JPH08191120A - Power semiconductor element substrate and manufacture thereof - Google Patents

Power semiconductor element substrate and manufacture thereof

Info

Publication number
JPH08191120A
JPH08191120A JP7002066A JP206695A JPH08191120A JP H08191120 A JPH08191120 A JP H08191120A JP 7002066 A JP7002066 A JP 7002066A JP 206695 A JP206695 A JP 206695A JP H08191120 A JPH08191120 A JP H08191120A
Authority
JP
Japan
Prior art keywords
power semiconductor
base
substrate
semiconductor element
chips
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7002066A
Other languages
Japanese (ja)
Inventor
Toshio Ogawa
敏夫 小川
Masaaki Takahashi
正昭 高橋
Noritaka Kamimura
典孝 神村
Kazuji Yamada
一二 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP7002066A priority Critical patent/JPH08191120A/en
Publication of JPH08191120A publication Critical patent/JPH08191120A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4911Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain
    • H01L2224/49111Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain the connectors connecting two common bonding areas, e.g. Litz or braid wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]

Abstract

PURPOSE: To obtain a power semiconductor element substrate, which inhibits thermal strain of ceramic chips while ensuring a high heat conductivity between the ceramic chips and a metal heat sink and makes the adhesion between both of the chips and the heat sink superior, by a method wherein AIN chips are buried in an Al/SiC base in such a way that the exposed surfaces of the AIN chips are on the same plane as the exposed surface of the base. CONSTITUTION: A power semiconductor element substrate is manufactured into such a structure that AIN chips 12 are buried in a base 13, which contains Al and SiC as its main component, by an injection molding method and the exposed surfaces (free surfaces) 12A of the chips 12 are on the same plane as the exposed surface 13A of the base 13. Power semiconductor elements 11 may be directly bonded to the surfaces of the chips 12, but are secured to the chips 12 via lower electrodes 17 as needed. In this case, a bridge-shaped electrode 18 is designed so that it is connected with the electrodes 17 of the elements 11 adjacent to the electrode 18 and ensures a current value requied for the several elements in all. As a result, the temperature rise of the power semiconductor elements is inhibited and a heat dissipation burden, which is applied to a heat sink, can be made small.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、放熱性と信頼性に優れ
た、パワー半導体素子搭載用の基板とその製造方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a substrate for mounting a power semiconductor element, which is excellent in heat dissipation and reliability, and a manufacturing method thereof.

【0002】[0002]

【従来の技術】パワー半導体素子は大電流駆動されるた
め発熱し、素子特性を維持するため放熱性に優れた搭載
基板が必要とされる。特に近年、高密度集積化や制御回
路との昆載化による小型、軽量化が進められているた
め、高密度熱流の放散が重要な課題となっている。
2. Description of the Related Art A power semiconductor device is driven by a large current to generate heat, and a mounting substrate excellent in heat dissipation is required to maintain device characteristics. In particular, in recent years, miniaturization and weight reduction have been promoted by high-density integration and integration with a control circuit, so that dissipation of high-density heat flow has become an important issue.

【0003】従来から発熱量の多いパワー半導体素子の
基板には、放熱性の優れた金属のヒートシンクが用いら
れ、絶縁性を保つため樹脂層を介してパワー半導体素子
や他の回路素子および電気配線が行われている。しか
し、樹脂層は熱伝導性が低いので、発熱量の多いパワー
半導体素子だけ金属のヒートシンク上に局部的に配設さ
れた熱良導性絶縁セラミクス板に固着する技術が開示さ
れている。
Conventionally, a heat sink made of metal having excellent heat dissipation has been used for a substrate of a power semiconductor element which generates a large amount of heat, and a power semiconductor element, other circuit elements and electric wiring are provided via a resin layer in order to maintain insulation. Is being done. However, since the resin layer has low thermal conductivity, a technique is disclosed in which only the power semiconductor element having a large amount of heat generation is fixed to the thermally conductive insulating ceramic plate locally arranged on the metal heat sink.

【0004】例えば、特開平1−290279号公報に
は、金属ヒートシンク上に塗布された樹脂絶縁層の所定
位置に開口部を設けてセラミクス絶縁板を島状に埋め込
み、このセラミクス絶縁板上にパワー半導体素子を固着
し、周辺の樹脂絶縁層上に電気配線する技術が開示され
ている。また、特開昭59−123250号公報には、
金属ヒートシンクに直接開口部を設けて開口部に熱良導
性絶縁セラミクスを島状に埋め込みメタライズ加工で接
着した上でセラミクス上にパワー半導体素子などを配置
する技術が開示されている。
For example, in Japanese Unexamined Patent Publication No. 1-290279, an opening is provided at a predetermined position of a resin insulating layer applied on a metal heat sink to embed the ceramic insulating plate in an island shape, and the power is applied on the ceramic insulating plate. A technique is disclosed in which a semiconductor element is fixed and electric wiring is provided on a peripheral resin insulating layer. Further, Japanese Patent Laid-Open No. 59-123250 discloses that
There is disclosed a technique in which an opening is directly provided in a metal heat sink, thermal conductive insulating ceramics are embedded in the opening in an island shape and bonded by a metallizing process, and then a power semiconductor element or the like is arranged on the ceramics.

【0005】一方、特開平5−36872号公報には、
金属ヒートシンク上に樹脂絶縁層を塗布後、パワー半導
体素子の設置部だけから樹脂絶縁層を完全に除去し、熱
良導性セラミクスである窒化アルミニューム(AlN)
を金属ヒートシンク上に直接半田づけし、更にその上に
パワー半導体素子を半田づけすることによって熱抵抗を
従来の1/2以下にする技術が開示されている。
On the other hand, Japanese Patent Laid-Open No. 5-36872 discloses that
After the resin insulation layer is applied on the metal heat sink, the resin insulation layer is completely removed only from the installation site of the power semiconductor element, and aluminum nitride (AlN), which has good thermal conductivity, is used.
There is disclosed a technique in which the heat resistance is reduced to 1/2 or less of the conventional value by directly soldering the metal semiconductor on a metal heat sink and further soldering a power semiconductor element on the metal heat sink.

【0006】[0006]

【発明が解決しようとする課題】前記した従来技術は、
いずれも金属ヒートシンクと熱良導性絶縁セラミクスの
ヒートシンク作用を組み合わせる目的で開発され、それ
ぞれパワー半導体素子の熱抵抗を低減する上で効果はあ
る。しかし、樹脂層の加工性と接着性を利用する特開平
1−290279号公報記載技術は量産性に優れている
が、金属ヒートシンクとセラミクスとの間に樹脂層が薄
く介在するので熱抵抗の低減効果が小さく、大出力素子
や高密度集積化の場合不十分である。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
Both were developed for the purpose of combining the heat sink effect of the metal heat sink and the heat conductive insulating ceramics, and each is effective in reducing the thermal resistance of the power semiconductor element. However, the technique described in Japanese Patent Application Laid-Open No. 1-290279, which utilizes the processability and adhesiveness of the resin layer, is excellent in mass productivity, but the resin layer is thinly interposed between the metal heat sink and the ceramics, so that the thermal resistance is reduced. The effect is small, and it is insufficient in the case of a high output device or high density integration.

