させたのち室温まで冷却するオーステンパー熱処理
が行わる。
In order to make the matrix structure of spheroidal graphite cast iron austempered spheroidal graphite cast iron as a mixed structure of bainite and retained austenite, it is usually heated to a temperature at which the matrix becomes an austenite single phase, and a stable austenite structure at that temperature is obtained. Austemper heat treatment to quench the transformation and quench it in a hot bath maintained in the temperature range below the ferrite and pearlite formation temperature and above the martensite formation temperature, complete the transformation at that temperature and then cool to room temperature. It

第1図は、オーステンパー球状黒鉛鋳鉄の熱処理の連続
冷却曲線モデルを示すものである。第1図で、熱処理の
対象品が、適正な冷却曲線の(1)で示すパーライトノ
ーズを横切らない場合、基地組織はベイナイトと残留オ
ーステナイトの二相混合組織となる。しかし、部分的に
肉厚の大なる箇所がある鋳造品などの場合、オーステナ
イト化温度から恒温変態温度へ移行する焼き入れの冷却
速度が遅くなる部分があり(2)で示すようなパーライ
トノーズを横切り、ベイナイトと残留オーステナイト組
織のほかに、パーライトの析出がおこり、抗張力や伸び
などの機械的性質が著しく低下する。このようなパーラ
イト組織の析出はたびたび経験するところである。
FIG. 1 shows a continuous cooling curve model for heat treatment of austempered spheroidal graphite cast iron. In FIG. 1, when the target product of the heat treatment does not cross the pearlite nose indicated by (1) of the appropriate cooling curve, the matrix structure is a two-phase mixed structure of bainite and retained austenite. However, in the case of a cast product that has a part with a large wall thickness, there is a part where the cooling rate of quenching that transitions from the austenitizing temperature to the isothermal transformation temperature becomes slow, and the pearlite nose as shown in (2) is used. In addition to cross-cutting, bainite and retained austenite structure, precipitation of pearlite occurs and mechanical properties such as tensile strength and elongation are significantly reduced. Such precipitation of pearlite structure is often experienced.

このようにパーライトが析出した場合には、機械的性質
が著しく低下し、例えば、パーライトが析出しない場合
の抗張力96kgf/cm2、伸び10%に対し、パーライトが析
出した場合には抗張力65kgf/cm2、伸び4%に低下する
こともある。
In this way, when pearlite is precipitated, mechanical properties are significantly reduced, for example, tensile strength 96 kgf / cm 2 when pearlite does not precipitate, elongation 10%, tensile strength 65 kgf / cm when pearlite precipitates. 2 , the elongation may drop to 4%.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

ベイナイトと残留オーステナイトの混合組織中にパーラ
イトが析出しているかどうかを調べることは、優れたオ
ーステンパー球状黒鉛鋳鉄を製造するためには必要なこ
とである。従来は、任意に抜き取った試料を破壊し、そ
の組織を顕微鏡で検査すること等によって、パーライト
が析出しているかどうかを判別していた。このような従
来の方法では、多くの手間を必要とし、能率的でないと
ともに、数個の試料をもって全体を推量するため、個々
の鋳造品の全てが所定の基準に達しているか否かの判定
には信頼性に劣るものであった。
It is necessary to investigate whether pearlite is precipitated in the mixed structure of bainite and retained austenite in order to produce an excellent austempered spheroidal graphite cast iron. Conventionally, it has been determined whether or not pearlite is precipitated by, for example, destroying an arbitrarily sampled sample and inspecting the structure with a microscope. Such a conventional method requires a lot of labor, is not efficient, and estimates the whole with a few samples, so that it is possible to judge whether or not all of the individual cast products have reached a predetermined standard. Was less reliable.

