JPH08192098A - Method for densifying porous film and production of oxide film - Google Patents

Method for densifying porous film and production of oxide film

Info

Publication number
JPH08192098A
JPH08192098A JP679495A JP679495A JPH08192098A JP H08192098 A JPH08192098 A JP H08192098A JP 679495 A JP679495 A JP 679495A JP 679495 A JP679495 A JP 679495A JP H08192098 A JPH08192098 A JP H08192098A
Authority
JP
Japan
Prior art keywords
film
light
porous film
gel
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP679495A
Other languages
Japanese (ja)
Other versions
JP2826632B2 (en
Inventor
Koichi Awazu
浩一 粟津
Hideo Konuki
英雄 小貫
Hiroaki Imai
宏明 今井
Seki Hirashima
碩 平島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP679495A priority Critical patent/JP2826632B2/en
Publication of JPH08192098A publication Critical patent/JPH08192098A/en
Application granted granted Critical
Publication of JP2826632B2 publication Critical patent/JP2826632B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Silicon Compounds (AREA)

Abstract

PURPOSE: To remove the water in a porous film at room temp., to densify the film and to obtain a dense oxide film by irradiating the porous film formed by a sol-gel method with light of shorter wavelength than the UV absorption edge of the gel. CONSTITUTION: A porous film of silicon dioxide is densified by irradiation with light of 140-150nm wavelength. The objective oxide film is produced by forming the porous film by a sol-gel method and densifying the film by irradiation with light of shorter wavelength than the UV absorption edge of the film. When the silicon dioxide gel film is partially irradiated with light, the irradiated part undergoes the reduction of the film thickness and the increase of the refractive index, and since only the irradiated part. can be densified, a pattern of a dense oxide film can be formed at an arbitrary part.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光誘起により室温で多
孔質膜中の水分と空隙を除去することにより緻密化する
多孔質膜の緻密化方法および酸化物膜の製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for densifying a porous film and a method for producing an oxide film, which are densified by removing water and voids in the porous film at room temperature by photoinduction.

【0002】[0002]

【従来の技術】金属アルコキシドを原料とするゾルゲル
法は、酸化物の薄膜の作製法として広く用いられてい
る。かかる方法により薄膜を作製するに際し、原料に含
まれている有機物や水分を除去し、さらに空隙を除去し
て緻密な酸化物薄膜を得るためには、通常400〜50
0℃以上での加熱処理が必要である。したがって、ゾル
ゲル法では、熱に弱い有機物などからなる基板上には緻
密な酸化物膜が作製できないという欠点があった。
2. Description of the Related Art The sol-gel method using a metal alkoxide as a raw material is widely used as a method for producing an oxide thin film. In order to obtain a dense oxide thin film by removing organic substances and water contained in the raw material and further removing voids when producing a thin film by such a method, it is usually 400 to 50.
Heat treatment at 0 ° C or higher is required. Therefore, the sol-gel method has a drawback that a dense oxide film cannot be formed on a substrate made of an organic material which is weak against heat.

【0003】かかるゾルゲル法において、室温付近の温
度において酸化物ゲル膜中の有機物および水分を除去
し、緻密化することができれば、その応用範囲を広げる
ことができる。また、最近では高い集積度の半導体素子
作製において、微細な構造を維持するために室温での薄
膜形成技術が要望されている。
In such a sol-gel method, if the organic matter and water in the oxide gel film can be removed and densified at a temperature near room temperature, its application range can be expanded. Further, recently, in manufacturing a highly integrated semiconductor device, a thin film forming technique at room temperature has been demanded in order to maintain a fine structure.

【0004】一方、室温で酸化物ゲル膜を緻密化させる
方法としては、イオン注入を利用する方法が知られてい
る。かかる方法によると、シリコンやリンなどのイオン
を1015/cm2 程度以上注入することにより、ゾルゲ
ル法で形成された多孔質膜が緻密化される。
On the other hand, as a method for densifying the oxide gel film at room temperature, a method utilizing ion implantation is known. According to this method, the porous film formed by the sol-gel method is densified by injecting ions such as silicon and phosphorus at about 10 15 / cm 2 or more.