【0007】また、金属ヒートシンクとBeOセラミク
スを金属で接着した特開昭59−123250号公報記
載技術は、熱抵抗低減効果や寄生容量遮断効果は大きい
が、金属とセラミクス間の熱膨張係数の違いによる熱応
用力が大きく、接着強度や素子特性に影響を及ぼすとい
う信頼性の問題が生ずる。
The technique described in Japanese Patent Laid-Open No. 59-123250, in which a metal heat sink and BeO ceramics are bonded with a metal, has a large effect of reducing the thermal resistance and the effect of blocking the parasitic capacitance, but the difference in the coefficient of thermal expansion between the metal and the ceramics. As a result, there is a problem of reliability that the heat application power is large and the adhesive strength and element characteristics are affected.

【0008】一方、樹脂層を完全に局部除去して金属ヒ
ートシンクとAlNを接合する特開平5−36872号
公報記載技術は、熱抵抗低減効果が著しい反面、パワー
半導体素子のAlNへ固着後の高さが周囲の配線部分と
異なるため固体配線、従って大規模集積化が困難であ
り、また熱歪による接着性や素子特性への影響にも問題
が残っている。熱歪は、セラミクスと金属との熱膨張係
数差に起因するもので、パワー半導体素子が駆動されて
発熱した時温度上昇し、半導体素子の休止時に温度下降
するヒートサイクルによって、セラミクスに熱疲労を生
じてクラックが発生したり、熱歪応力が半導体素子の接
合特性を変化させて所定の機能(pn接合特性)に影響
を及ぼすのである。
On the other hand, the technique described in Japanese Patent Laid-Open No. 5-36872, in which the resin layer is completely removed locally and the metal heat sink and AlN are joined, has a remarkable effect of reducing the thermal resistance, but on the other hand, it is highly effective after being fixed to AlN of the power semiconductor element. However, solid wiring, and therefore large-scale integration, is difficult because of the difference from the surrounding wiring portion, and there is a problem in that the adhesiveness due to thermal strain and the influence on device characteristics remain. Thermal strain is caused by the difference in the coefficient of thermal expansion between ceramics and metal. When the power semiconductor element is driven to generate heat, the temperature rises and the temperature decreases when the semiconductor element is at rest. The cracks are generated, and the thermal strain stress changes the junction characteristics of the semiconductor element to affect a predetermined function (pn junction characteristic).

【0009】この問題を解決するために、特開昭64−
12559号公報では、熱良導性セラミクス、例えばA
lNとパワー半導体素子との間に多孔質の粒子状フィラ
ーを分散させたマトリクス金属から成る複合部材を配置
し、熱膨張係数差によって生ずる熱歪をフィラーの空隙
によって吸収する試みが開示されている。しかし、この
技術は、多数の層状材料を積層したりする工程や組成の
調整が煩雑であり、量産或は高密度集積化が難しいとい
う問題点をもっている。
To solve this problem, Japanese Patent Laid-Open No. 64-64-
In Japanese Patent No. 12559, thermal conductive ceramics, for example, A
An attempt is made to dispose a composite member made of a matrix metal in which a porous particulate filler is dispersed between 1N and a power semiconductor element, and to absorb thermal strain caused by a difference in thermal expansion coefficient by the voids of the filler. . However, this technique has a problem that the process of laminating a large number of layered materials and the adjustment of the composition are complicated, and mass production or high-density integration is difficult.

【0010】本発明の目的は、パワー半導体素子を搭載
するセラミクスチップと金属ヒートシンク間の高い熱伝
導性を確保しつつ熱歪の問題を解消し、両者間の高い接
着性と量産性、軽量化を併せて達成できるパワー半導体
素子用基板とその製造方法を提供することである。
An object of the present invention is to solve the problem of thermal distortion while ensuring high thermal conductivity between a ceramics chip mounting a power semiconductor element and a metal heat sink, and to achieve high adhesiveness between them, mass productivity, and weight reduction. It is another object of the present invention to provide a substrate for a power semiconductor device and a method for manufacturing the same, which can achieve both of

【0011】[0011]

【課題を解決するための手段】本発明では、アルミニュ
ームマトリクスにSiC粒子をとして分散して成るベー
スと、このベースのデバイス装荷側表面近傍に露出面が
デバイス装荷側表面と同一平面上に在る如くして埋め込
まれた島状のAlNから成る素子搭載用チップと、を含
むパワー半導体素子用基板を開示する。
In the present invention, a base formed by dispersing SiC particles in an aluminum matrix and an exposed surface in the vicinity of the device loading side surface of the base are coplanar with the device loading side surface. Disclosed is a power semiconductor element substrate including an element mounting chip made of island-shaped AlN embedded as described above.

【0012】前記ベースは、放熱性を高めるために溝状
に加工した放熱面を有したり、或はベースに冷媒流路を
埋め込み配設したり工夫することもできる。
The base may have a heat-dissipating surface processed into a groove shape in order to enhance heat dissipation, or a coolant passage may be embedded in the base so as to be devised.

【0013】前記素子搭載用チップ形状は、前記ベース
に埋め込まれた領域がその自由表面より大きくすること
ができる。
In the element mounting chip shape, the region embedded in the base can be larger than its free surface.

【0014】これら本発明のパワー半導体素子用基板
は、予め所定形状に製造されたモールド内に平面形状の
露出面を有するAlNの素子搭載用チップを設置し、射
出成形法を利用してアルミニュームマトリクスにSiC
を分散したベース材料を含む原料を前記モールド内に注
入充填してこの原料と前記チップを露出面以外の領域で
接触させ、その後加熱または冷却によって固化成形する
方法によって製造することができる。
In these power semiconductor device substrates of the present invention, an AlN device mounting chip having a planar exposed surface is placed in a mold which is manufactured in a predetermined shape in advance, and an aluminum is formed by using an injection molding method. SiC in matrix
It can be manufactured by a method in which a raw material containing a dispersed base material is injected and filled into the mold, the raw material and the chip are brought into contact with each other in an area other than the exposed surface, and thereafter, solidification molding is performed by heating or cooling.

【0015】前記原料が有機樹脂バインダーや添加助剤
を含む場合は、加熱処理によってバインダーを蒸発させ
て焼結させる。また前記原料が前記ベース材料の溶融混
合物である場合は、冷却処理によってパワー半導体素子
用基板を形成する。
When the raw material contains an organic resin binder or an addition aid, the binder is evaporated by heat treatment to be sintered. When the raw material is a molten mixture of the base material, a power semiconductor device substrate is formed by cooling.

【0016】[0016]

【作用】AlNは高い熱伝導率(約150W/m・k)
を有するセラミクスであり、これをパワー半導体素子用
チップとしてその上に直接パワー半導体素子を固着する
と共に、AlNチップを、露出面を残してアルミニュー
ムマトリクスに埋め込むことによってパワー半導体素子
から発生する熱流を非常に低い熱抵抗の下に速やかにヒ
ートシンクに導くことができる。SiCを分散したAl
マトリクス(以下Al:SiCと略記)から成るベース
は、金属に近い高い熱伝導率を有し、放熱面を複数本の
平行溝状に加工して面積を増したり、或はベース内部に
強制流動される冷媒の流路を設けるなどして熱交換を行
えば、良好なヒートシンク機能を発揮する。
[Function] AlN has a high thermal conductivity (about 150 W / m · k)
Which is used as a chip for a power semiconductor element, a power semiconductor element is directly fixed on the chip, and an AlN chip is embedded in an aluminum matrix leaving an exposed surface to prevent heat flow generated from the power semiconductor element. It can quickly lead to a heat sink with very low thermal resistance. Al with SiC dispersed
The base consisting of a matrix (hereinafter abbreviated as Al: SiC) has a high thermal conductivity similar to that of metal, and the heat dissipation surface is processed into a plurality of parallel grooves to increase the area, or forced flow inside the base. If heat exchange is performed by providing a flow path for the generated cooling medium, a good heat sink function is exhibited.