そして、従来、パーライトの析出を非破壊的に判定する
ことは、極めて困難であった。即ち、硬度の違いによる
判定は、パーライトが析出していても、硬度が大きく変
わらないため、パーライト析出判定の信頼性に乏しい。
また、パーライトが鋳造品の表面層に析出した場合に
は、表面組織を顕微鏡によって判別することも可能であ
るが、中心部にパーライトが析出した場合には、顕微鏡
によって判別することは困難である。
In the past, it was extremely difficult to nondestructively determine the precipitation of pearlite. That is, in the determination based on the difference in hardness, even if pearlite is deposited, the hardness does not significantly change, and therefore the reliability of pearlite deposition determination is poor.
Further, when pearlite is deposited on the surface layer of the cast product, it is possible to determine the surface structure by a microscope, but when pearlite is deposited on the center part, it is difficult to be identified by a microscope. .

上記のように、機械的性質に優れたオーステンパー球状
黒鉛鋳鉄を製造するためのパーライトの析出判別方法の
開発が強く望まれていた。
As described above, it has been strongly desired to develop a method for determining the precipitation of pearlite for producing austempered spheroidal graphite cast iron having excellent mechanical properties.

本発明は、上記課題のベイナイトと残留オーステナイト
の混合組織を有するオーステンパー球状黒鉛鋳鉄のパー
ライトの析出量を非破壊的に、容易に、かつ高い信頼度
で検知し得るパーライト析出判別法を提供することを目
的とする。
The present invention provides a pearlite precipitation determination method capable of nondestructively, easily, and highly reliably detecting the precipitation amount of pearlite of austempered spheroidal graphite cast iron having a mixed structure of bainite and residual austenite of the above problem. The purpose is to

〔課題を解決するための手段〕[Means for Solving the Problems]

本発明者等は、幾度かの実験により鋭意研究の結果、パ
ーライトの析出が起こった場合と起こらない場合で、磁
気特性(ヒシテリシス曲線)に差が現れることの知見を
得、オーステンパー球状黒鉛鋳鉄の有する磁気特性を測
定して、パーライトの析出を判別する発明するに至っ
た。そして、前記磁気特性として、飽和磁束密度、残留
磁束、および見かけの残留磁束を用いて、オーステンパ
ー球状黒鉛鋳鉄のパーライト析出を判別するものであ
る。
The inventors of the present invention have conducted extensive studies as a result of several experiments, and have found that there is a difference in magnetic properties (hysteresis curve) depending on whether pearlite is precipitated or not, and austempered spheroidal graphite cast iron is obtained. The present invention has led to the invention of determining the precipitation of pearlite by measuring the magnetic properties of The saturation magnetic flux density, the residual magnetic flux, and the apparent residual magnetic flux are used as the magnetic characteristics to determine the pearlite precipitation of the austempered spheroidal graphite cast iron.

〔作用〕[Action]

ベイナイト組織は、セメンタイト(Fe3C)の析出のない
ベイナイテイック−フェライト(α)である。これに対
し、パーライト組織は、フェライト(α)とセメンタイ
ト(Fe3C)の二相混合組織である。パーライト析出の有
無および析出の量により、強磁性であるベイナイテイッ
ク−フェライト(α)と、常磁性である残留オーステナ
イト(γ)の割合が変化し、磁気特性(ヒステリシス
曲線)に差が現れる。
The bainite structure is bainitic-ferrite (α) without the precipitation of cementite (Fe 3 C). On the other hand, the pearlite structure is a two-phase mixed structure of ferrite (α) and cementite (Fe 3 C). Depending on the presence or absence of pearlite precipitation and the amount of precipitation, the ratio of the bainite-ferrite (α) that is ferromagnetic to the retained austenite (γ R ) that is paramagnetic changes, and a difference appears in the magnetic characteristics (hysteresis curve).

〔実施例〕〔Example〕

以下本発明を実施例により詳細に説明する。 Hereinafter, the present invention will be described in detail with reference to examples.