【0005】[0005]

【発明が解決しようとする課題】上述した従来の方法で
は、ゾルゲル法によって緻密な酸化物薄膜酸化物を形成
するためには、400〜500℃以上で加熱処理する
か、イオン注入することが必要である。加熱する場合に
は、上述したように熱に弱い物質からなる基板上にはゾ
ルゲル法を適用することはできない。また、イオン注入
を用いる場合は、室温での緻密化が可能であるものの膜
自体あるいは基板にイオンが取り残されてしまうため、
酸化物膜あるいは基板の性質に影響を及ぼすという問題
がある。
In the above-mentioned conventional method, in order to form a dense oxide thin film oxide by the sol-gel method, it is necessary to perform heat treatment at 400 to 500 ° C. or higher or ion implantation. Is. In the case of heating, the sol-gel method cannot be applied on the substrate made of a heat-sensitive substance as described above. Further, when ion implantation is used, although densification at room temperature is possible, ions are left behind in the film itself or the substrate,
There is a problem of affecting the properties of the oxide film or the substrate.

【0006】本発明は、このような事情に鑑み、ゾルゲ
ル法によって得られた多孔質膜を、室温でかつ影響を与
えることなく緻密化する方法およびこれにより緻密な酸
化物膜を製造する方法を提供することを目的とする。
In view of the above circumstances, the present invention provides a method for densifying a porous film obtained by the sol-gel method at room temperature without any influence, and a method for producing a dense oxide film thereby. The purpose is to provide.

【0007】[0007]

【課題を解決するための手段】本発明の第1の態様は、
ゾルゲル法で形成された多孔質膜に、当該多孔質膜の紫
外吸収端よりも短波長の光を照射することにより、当該
多孔質膜を緻密化することを特徴とする多孔質膜の緻密
化方法にある。
The first aspect of the present invention is as follows.
Densification of a porous film formed by the sol-gel method, which is characterized by densifying the porous film by irradiating with light having a wavelength shorter than the ultraviolet absorption edge of the porous film. On the way.

【0008】本発明の第2の態様は、前記多孔質膜が二
酸化ケイ素膜であり、140〜150nm以下の波長の
光を照射することを特徴とする多孔質膜の緻密化方法に
ある。
A second aspect of the present invention is the method for densifying a porous film, characterized in that the porous film is a silicon dioxide film, and the film is irradiated with light having a wavelength of 140 to 150 nm or less.

【0009】本発明の第3の態様は、ゾルゲル法により
多孔質膜を形成するステップと、前記多孔質膜に当該多
孔質膜の紫外吸収端よりも短波長の光を照射することに
より、当該多孔質膜を緻密化して酸化物膜とするステッ
プとを具備することを特徴とする酸化物膜の製造方法に
ある。
A third aspect of the present invention is to form a porous film by a sol-gel method, and to irradiate the porous film with light having a wavelength shorter than the ultraviolet absorption edge of the porous film. And a step of densifying the porous film into an oxide film.

【0010】本発明の第4の態様は、前記多孔質膜が二
酸化ケイ素膜であり、140〜150nm以下の波長の
光を照射することを特徴とする酸化物膜の製造方法にあ
る。
A fourth aspect of the present invention is the method for producing an oxide film, characterized in that the porous film is a silicon dioxide film, and the film is irradiated with light having a wavelength of 140 to 150 nm or less.

【0011】[0011]

【作用】本発明においては、ゾルゲル法で形成された多
孔質膜にゲルの紫外吸収端よりも短い波長の光を照射す
ることにより、室温において当該多孔質膜中の水分を除
去し、膜を緻密化することでができ、緻密な酸化物膜を
得ることができる。さらに、光の照射部のみが緻密化す
ることから、任意の部分に緻密な酸化物膜のパターンを
形成することが可能である。
In the present invention, the porous film formed by the sol-gel method is irradiated with light having a wavelength shorter than the ultraviolet absorption edge of the gel to remove water in the porous film at room temperature to form a film. This can be done by densifying, and a dense oxide film can be obtained. Further, since only the light irradiation portion is densified, it is possible to form a dense oxide film pattern on an arbitrary portion.