【0017】AlNチップは、露出面よりも埋め込まれ
た内部領域で広い形状を有するように設計されている
と、ヒートシンクであるAl:SiCとの接触面がより
広がるため、熱放散がより速やかに惹起する。
If the AlN chip is designed so as to have a wider shape in the inner region embedded than the exposed surface, the contact surface with the heat sink Al: SiC becomes wider, so that the heat dissipation becomes faster. Provoke.

【0018】AlNは搭載するパワー半導体素子の構成
半導体であるSiやGaAsと熱膨張係数が近く(5.
6×10-6-1)、ヒートサイクルによって発生する熱
歪応力が小さいので、トラブルが少ない。また、Al:
SiCベースは、小さな熱膨張係数を有するSiC粒子
を適量分散することによって熱膨張係数をAlNチップ
に近似させることができる。発生する熱歪は分散させた
SiC粒子(フィラー)の空孔によってある程度吸収で
きる。
AlN has a thermal expansion coefficient close to that of Si or GaAs, which is a constituent semiconductor of the power semiconductor element to be mounted (5.
6 × 10 −6 K −1 ), and the thermal strain stress generated by the heat cycle is small, so there are few troubles. Also, Al:
The SiC base can have a thermal expansion coefficient close to that of an AlN chip by dispersing an appropriate amount of SiC particles having a small thermal expansion coefficient. The generated thermal strain can be absorbed to some extent by the pores of the dispersed SiC particles (filler).

【0019】AlNチップを、予め設計したパターンに
基づいて製造したモールドの所定位置に載置し、その後
射出成形法によってモールドに原料を充填してAl:S
iCベースを形成すると、AlNチップやAl:SiC
ベースが放熱特性を考慮した複雑な形状を有していても
容易に両者を密着させ、且つ平坦な自由表面をもつ基板
を成形することができる。
An AlN chip is placed on a predetermined position of a mold manufactured based on a predesigned pattern, and then a raw material is filled into the mold by an injection molding method to form Al: S.
When the iC base is formed, AlN chips and Al: SiC
Even if the base has a complicated shape in consideration of heat dissipation characteristics, it is possible to easily bring them into close contact with each other and form a substrate having a flat free surface.

【0020】AlNとAl:SiCは、熱膨張係数が近
似しているだけでなく、主成分であるAlを共有してい
るため、成形の熱的プロセス中に境界領域で成分の相互
拡散を生じたり、Alの分子結合が生じたりして界面で
接合強度が非常に高くなるという特質がある。従って、
伝熱特性や、および工程簡略化の点で有利である。ま
た、AlN及びAl:SiCは比重が小さいために、基
板の軽量化に資することができる。
Since AlN and Al: SiC not only have similar thermal expansion coefficients but also share Al as the main component, mutual diffusion of components occurs in the boundary region during the thermal process of molding. Alternatively, there is a characteristic that the bonding strength becomes very high at the interface due to the occurrence of Al molecular bond. Therefore,
It is advantageous in terms of heat transfer characteristics and process simplification. Further, since AlN and Al: SiC have small specific gravity, they can contribute to weight reduction of the substrate.

【0021】[0021]

【実施例】本発明を以下に基づき、より詳しく述べる。 (実施例その1)図1は、本発明の一実施例による基板
上にパワー半導体素子および周辺回路を搭載した状態を
示す断面図である。図において、11は例えばIGBT
(Insulated Gate Bipolar Transistor)等のパワー半
導体素子、12はAlNチップ、13はベースで13a
がAlを主成分とする金属マトリクス、13bがSiC
粒子から成るフィラーである。14は放熱部、15はワ
イア、17は下部電極、18は橋状電極、19は導体回
路配線、20は導体回路配線19を上面に配設した絶縁
層である。
The present invention will be described in more detail based on the following. (Embodiment 1) FIG. 1 is a sectional view showing a state in which a power semiconductor element and peripheral circuits are mounted on a substrate according to an embodiment of the present invention. In the figure, 11 is an IGBT, for example.
Power semiconductor device such as (Insulated Gate Bipolar Transistor), 12 is an AlN chip, 13 is a base 13a
Is a metal matrix containing Al as a main component, and 13b is SiC
It is a filler composed of particles. Reference numeral 14 is a heat radiating portion, 15 is a wire, 17 is a lower electrode, 18 is a bridge electrode, 19 is a conductor circuit wiring, and 20 is an insulating layer having a conductor circuit wiring 19 arranged on the upper surface.

【0022】AlNチップ12は後述する射出成形法に
よってAl:SiCを主成分とするベース13に埋め込
まれており、その露出面(自由表面)12Aはベース1
3の露出面13Aと同一平面上にあるように製造されて
いる。
The AlN chip 12 is embedded in a base 13 whose main component is Al: SiC by an injection molding method described later, and its exposed surface (free surface) 12A is the base 1.
It is manufactured so as to be on the same plane as the exposed surface 13 </ b> A of No. 3.

【0023】パワー半導体素子11は、AlNチップ1
2表面にダイレクトボンディングされてもよいが必要に
応じて下部電極17を介してAlNチップ12に固着さ
れる。この場合橋状電極18が隣接するパワー半導体素
子11の下部電極17に接続され、数素子(図の場合は
2素子)あわせて必要な電流値を確保するように設計さ
れる。この結果、各パワー素子の温度上昇が抑制され、
ヒートシンクにかかる放熱負担を、従って熱歪を小さく
することができる。図1の他のAlNチップ12上に
は、パワー半導体素子11以外の素子、例えば制御回路
素子等が固着され、それぞれワイヤ15を介して素子間
或は導体回路配線19に接続されている。
The power semiconductor element 11 is an AlN chip 1
Although it may be directly bonded to the surface 2, it is fixed to the AlN chip 12 via the lower electrode 17 if necessary. In this case, the bridge-shaped electrode 18 is connected to the lower electrode 17 of the adjacent power semiconductor element 11 and is designed so as to secure a necessary current value for several elements (two elements in the case of FIG. 2). As a result, the temperature rise of each power element is suppressed,
It is possible to reduce the heat radiation load applied to the heat sink and thus the thermal strain. On the other AlN chip 12 in FIG. 1, elements other than the power semiconductor element 11, such as a control circuit element, are fixed, and are connected to each other or to the conductor circuit wiring 19 via wires 15.

【0024】ベース13の成分は、Alをマトリクスと
するが、SiCフィラーとの混合特性を改善したり、融
点や機械的強度を調整する目的でSi、Mg、Zn、C
u、FeおよびCr等の合金元素を添加することができ
る。フィラー13bのSiC粒子は直径10〜100μ
m程度のものが通常用いられる。粒子形状は成形性の観
点から球状が好ましいが、異形や多角形状であってもよ
い。ベース13は間接形成法または直接形成法によって
製造される。以下各方法を説明する。
The component of the base 13 has Al as a matrix, but Si, Mg, Zn, C are used for the purpose of improving the mixing characteristics with the SiC filler and adjusting the melting point and mechanical strength.
Alloying elements such as u, Fe and Cr can be added. The SiC particles of the filler 13b have a diameter of 10 to 100 μm.
Those of about m are usually used. The particle shape is preferably spherical from the viewpoint of moldability, but may be irregular or polygonal. The base 13 is manufactured by an indirect forming method or a direct forming method. Each method will be described below.