(実施例1) 第2図は、基地がベイナイトと残留オーステナイトの二
相混合組織のオーステンパー球状黒鉛鋳鉄(Aで示
す)、19%パーライトが析出したオーステンパー球状黒
鉛鋳鉄(Bで示す)、および43%パーライトが析出した
オーステンパー球状黒鉛鋳鉄(Cで示す)について、磁
場(Oe)を横軸、磁束密度(G)を縦軸として磁気特性
を示すヒシテリシス曲線である。
(Example 1) FIG. 2 shows an austempered spheroidal graphite cast iron (indicated by A) having a matrix of a two-phase mixed structure of bainite and retained austenite, an austempered spheroidal graphite cast iron in which 19% pearlite is precipitated (indicated by B), 3 is a hysteresis curve showing magnetic characteristics of austempered spheroidal graphite cast iron (indicated by C) in which and 43% pearlite are deposited, with the magnetic field (Oe) as the horizontal axis and the magnetic flux density (G) as the vertical axis.

第2図から、パーライト析出のない(A)、19%パーラ
イトが析出した(B)、43%パーライトが析出した
(C)の、パーライト析出量の順にヒステリシス曲線が
立ち上がった形となる。
From FIG. 2, it can be seen that the hysteresis curve rises in the order of pearlite precipitation amount (A), pearlite is not precipitated (A), 19% pearlite is precipitated (B), and 43% pearlite is precipitated (C).

従って、第2図で示すヒステリシス曲線上の、飽和磁束
密度(3で示す)、残留磁束(4で示す)、保持力(5
で示す)の何れかの特定の値を測定することにより、パ
ーライト析出の有無およびその度合を判定し得る。
Therefore, the saturation magnetic flux density (shown by 3), the residual magnetic flux (shown by 4), and the coercive force (5) on the hysteresis curve shown in FIG.
It is possible to determine the presence or absence of pearlite precipitation and the degree thereof by measuring a specific value of any of

第2図の測定結果から、パーライト析出量と磁気特性の
関係を明らかにしたものを第3図から第5図に示す。第
3図はパーライト析出量〔P(%)〕と保磁力〔IHc(O
e)、第2図の(5)〕の関係、第4図はパーライト析
出量〔P(%)〕と飽和磁束密度〔4πI(KG)、第2
図の(3)〕の関係、第5図はパーライト析出量〔P
(%)〕と残留磁束〔4πIr(KG)、第2図の(4)〕
の関係を調べたものである。
The relationships between the amount of pearlite deposited and the magnetic properties are clarified from the measurement results of FIG. 2 and shown in FIGS. 3 to 5. Figure 3 shows the amount of pearlite deposited [P (%)] and coercive force [IHc (O
e), (5) in FIG. 2, and FIG. 4 shows the amount of pearlite deposition [P (%)] and saturation magnetic flux density [4πI (KG), second
The relationship of (3) in FIG. 5, and FIG. 5 shows the amount of pearlite precipitation [P
(%)] And residual magnetic flux [4πIr (KG), (4) in Fig. 2]
It is a study of the relationship between.

第4図で示すパーライト析出量と飽和磁束密度との間に
は良い相関が認められ(相関係数:0.93)、飽和磁束密
度を測定することによって、パーライト析出の有無およ
びその量を知ることができる。
There is a good correlation between the amount of perlite precipitation shown in Fig. 4 and the saturation magnetic flux density (correlation coefficient: 0.93), and by measuring the saturation magnetic flux density, it is possible to know the presence and amount of perlite precipitation. it can.

また、第5図で示すパーライト析出量と残留磁束との関
係(相関係数:0.90)、第3図で示すパーライト析出量
と保磁力との関係(相関係数:0.88)から、残留磁束ま
たは保磁力を測定することによっても、パーライト析出
の有無およびその量を知ることができる。
Further, from the relationship between the amount of precipitated pearlite and the residual magnetic flux (correlation coefficient: 0.90) shown in FIG. 5 and the relationship between the amount of precipitated pearlite and the coercive force (correlation coefficient: 0.88) shown in FIG. By measuring the coercive force, the presence or absence of pearlite precipitation and its amount can be known.

(実施例2) 次に、パーライト析出と見かけの残留磁束について説明
する。
Example 2 Next, pearlite deposition and apparent residual magnetic flux will be described.