【0012】[0012]

【実施例】以下、図面を参照して本発明の実施例を詳細
に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0013】(実施例1)テトラエトキシシランを酸性
触媒下で加水分解し、縮重合させて得たゾルを、シリコ
ンウェファー上にディップコーティングすることによっ
て、厚さ約100nmの二酸化ケイ素のゲル膜を作製し
た。
Example 1 Tetraethoxysilane was hydrolyzed under an acidic catalyst and polycondensed to obtain a sol, which was dip-coated on a silicon wafer to form a silicon dioxide gel film having a thickness of about 100 nm. It was made.

【0014】このゲル膜に、電子蓄積リングに挿入され
たアンジュレータからの放射光を照射した。このとき、
アンジュレータからの放射光の波長は、60〜300n
mの間で変化させることができる。図1には、波長11
5nmの光を照射したときのゲル膜の相対膜厚および屈
折率の変化を示す。膜厚および屈折率はエリプソメトリ
によって測定した。図示するように、115nmの光を
照射により膜厚の減少と屈折率の増加が見られた。光子
数3×1019/cm2 以上の照射を行ったときの膜厚の
減少と屈折率の増加は、同様のゲル膜に1000℃の熱
処理を行ったときとほぼ同等であった。二酸化ケイ素の
ゲル膜の赤外吸収スペクトルには波数940cm-1にゲ
ル中の水酸基による吸収帯が見られるが、115nmの
光を照射により、この吸収帯が消失した。このことか
ら、熱処理した場合と同様に、115nmの光照射によ
り、ゲル膜から水酸基が水分として除去され、緻密化さ
れたことが分かった。また、このような光照射時の膜の
温度上昇は40℃以下であった。
The gel film was irradiated with radiation from an undulator inserted in the electron storage ring. At this time,
The wavelength of the emitted light from the undulator is 60 to 300n.
It can vary between m. In FIG. 1, the wavelength 11
4 shows changes in relative film thickness and refractive index of a gel film when irradiated with light of 5 nm. The film thickness and refractive index were measured by ellipsometry. As shown in the figure, a decrease in film thickness and an increase in refractive index were observed by irradiation with light of 115 nm. The decrease in the film thickness and the increase in the refractive index when irradiated with a photon number of 3 × 10 19 / cm 2 or more were almost the same as when the same gel film was heat-treated at 1000 ° C. In the infrared absorption spectrum of the silicon dioxide gel film, an absorption band due to the hydroxyl group in the gel was observed at a wave number of 940 cm −1 , but this absorption band disappeared by irradiation with light of 115 nm. From this, it was found that the hydroxyl groups were removed from the gel film as water and densified by irradiation with light of 115 nm, as in the case of heat treatment. Further, the temperature rise of the film during such light irradiation was 40 ° C. or less.

【0015】したがって、115nmの光の照射によっ
て、1000℃の熱処理によって得られるのと同等の緻
密な二酸化ケイ素膜をほぼ室温において形成することが
可能である。
Therefore, by irradiating with light of 115 nm, it is possible to form a dense silicon dioxide film, which is equivalent to that obtained by heat treatment at 1000 ° C., at about room temperature.

【0016】図2は、二酸化ケイ素のゲル膜の半分だけ
に同様に光を照射した場合の膜厚および屈折率の変化を
示す図である。図示のように、屈折率の増加および膜厚
の減少は照射領域のみに起こっており、未照射領域では
厚さおよび屈折率の変化は見られなかった。したがっ
て、光照射によって緻密な二酸化ケイ素膜を任意の場所
に選択的に形成することが可能である。
FIG. 2 is a diagram showing changes in film thickness and refractive index when light is similarly irradiated to only half of the silicon dioxide gel film. As shown in the figure, the increase in the refractive index and the decrease in the film thickness occurred only in the irradiated region, and no change in the thickness and the refractive index was observed in the unirradiated region. Therefore, it is possible to selectively form a dense silicon dioxide film at any place by light irradiation.