【0025】図2は、間接成形法のプロセスを示すフロ
ーチャートである。各材料を混合して後の混練、乾燥工
程は省略することもできる。この二つの工程は、原料の
マトリクスやフィラーの各粒子をバインダーによくなじ
ませ、成形性を向上させる上で効果がある。
FIG. 2 is a flow chart showing the process of the indirect molding method. The subsequent kneading and drying steps after mixing the respective materials can be omitted. These two steps are effective in making the matrix of the raw material and each particle of the filler fit well to the binder and improving the moldability.

【0026】バインダーは有機樹脂系が中心であるが、
その組成選定は射出成形工程で得られるグリーン成形体
31の形状、寸法精度を決める上で重要である。成形性
と脱脂性とを考慮して表1に示す材料の組合せを用い
た。
The binder is mainly an organic resin type,
The selection of the composition is important in determining the shape and dimensional accuracy of the green molded body 31 obtained in the injection molding process. The combination of materials shown in Table 1 was used in consideration of moldability and degreasing property.

【表1】 [Table 1]

【0027】脱脂工程は、バインダーの分散による急激
なガス発生を抑制するため、比較的穏やかな(15゜C
/hr以下)温度上昇によって行われる。脱脂後の表面
処理および乾燥工程は、含浸工程での形状破壊を防ぐ目
的で行われるが、省略するこも可能である。
The degreasing process is performed at a relatively gentle temperature (15 ° C.) in order to suppress the rapid gas generation due to the dispersion of the binder.
/ Hr or less) The temperature is increased. The surface treatment and the drying step after degreasing are performed for the purpose of preventing the shape destruction in the impregnation step, but can be omitted.

【0028】表面処理、乾燥工程は、例えば水ガラスな
どの無機液状バインダーを脱脂した成形体表面に噴霧し
て後乾燥硬化させて無機バインダー粒子間の結合を高め
るものである。同様の目的で添加助剤として、原料や有
機バインダーと共に予めカルコゲナイドガラス等の低軟
化温度ガラスや金属酸化物等を用いる場合もある。この
場合は、乾燥工程でこれら添加助剤の融点以上に加熱す
る必要がある。但し、これら無機バインダーや添加助剤
は高濃度添加すると、熱伝導性を低下させる原因となる
ので、必要最小限の量にとどめなければならない。
In the surface treatment and drying steps, for example, an inorganic liquid binder such as water glass is sprayed on the surface of the degreased molded article and then dried and cured to enhance the bond between the inorganic binder particles. For the same purpose, a low softening temperature glass such as chalcogenide glass or a metal oxide may be previously used together with a raw material and an organic binder as an addition aid. In this case, it is necessary to heat above the melting points of these addition aids in the drying step. However, if these inorganic binders and addition aids are added in high concentrations, they will cause a decrease in thermal conductivity, so they must be kept to the minimum necessary amount.

【0029】含浸工程は、溶融マトリクスを成形体の粒
子間に充填する工程であり、図4または図5のようにし
て行うのが典型である。
The impregnation step is a step of filling the molten matrix between the particles of the molded body, and is typically performed as shown in FIG. 4 or 5.

【0030】図3は、図2の射出成型工程においてグリ
ーン成形体31を形成する様子を示す模式図である。所
定形状に加工されたモールド32のキャビティ部に混合
材料33がモータ35に駆動された加圧機構部34によ
って圧入充填され、グリーン成形体31となる。
FIG. 3 is a schematic view showing how the green molded body 31 is formed in the injection molding process of FIG. The mixed material 33 is press-fitted and filled into the cavity of the mold 32 processed into a predetermined shape by the pressurizing mechanism 34 driven by the motor 35 to form the green molded body 31.

【0031】図4は、減圧チャンバー内における溶融マ
トリクス含浸のプロセスを示す模式図である。脱脂、表
面処理、乾燥された成形体41が金属溶融器43内に載
置され、溶融金属42中にディップされる。金属浴容器
43はチャンバー44内に収納されており、チャンバー
44内は排気ポンプ45によって減圧状態にある。
FIG. 4 is a schematic view showing the process of molten matrix impregnation in the vacuum chamber. The degreased, surface-treated, and dried compact 41 is placed in the metal melter 43 and dipped in the molten metal 42. The metal bath container 43 is housed in the chamber 44, and the inside of the chamber 44 is depressurized by the exhaust pump 45.

【0032】一方、図5は溶融マトリクス金属の加速含
浸方法を示す模式図である。成形体41は、大気圧によ
って加圧された状態の溶融マトリクス金属を含浸され
る。成形体41は、フィルター部51を介して排気ポン
プ45で減圧された状態にあるので、図4の場合よりも
速やかに溶融マトリクス金属が成形体41の粒子間に充
填される。
On the other hand, FIG. 5 is a schematic diagram showing a method of accelerated impregnation of molten matrix metal. The molded body 41 is impregnated with the molten matrix metal which is pressurized by the atmospheric pressure. Since the formed body 41 is depressurized by the exhaust pump 45 via the filter portion 51, the molten matrix metal is filled between the particles of the formed body 41 more quickly than in the case of FIG.

【0033】図6は、直接成形法の原理を示す。所定形
状に製造されたモールド62内にAlNチップ12を例
えば図のように載置し、下方よりSiC粒子を分散した
溶融Alマトリクス61をモールド62内に流入せしめ
る。モールド下方の溶融マトリクス流出孔にはフィルタ
部51が設けられており、内部のガスは抜けるが溶融塩
は流出しない構造になっている。加圧用シャフト64を
操作して63の方向に溶融塩を押せば、AlNチップ1
2の底面に溶融塩が密着し、またモールド62内に充満
する。このまま冷却すれば、成形された基板ができる。
溶融塩に分散するSiC粒子の表面に予め、例えばN
i、Zn、Mg等の金属皮膜を被着させておけば、Si
C粒子とマトリクスとの濡れが向上し、従ってAlマト
リクス中での分散性が高まる。
FIG. 6 shows the principle of the direct molding method. The AlN chip 12 is placed in a mold 62 manufactured in a predetermined shape, for example, as shown in the figure, and a molten Al matrix 61 having SiC particles dispersed therein is made to flow into the mold 62 from below. A filter portion 51 is provided in the molten matrix outflow hole below the mold, and has a structure in which gas in the inside is released but molten salt is not outflowed. By operating the pressurizing shaft 64 and pressing the molten salt in the direction of 63, the AlN chip 1
Molten salt adheres to the bottom surface of No. 2 and fills the mold 62. If it is cooled as it is, a molded substrate is formed.
The surface of the SiC particles dispersed in the molten salt is preliminarily formed with N
If a metal film of i, Zn, Mg, etc. is deposited, Si
The wetting of the C particles with the matrix is improved and therefore the dispersibility in the Al matrix is increased.