まず、以下に示す形状・寸法、化学成分、熱処理によっ
て試料を作成し、見かけの残留磁束とパーライト析出の
関係を調べた。
First, a sample was prepared by the following shape / dimension, chemical composition, and heat treatment, and the relationship between apparent residual magnetic flux and pearlite precipitation was investigated.

(1)試料の形状 直径66mm×長さ280mm (2)化学成分(重量%) C:3.69、Si:2.11、 Mn:0.40、P:0.022、 S:0.010、Cr:0.02、 Cu:0.51、Mo:0.32 Mg:0.046、 残部:Feと不可避不純物 (3)熱処理条件 C:パーライトを析出させない熱処理 加熱したのち850℃×1Hr保持、その後375℃まで2min間
で冷却し、375℃×1H保持後、水冷 D:パーライトを析出させる熱処理 加熱したのち850℃×1Hr保持、その後375℃まで10min間
で冷却し、375℃×1H保持後、水冷 (4)組織 パーライトの析出のない試料Cの顕微鏡組織写真を第6
図に、パーライトが析出した試料Dの顕微鏡組織写真を
第7図に示す。
(1) Shape of sample 66mm diameter x 280mm length (2) Chemical composition (% by weight) C: 3.69, Si: 2.11, Mn: 0.40, P: 0.022, S: 0.010, Cr: 0.02, Cu: 0.51, Mo : 0.32 Mg: 0.046, balance: Fe and unavoidable impurities (3) Heat treatment conditions C: Heat treatment that does not precipitate pearlite After heating, hold at 850 ° C x 1Hr, then cool to 375 ° C for 2 minutes, and hold at 375 ° C x 1H, Water cooling D: Heat treatment to precipitate pearlite After heating, hold at 850 ° C x 1Hr, then cool to 375 ° C for 10 min, hold at 375 ° C x 1H, then water cool (4) Microstructure Microstructure photograph of sample C without pearlite precipitation The sixth
FIG. 7 shows a microstructure photograph of Sample D in which pearlite was deposited, as shown in FIG.

(5)見かけ残留磁束の測定方法 試料を飽和点近くまで磁化後、磁場を消すと、試料の形
状によって決まる反磁場に影響されて、第8図に示すよ
うに、 I=−(μ0H)/N ここで、I:磁化の強さ(G) μ0:透磁率 H:磁場の強さ(Oe) N:試料の反磁場係数 のIとヒステリシス曲線との交点a、bから縦軸の磁束
に垂線を下ろした磁気が残留する。この残留磁気に相当
するのが試料の見かけの残留磁束である。
(5) Method of measuring apparent residual magnetic flux After magnetizing the sample to near the saturation point and extinguishing the magnetic field, it is affected by the demagnetizing field determined by the shape of the sample, and as shown in FIG. 8, I = − (μ 0 H ) / N where: I: strength of magnetization (G) μ 0 : permeability H: strength of magnetic field (Oe) N: demagnetizing factor of sample I The magnetic flux with a perpendicular line to the magnetic flux remains. The apparent residual magnetic flux of the sample corresponds to this residual magnetism.

見かけの残留磁束の測定は、以下の条件で行った。The apparent residual magnetic flux was measured under the following conditions.

(a)磁化コイル 磁化コイルの巻数:10、 通電電流:2.5KA (b)検出コイル 検出コイルの巻数:500 試料の通過速度:45m/min (6)測定結果 測定結果を第1表に示す。(A) Magnetizing coil Number of windings of the magnetizing coil: 10 and energization current: 2.5KA (b) Detection coil Number of windings of the detecting coil: 500 Sample passing speed: 45m / min (6) Measurement results Table 1 shows the measurement results.

第1表で、パーライトの析出した試料Dと、析出しない
試料Cとでは硬度の差は殆ど認められず、硬度からのパ
ーライト析出判定は信頼性に乏しいことがわかる。
In Table 1, there is almost no difference in hardness between the sample D in which pearlite is precipitated and the sample C in which pearlite is not precipitated, and it can be seen that the determination of pearlite precipitation from hardness is poor in reliability.