【0017】(実施例2)実施例1と同様に作製した二
酸化ケイ素のゲル膜にアンジュレータを用いて波長13
5nmおよび70nmの光を照射した。この結果、膜厚
が減少するとともにその屈折率は1.46程度まで増加
した。また、赤外吸収スペクトルの測定から水酸基が消
失したことが確認された。したがって、70〜135n
mの範囲の波長の光の照射によって、1000℃の熱処
理によって得られるのと同等の緻密な二酸化ケイ素膜を
ほぼ室温において形成できることが分かった。
(Example 2) A silicon dioxide gel film prepared in the same manner as in Example 1 was used with an undulator to obtain a wavelength of 13
Irradiation with light of 5 nm and 70 nm. As a result, the film thickness decreased and its refractive index increased to about 1.46. In addition, it was confirmed from the measurement of infrared absorption spectrum that the hydroxyl groups had disappeared. Therefore, 70 to 135n
It was found that by irradiating with light having a wavelength in the range of m, a dense silicon dioxide film equivalent to that obtained by heat treatment at 1000 ° C. can be formed at about room temperature.

【0018】(比較例1)実施例1と同様に作製した二
酸化ケイ素のゲル膜にアンジュレータを用いて波長19
3nmの光を照射した。この結果、膜厚および屈折率に
は変化が起らなかった。このことから、193nm以上
の波長の光は、二酸化ケイ素のゲル膜の緻密化には有効
でないことが分かった。
(Comparative Example 1) A silicon dioxide gel film prepared in the same manner as in Example 1 was used with an undulator to obtain a wavelength of 19 nm.
Irradiation with 3 nm light. As a result, the film thickness and the refractive index did not change. From this, it was found that light having a wavelength of 193 nm or more was not effective for densifying the silicon dioxide gel film.

【0019】以上の結果、二酸化ケイ素のゲルの紫外吸
収は140〜150nm以下の波長で起こることから、
シリカゲル膜の緻密化には、この紫外吸収端よりも短い
波長の光が有効であることが確認された。
As a result of the above, since the ultraviolet absorption of the gel of silicon dioxide occurs at a wavelength of 140 to 150 nm or less,
It was confirmed that light having a wavelength shorter than the ultraviolet absorption edge is effective for densifying the silica gel film.

【0020】したがって、他の酸化膜をゾルゲル法を用
いて形成する場合、多孔質膜を光照射により緻密化する
に際し、その紫外線吸収端より短い波長の光を照射すれ
ば有効であることは、容易に理解される。
Therefore, when another oxide film is formed by the sol-gel method, it is effective to irradiate with light having a wavelength shorter than the ultraviolet absorption edge when densifying the porous film by light irradiation. Easily understood.

【0021】[0021]

【発明の効果】以上説明したように、本発明は、ゾルゲ
ル法で形成された多孔質膜にゲルの紫外吸収端よりも短
い波長の光を照射することにより、室温において当該多
孔質膜中の水分を除去し、膜を緻密化することでがで
き、緻密な酸化物膜を得ることができるという効果を奏
するものである。また、本発明によれば、光の照射部の
みが緻密化することができることから、任意の部分に緻
密な酸化物膜のパターンを形成することが可能である。
As described above, according to the present invention, the porous film formed by the sol-gel method is irradiated with light having a wavelength shorter than the ultraviolet absorption edge of the gel, so that This can be achieved by removing water and densifying the film, which has an effect that a dense oxide film can be obtained. Further, according to the present invention, since only the light irradiation portion can be densified, it is possible to form a dense oxide film pattern on an arbitrary portion.

【図面の簡単な説明】[Brief description of drawings]

【図1】二酸化ケイ素のゲル膜に波長135nmの光を
照射したときの照射量と屈折率および膜厚との関係を示
す図である。
FIG. 1 is a diagram showing a relationship between an irradiation amount, a refractive index, and a film thickness when a silicon dioxide gel film is irradiated with light having a wavelength of 135 nm.

【図2】光照射領域と未照射領域とにおける膜厚および
屈折率の変化を示す図である。
FIG. 2 is a diagram showing changes in film thickness and refractive index in a light irradiation region and a non-irradiation region.