【0034】ベース13の下面に設けられた放熱部14
は図1で示したように複数本の平行な溝を設けることに
よって放熱面積を増すことができるが、このような複雑
な形状のベースも、射出成型によって簡単に一体形成で
きる特徴がある。
A heat dissipation portion 14 provided on the lower surface of the base 13
As shown in FIG. 1, the heat radiation area can be increased by providing a plurality of parallel grooves. However, such a complicated base can be easily integrally formed by injection molding.

【0035】(実施例その2)図7は、本発明の別の実
施例によるパワー半導体素子用基板に素子等を配置した
断面図である。本実施例においては、Alを主成分とす
る金属マトリクス13aとSiC粒子から成るフィラー
13bとで構成される。ベース13内に冷却用パイプ2
1が配設されている。通電によってパワー半導体素子が
発熱すると、冷却用パイプ21内に外部から水などの冷
媒がポンプ(図示せず)によって注入され、AlNチッ
プ12を経てベース13内に伝搬する熱エネルギーを速
やかに交換してベース13を冷却する。この結果、ベー
ス13の熱抵抗は極めて低い水準に低下する。
(Embodiment 2) FIG. 7 is a sectional view showing elements and the like arranged on a power semiconductor element substrate according to another embodiment of the present invention. In this embodiment, it is composed of a metal matrix 13a containing Al as a main component and a filler 13b made of SiC particles. Cooling pipe 2 in base 13
1 is provided. When the power semiconductor element generates heat due to energization, a coolant such as water is injected into the cooling pipe 21 from the outside by a pump (not shown), and the thermal energy propagating through the AlN chip 12 and into the base 13 is quickly exchanged. To cool the base 13. As a result, the thermal resistance of the base 13 drops to an extremely low level.

【0036】図7に示したようなパワー半導体素子用基
板は、ベース13を図6で示した直接成形法で作ること
によって容易に得られる。予めモールド62内の所定位
置にAlNチップ12と冷却用パイプ21とを固設して
おき、溶融塩注入孔からSiCフィラー分散Alマトリ
クス融液をアキュラッド法によって比較的ゆっくり注入
して冷却用パイプ21と融液との接触性を高める。モー
ルド62のキャビティ内に溶融塩が完全に充填したら徐
冷して図示した基板を得るのである。
The power semiconductor device substrate as shown in FIG. 7 can be easily obtained by forming the base 13 by the direct molding method shown in FIG. The AlN chip 12 and the cooling pipe 21 are fixedly installed at predetermined positions in the mold 62 in advance, and the SiC filler-dispersed Al matrix melt is relatively slowly injected from the molten salt injection hole by the Accurad method to cool the pipe 21. And improve the contact with the melt. When the cavity of the mold 62 is completely filled with the molten salt, it is gradually cooled to obtain the substrate shown.

【0037】(実施例その3)図8は、本発明の更に別
の実施例によるパワー半導体素子用基板とその上面に配
置した素子等を示す断面図である。本実施例において
は、ベース13に埋め込まれるAlNチップ12の形状
がステップ状に2段になっている。深い位置に埋め込ま
れた下段の周囲を広くベース13のAl:SiCが取り
囲み、AlNとAl:SiCの接触面積が増すと共に機
構的に剥離し難い構造となるので、チップとベースの熱
伝導および接着強度が更に改善される。
(Embodiment 3) FIG. 8 is a cross-sectional view showing a power semiconductor device substrate according to still another embodiment of the present invention and devices arranged on the upper surface thereof. In this embodiment, the shape of the AlN chip 12 embedded in the base 13 is stepwise in two stages. Since the Al: SiC of the base 13 is widely surrounded around the lower stage embedded in the deep position, and the contact area between AlN and Al: SiC is increased and the structure is hard to peel off mechanically, heat conduction and adhesion between the chip and the base. The strength is further improved.

【0038】(実施例その4)本発明によるAlNチッ
プ埋め込みAl:SiCベース基板の熱抵抗値をチップ
サイズをパラメーターにして調べ、従来のAl:SiC
ベース上に樹脂層を介してAlNチップを配設した基板
と比較した。
(Example 4) The thermal resistance of the Al: SiC base substrate embedded with an AlN chip according to the present invention was investigated using the chip size as a parameter, and the conventional Al: SiC was used.
A comparison was made with a substrate in which an AlN chip was provided on a base via a resin layer.

【0039】図9は、前記した間接成形法を用いてベー
ス13を射出成型することによりAlNチップ12を埋
め込み形成した本発明のパワー半導体素子用基板であ
る。パワー素子の熱抵抗を調べるために、AlNチップ
12上に下部電極17を介してパワー半導体素子11を
固着した。パワー半導体素子11の周辺には絶縁層20
を介して制御回路系の導体配線19aおよびパワー回路
系の導体配線19bが2層に配置され、更にこれら導体
回路配線19とパワー半導体素子11とがAlのワイア
ボンディングによって電気的に接続されている。パワー
半導体素子11の下部電極17とパワー回路系の導体配
線19bは、更に橋状導体17によって接合されてい
る。
FIG. 9 shows a power semiconductor device substrate of the present invention in which the AlN chip 12 is embedded and formed by injection molding the base 13 using the above-mentioned indirect molding method. In order to examine the thermal resistance of the power element, the power semiconductor element 11 was fixed on the AlN chip 12 via the lower electrode 17. An insulating layer 20 is provided around the power semiconductor element 11.
The conductor wiring 19a of the control circuit system and the conductor wiring 19b of the power circuit system are arranged in two layers via the wirings, and the conductor circuit wiring 19 and the power semiconductor element 11 are electrically connected by Al wire bonding. . The lower electrode 17 of the power semiconductor element 11 and the conductor wiring 19b of the power circuit system are further joined by a bridge-shaped conductor 17.

【0040】図10は、Al:SiCから成るベース1
3上に塗布されたエポキシ樹脂から成る絶縁層20に凹
部を設け、その位置にAlNチップ12を埋め込んだ従
来型のパワー半導体素子用基板と基板に搭載されたデバ
イスを示す断面図である。AlNチップ12底部とベー
ス13上部との間隔(樹脂層厚み)は0.15mmであ
る。図示した通り、基板の状態が異なるだけで搭載して
あるデバイスや配線は図9と全く同じである。また、各
要素のサイズも図9と全く同じである。
FIG. 10 shows a base 1 made of Al: SiC.
FIG. 3 is a cross-sectional view showing a conventional power semiconductor device substrate in which a recess is provided in an insulating layer 20 made of an epoxy resin applied on 3 and an AlN chip 12 is embedded in the recess, and a device mounted on the substrate. The space (resin layer thickness) between the bottom of the AlN chip 12 and the top of the base 13 is 0.15 mm. As shown in the drawing, the devices and wirings mounted are the same as those in FIG. 9 except that the state of the substrate is different. Also, the size of each element is exactly the same as in FIG.