一方、第1表から、見かけの残留磁束の大きい試料Cは
パーライト析出量がなく、見かけの残留磁束の小さい試
料Dはパーライト析出量が18%となり、見かけの残留磁
束でパーライト析出の有無および析出量を知れることが
わかる。
On the other hand, from Table 1, sample C having a large apparent residual magnetic flux has no pearlite precipitation amount, and sample D having a small apparent residual magnetic flux has a pearlite precipitation amount of 18%. You can see the quantity.

〔発明の効果〕〔The invention's effect〕

以上の説明で明かなように、本発明は、ベイナイトと残
留オーステナイトの混合組織を有するオーステンパー球
状黒鉛鋳鉄球状黒鉛鋳鉄に析出したパーライトを、磁気
特性を用いて、非破壊検査で容易に、かつ高感度で検知
し得るものである。
As will be apparent from the above description, the present invention, austempered spheroidal graphite cast iron having a mixed structure of bainite and retained austenite, pearlite deposited on spheroidal graphite cast iron, using magnetic properties, easily in nondestructive inspection, and It can be detected with high sensitivity.

従って、対象製品の信頼性を向上するとともに、製造工
程における品質管理に著しい効果をもたらすものであ
る。
Therefore, the reliability of the target product is improved and the quality control in the manufacturing process is significantly effected.

【図面の簡単な説明】[Brief description of drawings]

第1図はオーステンパ熱処理の連続冷却曲線を示す図、
第2図はオーステナイト球状黒鉛鋳鉄のパーライト析出
と磁気ヒステリシス曲線を示す図、第3図はパーライト
析出量と保磁力の関係を示す図、第4図はパーライト析
出量と飽和磁束密度の関係を示す図、第5図はパーライ
ト析出量と残留磁束の関係を示す図、第6図はパーライ
ト析出のないオーステナイト球状黒鉛鋳鉄の金属組織顕
微鏡写真、第7図はパーライトが析出したオーステナイ
ト球状黒鉛鋳鉄の金属組織顕微鏡写真、第8図は見かけ
の残留磁束の関係を示すヒステリシス曲線の第2象限図
である。
FIG. 1 is a diagram showing a continuous cooling curve of austempering heat treatment,
FIG. 2 is a diagram showing pearlite precipitation and magnetic hysteresis curve of austenitic spheroidal graphite cast iron, FIG. 3 is a diagram showing a relationship between pearlite precipitation amount and coercive force, and FIG. 4 is a relationship between pearlite precipitation amount and saturation magnetic flux density. Figures and 5 show the relationship between the amount of precipitated pearlite and the residual magnetic flux. Fig. 6 is a microstructure photograph of austenitic spheroidal graphite cast iron without pearlite precipitation. Fig. 7 is a metal of austenitic spheroidal graphite cast iron with pearlite precipitated. A microstructure photograph, FIG. 8 is a second quadrant diagram of the hysteresis curve showing the relationship of apparent residual magnetic flux.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中野 英治 福岡県京都郡苅田町長浜町35番地 日立金 属株式会社九州工場内 (56)参考文献 特開 昭56−21056(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Eiji Nakano 35 Nagahama-cho, Kanda-cho, Kyoto-gun, Fukuoka Prefecture Kyushu factory, Hitachi Metals, Ltd. (56) References JP-A-56-21056 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】オーステンパー球状黒鉛鋳鉄の有する磁気
特性の飽和磁束密度、または残留磁束、または見かけの
残留磁束を測定し、パーライトの析出を判別するオース
テンパー球状黒鉛鋳鉄のパーライト析出判別方法。
1. A method for determining pearlite precipitation of austempered spheroidal graphite cast iron by measuring saturation magnetic flux density, residual flux, or apparent residual magnetic flux of magnetic properties of austempered spheroidal graphite cast iron.
JP59007822A 1984-01-19 1984-01-19 Austemper pearlite precipitation determination method for spheroidal graphite cast iron Expired - Lifetime JPH0692961B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59007822A JPH0692961B2 (en) 1984-01-19 1984-01-19 Austemper pearlite precipitation determination method for spheroidal graphite cast iron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59007822A JPH0692961B2 (en) 1984-01-19 1984-01-19 Austemper pearlite precipitation determination method for spheroidal graphite cast iron