フロントページの続き (72)発明者 平島 碩 東京都渋谷区西原3−16−10Front page continuation (72) Inventor Shira Hirashima 3-16-10 Nishihara, Shibuya-ku, Tokyo

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 ゾルゲル法で形成された多孔質膜に、当
該多孔質膜の紫外吸収端よりも短波長の光を照射するこ
とにより、当該多孔質膜を緻密化することを特徴とする
多孔質膜の緻密化方法。
1. A porous film characterized by densifying the porous film formed by the sol-gel method by irradiating the porous film with light having a wavelength shorter than the ultraviolet absorption edge of the porous film. Method for densification of quality membrane.
【請求項2】 前記多孔質膜が二酸化ケイ素膜であり、
140〜150nm以下の波長の光を照射することを特
徴とする多孔質膜の緻密化方法。
2. The porous film is a silicon dioxide film,
A method for densifying a porous film, which comprises irradiating light having a wavelength of 140 to 150 nm or less.
【請求項3】 ゾルゲル法により多孔質膜を形成するス
テップと、前記多孔質膜に当該多孔質膜の紫外吸収端よ
りも短波長の光を照射することにより、当該多孔質膜を
緻密化して酸化物膜とするステップとを具備することを
特徴とする酸化物膜の製造方法。
3. The step of forming a porous film by a sol-gel method, and densifying the porous film by irradiating the porous film with light having a wavelength shorter than the ultraviolet absorption edge of the porous film. And a step of forming an oxide film.
【請求項4】 前記多孔質膜が二酸化ケイ素膜であり、
140〜150nm以下の波長の光を照射することを特
徴とする酸化物膜の製造方法。
4. The porous film is a silicon dioxide film,
A method for producing an oxide film, which comprises irradiating light having a wavelength of 140 to 150 nm or less.
JP679495A 1995-01-20 1995-01-20 Method for densifying porous film and method for producing oxide film Expired - Lifetime JP2826632B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP679495A JP2826632B2 (en) 1995-01-20 1995-01-20 Method for densifying porous film and method for producing oxide film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP679495A JP2826632B2 (en) 1995-01-20 1995-01-20 Method for densifying porous film and method for producing oxide film

Publications (2)

Publication Number Publication Date
JPH08192098A true JPH08192098A (en) 1996-07-30
JP2826632B2 JP2826632B2 (en) 1998-11-18

Family

ID=11648089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP679495A Expired - Lifetime JP2826632B2 (en) 1995-01-20 1995-01-20 Method for densifying porous film and method for producing oxide film

Country Status (1)

Country Link
JP (1) JP2826632B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008520100A (en) * 2004-11-12 2008-06-12 アクセリス テクノロジーズ インコーポレーテッド Ultraviolet-assisted pore sealing of porous low-k dielectric films

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008520100A (en) * 2004-11-12 2008-06-12 アクセリス テクノロジーズ インコーポレーテッド Ultraviolet-assisted pore sealing of porous low-k dielectric films

Also Published As

Publication number Publication date
JP2826632B2 (en) 1998-11-18

Similar Documents

Publication Publication Date Title
US7611757B1 (en) Method to improve mechanical strength of low-K dielectric film using modulated UV exposure
EP1482550A2 (en) Low dielectric constant insulating film and method of forming the same
JPS5669837A (en) Manufacture of semiconductor device
US6074962A (en) Method for the formation of silica-based coating film
JP2826632B2 (en) Method for densifying porous film and method for producing oxide film
JP2000077399A (en) Silica based porous film and production thereof
US5763340A (en) Method for production of SiO2 glass material having regions changed in light refractive index and SiO2 glass material produced by the method
US20160320715A1 (en) Mirror blank for euv lithography without expansion under euv radiation
JPS5940525A (en) Growth of film
JP3592806B2 (en) Manufacturing method of silicon oxide film
JPH08125021A (en) Method of hardening multilayer sog film
JPS59190211A (en) Manufacture of thin silicon oxide film substrate having minute hollows and protrusions
JPH04217258A (en) Method and device for forming resist pattern
JPS5534416A (en) Method of manufacturing semiconductor device
JPS6313339B2 (en)
JP2023025521A (en) Optical filter and sterilizing device
JPS5892210A (en) Manufacture of semiconductor thin film
JP2008247635A (en) Optical member and its manufacturing method
JPS6151432B2 (en)
JPH0763048B2 (en) Resist curing system for semiconductor device manufacturing
JPS5890723A (en) Physical property changing method by laser beam irradiation
JPS6049302A (en) Manufacture of light guide
JPS6242519A (en) Manufacture of semiconductor device
JPH01159641A (en) Pattern forming method
JPH0151023B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term