【0041】図9、図10では、パワー半導体素子11
として定格600V、20AのIGBTを用いた。IG
BTの寸法は4.9×4.9mm2である。この素子を
40Wで100ms駆動した時の基板の熱抵抗を測定し
た。得られた結果を図示したのが、図11である。図1
1によれば、本発明による基板ではチップサイズによる
熱抵抗値は殆ど変化なく、しかも従来品の1/2以下で
あることがわかる。従来方法で製造したばあいAlNチ
ップサイズが大きくなるにつれて熱抵抗値が下がるの
は、AlNチップの放熱効果による。外挿すると、Al
Nチップ法が30×30mm2以上の領域で本実施例の
場合とほぼ同じ熱抵抗値が得られることになるが、基板
上へのデバイスの高密度実装を考慮すると、非現実的な
数値である。
In FIGS. 9 and 10, the power semiconductor device 11 is shown.
An IGBT having a rating of 600 V and 20 A was used as the. IG
The size of BT is 4.9 x 4.9 mm 2 . The thermal resistance of the substrate was measured when the device was driven at 40 W for 100 ms. The obtained results are shown in FIG. FIG.
According to No. 1, it can be seen that the substrate according to the present invention shows almost no change in the thermal resistance value depending on the chip size, and is less than half that of the conventional product. When manufactured by the conventional method, the thermal resistance value decreases as the AlN chip size increases because of the heat dissipation effect of the AlN chip. When extrapolated, Al
In the N-chip method, in the region of 30 × 30 mm 2 or more, almost the same thermal resistance value as in the case of the present embodiment can be obtained, but it is an unrealistic value in consideration of high-density mounting of devices on the substrate. is there.

【0042】このような本発明による基板の低熱抵抗値
は、射出成型法を用いてAlNチップ12をAl:Si
Cベース13に精度よく埋め込むことによって得られた
もので、図11は本発明の優れた特性を示すものであ
る。
The low thermal resistance value of the substrate according to the present invention is obtained by using the injection molding method to form the AlN chip 12 into Al: Si.
It is obtained by precisely embedding it in the C base 13, and FIG. 11 shows the excellent characteristics of the present invention.

【0043】図12は、本実施例のパワー半導体装置を
使ってのモータ200の制御装置を示す。パワー半導体
部100は、パワートランジスタPT1〜PT6、ダイオ
ードD1〜D6より成り、3相U、V、Wのモータ200
の回転数制御やトルク制御を行う。400は直流電源、
500は平滑コンデンサである。更に、外部の制御回路
部22は、各パワートランジスタPT1〜PT6のゲート
(ベース)A1〜B3の制御を行う。図13は、図12の
制御回路部22とパワー半導体部100との実施例図で
あり、特に上面部である。各記号は、図1等ですでに示
した通りである。尚、23はドライバー用ICである。
FIG. 12 shows a control device for the motor 200 using the power semiconductor device of this embodiment. The power semiconductor unit 100 includes power transistors PT 1 to PT 6 and diodes D 1 to D 6 and is a three-phase U, V, W motor 200.
Rotation speed control and torque control are performed. 400 is a DC power supply,
Reference numeral 500 is a smoothing capacitor. Furthermore, the external control circuit unit 22 controls the gates (bases) A 1 to B 3 of the power transistors PT 1 to PT 6 . FIG. 13 is an embodiment diagram of the control circuit unit 22 and the power semiconductor unit 100 of FIG. 12, particularly the upper surface portion. Each symbol is as already shown in FIG. Reference numeral 23 is a driver IC.

【0044】以上実施例を用いて本発明を説明したが、
本発明はこれらにとどまるものではない。例えば、ベー
ス13との接着強度を強固にするために、AlNチップ
12の界面に予めメタライズ加工をしておいてもよい。
この場合には、前記したような一回の射出成型によるチ
ップ/ベースの接触ではなく、射出成型時にセラミクッ
クチップのダミーを準備するなどして、ベース13の表
面に所定寸法の溝部を設け、その中にメタライズ加工し
たAlNチップ12を嵌合する方式が好ましい。
The present invention has been described above with reference to the embodiments.
The present invention is not limited to these. For example, in order to strengthen the adhesive strength with the base 13, the interface of the AlN chip 12 may be previously metallized.
In this case, a groove of a predetermined size is provided on the surface of the base 13 by preparing a dummy of a ceramic cook chip during injection molding instead of contacting the chip / base by a single injection molding as described above. A method in which the metallized AlN chip 12 is fitted therein is preferable.

【0045】本発明の基板に搭載するに好適なパワー半
導体素子は、前記したIGBT以外に大出力のサイリス
タや大電流用ダイオードであってもよい。また、Si系
半導体以外にもGaAs系半導体にも適用することがで
きる。
The power semiconductor element suitable for mounting on the substrate of the present invention may be a high output thyristor or a high current diode other than the above-mentioned IGBT. In addition to Si-based semiconductors, it can be applied to GaAs-based semiconductors.

【0046】[0046]

【発明の効果】以上説明したように、本発明によれば以
下の効果が得られる。 1.基板を構成するAlNチップとAl:SiCベース
との熱膨張係数差が小さく、また射出成型法による一体
化プロセスの加熱処理時に主成分のAl原子を共有する
関係から界面での相互拡散およびAlの化学結合が誘発
されて強い接着強度が得られる。AlNチップと半導体
素子の熱膨張係数差も小さいため、素子駆動時の熱歪が
小さく高い信頼性が得られる。 2.射出成型法によるベース形成によって、複雑なベー
ス形状も容易に実現できるため、ベース内に冷却パイプ
を埋め込むなどして基板の熱抵抗値を大幅に引き下げる
ことができる。 3.パワー素子/AlNチップ/Al:SiCベースの
直接接着構造によって高い熱伝導率による大容量熱放散
が可能である。このため、基板上への高密度実装や基板
の小型化が可能となる。 4.AlN、Al:SiCが軽量であるため、小型、軽
量のパワー半導体素子用基板を形成することができる。
As described above, according to the present invention, the following effects can be obtained. 1. The difference in the coefficient of thermal expansion between the AlN chip that constitutes the substrate and the Al: SiC base is small, and because of the relationship that the main constituent Al atoms are shared during the heat treatment of the integration process by injection molding, mutual diffusion at the interface and Al A strong bond strength is obtained by inducing a chemical bond. Since the difference in the coefficient of thermal expansion between the AlN chip and the semiconductor element is also small, thermal strain during element driving is small and high reliability can be obtained. 2. Since a complicated base shape can be easily realized by forming the base by the injection molding method, the thermal resistance value of the substrate can be significantly reduced by embedding a cooling pipe in the base. 3. The power element / AlN chip / Al: SiC-based direct bonding structure enables large-capacity heat dissipation due to high thermal conductivity. Therefore, high-density mounting on the substrate and downsizing of the substrate are possible. 4. Since AlN and Al: SiC are lightweight, it is possible to form a small and lightweight substrate for power semiconductor elements.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例による基板上にパワー半導体素
子を実装した様子を示す断面図である。
FIG. 1 is a cross-sectional view showing how a power semiconductor device is mounted on a substrate according to an embodiment of the present invention.

【図2】間接成形法によるベース製造のプロセスを示す
フローチャートである。
FIG. 2 is a flowchart showing a process of manufacturing a base by an indirect molding method.

【図3】図2の射出成型工程においてグリーン成形体を
形成する様子を示す模式図である。
FIG. 3 is a schematic diagram showing how a green molded body is formed in the injection molding process of FIG.

【図4】間接形成法で溶融マトリクス含浸の様子を示す
模式図である。
FIG. 4 is a schematic diagram showing a state of molten matrix impregnation by an indirect formation method.

【図5】別の方法による溶融マトリクス含浸の様子示す
模式図である。
FIG. 5 is a schematic view showing a state of molten matrix impregnation by another method.

【図6】直接成形法によるベース製造の様子を示す模式
図である。
FIG. 6 is a schematic view showing a state of manufacturing a base by a direct molding method.