Publications (2)

Publication Number Publication Date
JPS60151554A JPS60151554A (en) 1985-08-09
JPH0692961B2 true JPH0692961B2 (en) 1994-11-16

Family

ID=11676284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59007822A Expired - Lifetime JPH0692961B2 (en) 1984-01-19 1984-01-19 Austemper pearlite precipitation determination method for spheroidal graphite cast iron

Country Status (1)

Country Link
JP (1) JPH0692961B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63118560U (en) * 1987-01-26 1988-08-01
US6889921B2 (en) 2002-09-30 2005-05-10 Illinois Tool Works Inc. Bell cup skirt
US7128277B2 (en) 2003-07-29 2006-10-31 Illinois Tool Works Inc. Powder bell with secondary charging electrode
US8371517B2 (en) 2007-06-29 2013-02-12 Illinois Tool Works Inc. Powder gun deflector

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5296588A (en) * 1976-02-10 1977-08-13 Nippon Steel Corp Non-destructive steel material inspecting method and apparatus
JPS5621056A (en) * 1979-07-31 1981-02-27 Toshiba Corp Carbon content measuring device

Also Published As

Publication number Publication date
JPS60151554A (en) 1985-08-09

Similar Documents

Publication Publication Date Title
JPH03115546A (en) Corrosion-resisting magnetic alloy
EP1211331A1 (en) A Fe-Cr soft magnetic material and a method of manufacturing thereof
Kahrobaee et al. Assessment of retained austenite in AISI D2 tool steel using magnetic hysteresis and Barkhausen noise parameters
EP1356127B1 (en) Process for the production of grain oriented electrical steel strips
Mészáros et al. Complex magnetic and microstructural investigation of duplex stainless steel
JP3868019B2 (en) Composite magnetic member and manufacturing method thereof
US5653824A (en) Magnetic strips and methods for making the same
Kaplan et al. Characterization of dual-phase steels using magnetic Barkhausen noise technique
Devine The magnetic detection of material properties
Honkanen et al. Mimicking Barkhausen noise measurement by in-situ transmission electron microscopy-effect of microstructural steel features on Barkhausen noise
Vértesy et al. Non-destructive indication of plastic deformation of cold-rolled stainless steel by magnetic adaptive testing
JPH0692961B2 (en) Austemper pearlite precipitation determination method for spheroidal graphite cast iron
Zhang et al. Magnetic properties of SUS 304 austenitic stainless steel after tensile deformation at elevated temperatures
d'Amato et al. Characterization of austempered ductile iron through Barkhausen noise measurements
WO1986006485A1 (en) Method of determining quality of nodular graphite cast iron
Giordano et al. Retained austenite variation in dual-phase steel after mechanical stressing and heat treatment
Skrbek et al. NDT characterization of decarburization of steel after long-time annealing
Vértesy et al. Graphite structure and magnetic parameters of flake graphite cast iron
JP2007308785A (en) Oil-tempered wire and manufacturing method therefor
Gumlich et al. Magnetic properties of iron-carbon and iron-silicon alloys
Abdulkareem et al. Effect of retained austenite on the micro-structure and mechanical properties of AI-SI4340 high strength low alloy steel (HSLA steel) using magnetic saturation measurement and X-ray diffraction methods
JPH07118816A (en) Powder-sintered magnetic stainless steel
JP3676477B2 (en) Composite magnetic member and manufacturing method thereof
Ścibisz et al. Quantitative and Qualitative evaluation of non-Metallic inclusions in HigH-silicon steel after Hot rolling
JP4110257B2 (en) Metal characterization method