【図7】別の実施例による基板上にパワー半導体素子を
配設した様子を示す断面図である。
FIG. 7 is a sectional view showing a state in which a power semiconductor element is arranged on a substrate according to another embodiment.

【図8】更に別の実施例による基板上にパワー半導体素
子を載値した状態を示す断面図である。
FIG. 8 is a cross-sectional view showing a state in which a power semiconductor device is mounted on a substrate according to still another embodiment.

【図9】間接成形法を利用して製造したベースを含む本
発明のパワー半導体素子用基板にパワー素子と駆動回路
を実装した様子を示す断面図である。
FIG. 9 is a cross-sectional view showing a state in which a power element and a driving circuit are mounted on a power semiconductor element substrate of the present invention including a base manufactured by using an indirect molding method.

【図10】従来法によって製造した基板に図9と同じパ
ワー素子と駆動回路を実装した様子を示す断面図であ
る。
FIG. 10 is a cross-sectional view showing a state where the same power element and drive circuit as in FIG. 9 are mounted on a substrate manufactured by a conventional method.

【図11】図9と図10の各素子駆動時の基板の熱抵抗
値測定データである。
FIG. 11 is thermal resistance value measurement data of the substrate when each element of FIGS. 9 and 10 is driven.

【図12】本発明のモータ制御装置の一例を示す図であ
る。
FIG. 12 is a diagram showing an example of a motor control device of the present invention.

【図13】図12のモータ制御装置の一部の回路の実施
例図である。
13 is an embodiment diagram of a part of the circuit of the motor control device of FIG.

【符号の説明】[Explanation of symbols]

11 パワー半導体素子 12 AlNチップ 13 ベース 13a Alを主成分とする金属マトリクス 13b SiC粒子から成るフィラー 14 放熱部 15 ワイア 17 下部電極 18 橋状電極 19 導体回路配線 19a 制御回路系の導体配線 19b パワー回路系の導体配線 20 絶縁層 21 冷却用パイプ 31 グリーン成形体 32 モールド 33 混合材料 34 加圧機構部 35 モータ 41 脱脂、表面処理、乾燥された成形体 42 溶融金属 43 金属浴容器 44 チャンバー 45 排気ポンプ 51 フィルター部 61 溶融アルミニュームマトリクス 62 モールド 64 加圧用シャフト Reference Signs List 11 power semiconductor element 12 AlN chip 13 base 13a metal matrix containing Al as a main component 13b filler composed of SiC particles 14 heat dissipation portion 15 wire 17 lower electrode 18 bridge electrode 19 conductor circuit wiring 19a control circuit system conductor wiring 19b power circuit Conductor wiring of system 20 Insulating layer 21 Cooling pipe 31 Green molded body 32 Mold 33 Mixed material 34 Pressing mechanism part 35 Motor 41 Degreased, surface treated, dried molded body 42 Molten metal 43 Metal bath container 44 Chamber 45 Exhaust pump 51 Filter Part 61 Molten Aluminum Matrix 62 Mold 64 Pressure Shaft

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H05K 1/02 A H01L 23/46 Z (72)発明者 山田 一二 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 6 Identification number Internal reference number FI Technical indication location H05K 1/02 A H01L 23/46 Z (72) Inventor Koji Yamada 7 Omika-cho, Hitachi City, Ibaraki Prefecture 1-1-1, Hitachi, Ltd. Hitachi Research Laboratory

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 アルミニュームを主成分とする金属マト
リクスにSiCを分散して成るベースと、該ベースのデ
バイス装荷側表面近傍に露出面が該デバイス装荷側表面
と同一平面上に在る如くして埋め込まれた島状の窒化ア
ルミニューム(AlN)から成る素子搭載チップと、 を含むパワー半導体素子用基板。
1. A base in which SiC is dispersed in a metal matrix containing aluminum as a main component, and an exposed surface near the device loading side surface of the base is flush with the device loading side surface. A substrate for a power semiconductor element, which includes an element mounting chip made of island-shaped aluminum nitride (AlN) embedded therein.
【請求項2】 前記ベースの前記デバイス装荷側表面と
反対側の面(裏面)が、放熱面積を増加させるため平行
に複数本溝状加工されて成る請求項1記載のパワー半導
体素子用基板。
2. The substrate for a power semiconductor element according to claim 1, wherein a surface (back surface) of the base opposite to the surface on the device loading side is grooved in parallel to increase a heat radiation area.
【請求項3】 前記ベースの前記素子搭載用チップの埋
め込み領域より下方に、冷却用媒体の流路を配設して成
る請求項1記載のパワー半導体素子用基板。
3. The substrate for a power semiconductor element according to claim 1, wherein a flow path for a cooling medium is arranged below an embedded region of the element mounting chip of the base.
【請求項4】 前記素子搭載用チップの前記ベースへの
埋め込み断面が、前記デバイス装荷側表面においてより
前記ベース内部においてより大きくなる如く前記素子搭
載用チップの形状を設計した請求項1記載のパワー半導
体素子用基板。
4. The power according to claim 1, wherein the shape of the element mounting chip is designed so that the embedded cross section of the element mounting chip in the base becomes larger inside the base than on the device loading side surface. Substrate for semiconductor device.
【請求項5】 少なくとも一表面が平面形状を有する窒
化アルミニューム(AlN)から成る素子搭載用チップ
を所定個数だけ、平面形状を有する前記一表面が露出面
となる如くして予め所定形状に製造されたモールド内に
設置する第一の工程と、 アルミニュームマトリクスにSiCを分散しベース材料
を含む原料を前記モールド内に注入充填する射出成型法
を利用して、前記素子搭載用チップの前記露出面以外の
領域に前記原料を接触させパワー半導体素子用基板の形
状を形成する第二の工程と、 加熱または冷却のプロセスによってアルミニュームマト
リクスにSiCを分散したベースを固化成形する第三の
工程と、 より成るパワー半導体素子用基板の製造方法。
5. A predetermined number of element mounting chips made of aluminum nitride (AlN), at least one surface of which has a planar shape, are manufactured in a predetermined shape in advance so that the one surface having a planar shape becomes an exposed surface. The exposure of the chip for mounting the device by using a first step of placing in a molded mold and an injection molding method of injecting and filling a raw material including a base material containing SiC dispersed in an aluminum matrix into the mold. A second step of forming the shape of the power semiconductor element substrate by contacting the raw material with a region other than the surface, and a third step of solidifying and molding a base in which SiC is dispersed in an aluminum matrix by a heating or cooling process. A method for manufacturing a substrate for a power semiconductor device, comprising:
【請求項6】 前記原料がベース材料の粉末に有機樹脂
バインダーおよび添加助剤を混合して成る前記第二の工
程と、脱バインダー処理と焼結のプロセスを含む前記第
三の工程と、 を含んで成る請求項5記載のパワー半導体素子用基板の
製造方法。
6. The second step, wherein the raw material is a powder of a base material mixed with an organic resin binder and an addition aid, and the third step, which includes a debinding process and a sintering process. The method for manufacturing a substrate for a power semiconductor device according to claim 5, comprising.
【請求項7】 前記ベース材料から成る溶融混合物を前
記モールド内に充填する前記第二の工程と、冷却によっ
て前記溶融混合物を固化せしめる前記第三の工程と、 を含んで成る請求項5記載のパワー半導体素子用基板の
製造方法。
7. The second step of filling a molten mixture of the base material into the mold, and the third step of solidifying the molten mixture by cooling. Manufacturing method of substrate for power semiconductor device.
【請求項8】 請求項1〜4いずれかのパワー半導体素
子用基板の上記チップ上にパワー半導体素子を搭載して
なるパワー半導体装置。
8. A power semiconductor device having a power semiconductor element mounted on the chip of the power semiconductor element substrate according to claim 1.
JP7002066A 1995-01-10 1995-01-10 Power semiconductor element substrate and manufacture thereof Pending JPH08191120A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7002066A JPH08191120A (en) 1995-01-10 1995-01-10 Power semiconductor element substrate and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7002066A JPH08191120A (en) 1995-01-10 1995-01-10 Power semiconductor element substrate and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH08191120A true JPH08191120A (en) 1996-07-23

Family

ID=11518979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7002066A Pending JPH08191120A (en) 1995-01-10 1995-01-10 Power semiconductor element substrate and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH08191120A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001036349A1 (en) * 1999-11-17 2001-05-25 Electrovac, Fabrikation Elektrotechnischer Spezialartikel Gesellschaft M.B.H. Method for attaching a body, which is comprised of a metal matrix composite (mmc) material, to a ceramic body
JP2003086747A (en) * 2001-09-10 2003-03-20 Hitachi Ltd Insulation circuit board, its manufacturing method and semiconductor power element using the same
JP2005064131A (en) * 2003-08-08 2005-03-10 Denso Corp Semiconductor device
JP2005129577A (en) * 2003-10-21 2005-05-19 Dowa Mining Co Ltd Metal-ceramic joining substrate and its manufacturing method
KR100499398B1 (en) * 1997-12-31 2005-09-26 주식회사 하이닉스반도체 Heat dissipation package and its manufacturing method
DE102004022118A1 (en) * 2004-05-05 2005-11-24 Conti Temic Microelectronic Gmbh Arrangement for cooling an electronic unit and production of such an arrangement
JP2007056908A (en) * 2005-08-22 2007-03-08 Toyota Boshoku Corp Mounting bracket
JP2007227477A (en) * 2006-02-21 2007-09-06 Asahi Glass Co Ltd Ceramic circuit board, and its manufacturing method
JP2007281498A (en) * 2007-05-28 2007-10-25 Hitachi Metals Ltd Semiconductor power module
JP2007336793A (en) * 2006-05-16 2007-12-27 Denso Corp Power converter
CN102760703A (en) * 2011-04-28 2012-10-31 苏州科医世凯半导体技术有限责任公司 Composite substrate for high-power component
WO2014016085A3 (en) * 2012-07-25 2014-03-27 Conti Temic Microelectronic Gmbh Cooling device and method for producing a cooling device and circuit assembly having a cooling device
CN111312673A (en) * 2019-08-23 2020-06-19 北京绿能芯创电子科技有限公司 Embedded ceramic plate and heat radiating device formed by metal alloy die-casting and manufacturing method
WO2023127130A1 (en) * 2021-12-28 2023-07-06 三菱電機株式会社 Semiconductor device and method for producing same

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100499398B1 (en) * 1997-12-31 2005-09-26 주식회사 하이닉스반도체 Heat dissipation package and its manufacturing method
WO2001036349A1 (en) * 1999-11-17 2001-05-25 Electrovac, Fabrikation Elektrotechnischer Spezialartikel Gesellschaft M.B.H. Method for attaching a body, which is comprised of a metal matrix composite (mmc) material, to a ceramic body
US6745930B2 (en) 1999-11-17 2004-06-08 Electrovac, Fabrikation Elektrotechnischer Spezialartikel Ges.M.B.H. Method of attaching a body made of metal matrix composite (MMC) material or copper to a ceramic member
JP2003086747A (en) * 2001-09-10 2003-03-20 Hitachi Ltd Insulation circuit board, its manufacturing method and semiconductor power element using the same
JP2005064131A (en) * 2003-08-08 2005-03-10 Denso Corp Semiconductor device
JP2005129577A (en) * 2003-10-21 2005-05-19 Dowa Mining Co Ltd Metal-ceramic joining substrate and its manufacturing method
DE102004022118A1 (en) * 2004-05-05 2005-11-24 Conti Temic Microelectronic Gmbh Arrangement for cooling an electronic unit and production of such an arrangement
JP2007056908A (en) * 2005-08-22 2007-03-08 Toyota Boshoku Corp Mounting bracket
JP2007227477A (en) * 2006-02-21 2007-09-06 Asahi Glass Co Ltd Ceramic circuit board, and its manufacturing method
JP2007336793A (en) * 2006-05-16 2007-12-27 Denso Corp Power converter
JP2007281498A (en) * 2007-05-28 2007-10-25 Hitachi Metals Ltd Semiconductor power module
CN102760703A (en) * 2011-04-28 2012-10-31 苏州科医世凯半导体技术有限责任公司 Composite substrate for high-power component
WO2014016085A3 (en) * 2012-07-25 2014-03-27 Conti Temic Microelectronic Gmbh Cooling device and method for producing a cooling device and circuit assembly having a cooling device
CN111312673A (en) * 2019-08-23 2020-06-19 北京绿能芯创电子科技有限公司 Embedded ceramic plate and heat radiating device formed by metal alloy die-casting and manufacturing method
WO2023127130A1 (en) * 2021-12-28 2023-07-06 三菱電機株式会社 Semiconductor device and method for producing same

Similar Documents

Publication Publication Date Title
US6462410B1 (en) Integrated circuit component temperature gradient reducer
KR100957078B1 (en) Electrically isolated power device package
US5371043A (en) Method for forming a power circuit package
US7682875B2 (en) Method for fabricating a module including a sintered joint
JP4023397B2 (en) Semiconductor module and manufacturing method thereof
JPH08191120A (en) Power semiconductor element substrate and manufacture thereof
CN107863327A (en) Packaging body with the roughening encapsulating surface for promoting adhesion
US20160293568A1 (en) Methods for forming semiconductor device packages
JP7241163B2 (en) Electronic module and manufacturing method thereof
KR20190132330A (en) Die attach methods and semiconductor devices manufactured based on such methods
TW200830490A (en) High thermal performance packaging for circuit dies
JP2003124400A (en) Semiconductor power module and manufacturing method therefor
EP3958305A1 (en) Power semiconductor module arrangement and method for producing the same
KR100957079B1 (en) Power device with a plastic molded package and direct bonded substrate
JP5954374B2 (en) Insulating substrate, manufacturing method thereof, semiconductor module, and semiconductor device
JP3793562B2 (en) Ceramic circuit board
JP2001217362A (en) Laminated heat dissipating member, power semiconductor device using it, and method of production
CN108831837A (en) The preparation method of high-termal conductivity phase change temperature control composite package substrate
US20210035879A1 (en) Encapsulated package with carrier, laminate body and component in between
JP5630375B2 (en) Insulating substrate, manufacturing method thereof, semiconductor module, and semiconductor device
JP2004296726A (en) Heat dissipating member, package for containing semiconductor element, and semiconductor device
JP2003229531A (en) Hybrid integrated circuit device and method for manufacturing same
JP2014030059A (en) Insulating substrate, method for manufacturing the same, semiconductor module, and semiconductor device
US20230154811A1 (en) Semiconductor device and method of manufacturing semiconductor device
US20230369175A1 (en) Power semiconductor module arrangement and method for producing the same