JPH08190918A - Fuel cell - Google Patents

Fuel cell

Info

Publication number
JPH08190918A
JPH08190918A JP7001698A JP169895A JPH08190918A JP H08190918 A JPH08190918 A JP H08190918A JP 7001698 A JP7001698 A JP 7001698A JP 169895 A JP169895 A JP 169895A JP H08190918 A JPH08190918 A JP H08190918A
Authority
JP
Japan
Prior art keywords
fuel
oxidant
porous portion
side porous
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7001698A
Other languages
Japanese (ja)
Inventor
Hideaki Miyoshi
英明 三好
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP7001698A priority Critical patent/JPH08190918A/en
Publication of JPH08190918A publication Critical patent/JPH08190918A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE: To provide a fuel cell capable of preventing overflow of an electrolyte to a fuel side passage and drop in gas diffusion in a fuel side porous part, and storing the amount of the electrolyte sufficient to ensure the long life. CONSTITUTION: A plurality of unit cells each having a fuel electrode 2 and an oxidizing agent electrode 3 faced through an electrolyte matrix 1 are stacked through a gas separating plate 12 constituted with porous parts 13, 14 comprising a dense layer 12, ribs 13b, 14b having gas passages for perpendicularly passing a fuel gas and an oxidizing agent gas formed on both sides of the dense layer 12, and webs 13a, 14a to form a fuel cell. The volume occupied by pores of the fuel side porous part 13 forming the fuel gas passage is made larger than the volume occupied by pores of the oxidizing agent side porous part 14 forming the oxidizing agent gas passage.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は燃料電池に関し、特に
りん酸型燃料電池のガス分離板に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel cell, and more particularly to a gas separation plate for a phosphoric acid fuel cell.

【0002】[0002]

【従来の技術】図5は例えば特開平1−95468号公
報に示された従来のりん酸型燃料電池の要部を示す斜視
図である。図において、1は電解質マトリックス、2は
燃料電極をなす電極触媒層、3は酸化剤電極をなす電極
触媒層、4および5は互いに直交する燃料および酸化剤
ガスのガス流路、6はガス分離板で緻密層7とその両面
にリブ状に形成された燃料側多孔部8および酸化剤側多
孔部9により一体構成化されている。ガス分離板6の断
面構造は図6に示す図5における線VI−VIに沿った
断面図のとおりで、緻密層7の両側の多孔部8および9
は例えばカーボン質の多数細孔を有する材料がそれぞれ
ウェブ10とリブ11でガス流路4および5を形成して
いる。
2. Description of the Related Art FIG. 5 is a perspective view showing an essential part of a conventional phosphoric acid fuel cell disclosed in, for example, Japanese Patent Laid-Open No. 1-95468. In the figure, 1 is an electrolyte matrix, 2 is an electrode catalyst layer forming a fuel electrode, 3 is an electrode catalyst layer forming an oxidant electrode, 4 and 5 are gas flow paths of fuel and oxidant gas which are orthogonal to each other, and 6 is gas separation. The plate is integrally configured by the dense layer 7, and the fuel-side porous portion 8 and the oxidant-side porous portion 9 formed on both surfaces thereof in a rib shape. The cross-sectional structure of the gas separation plate 6 is as shown in the cross-sectional view taken along line VI-VI in FIG. 5 shown in FIG. 6, and the porous portions 8 and 9 on both sides of the dense layer 7 are formed.
For example, a material having a large number of carbonaceous pores forms the gas flow paths 4 and 5 by the web 10 and the rib 11, respectively.

【0003】次に動作について説明する。ガス分離板6
の燃料側多孔部8および酸化剤側多孔部9によって形成
された互いに直交するガス流路4,5にそれぞれ燃料お
よび酸化剤ガスを供給する。このとき、ガス分離板6の
緻密層7は両面を流れる燃料と酸化剤が互いに混じるの
を防止している。供給された両ガスは電極触媒層2,3
に達し、触媒層に達したガスがイオン化して電解質マト
リックス1を通して反応し発電が行われる。ここで、未
反応のガスや反応生成物である水蒸気はガス流路4,5
を通じて外部に排出される。この排出ガス中には電解質
であるりん酸の蒸気が含まれているため、長期の運転を
行った場合には電解質マトリックス1および電極触媒層
2,3中の電解質が不足してくる。ガス分離板6の両多
孔部8,9は細孔に電解質を貯蔵し、電解質マトリック
スや電極触媒層の不足部に電解質を供給する機能を有し
ている。
Next, the operation will be described. Gas separation plate 6
The fuel and the oxidant gas are supplied to the gas flow paths 4 and 5 formed by the fuel-side porous portion 8 and the oxidant-side porous portion 9 which are orthogonal to each other. At this time, the dense layer 7 of the gas separation plate 6 prevents the fuel and the oxidant flowing on both sides from mixing with each other. Both supplied gases are the electrode catalyst layers 2, 3
When the gas reaches the catalyst layer and reaches the catalyst layer, the gas is ionized and reacted through the electrolyte matrix 1 to generate power. Here, the unreacted gas and the water vapor which is a reaction product are the gas flow paths 4, 5
Is discharged to the outside through. Since the exhaust gas contains the vapor of phosphoric acid, which is an electrolyte, the electrolyte in the electrolyte matrix 1 and the electrode catalyst layers 2 and 3 becomes insufficient in the case of long-term operation. Both of the porous portions 8 and 9 of the gas separation plate 6 have a function of storing the electrolyte in the pores and supplying the electrolyte to the lacking portion of the electrolyte matrix or the electrode catalyst layer.

【0004】[0004]

【発明が解決しようとする課題】従来のりん酸型燃料電
池は以上のように構成されているので、多孔部8,9に
貯蔵された電解質によりセル寿命が大きく延びた。しか
し、燃料電池の運転条件(例えば高電流密度)によって
は、電解質であるりん酸イオンが電流によって酸化剤電
極から燃料電極の方向にマトリックスを通って運ばれる
ため酸化剤側多孔部9の電解質が燃料側多孔部8に移動
する現象が起こる。このため、燃料側流路4に電解質が
溢れたり、燃料側多孔部8でのガス拡散性が著しく低下
して特性が低下するため、長期の寿命を確保するのに充
分な量の電解質を貯蔵できないという問題点があった。
Since the conventional phosphoric acid fuel cell is constructed as described above, the cell life is greatly extended by the electrolyte stored in the porous portions 8 and 9. However, depending on the operating conditions of the fuel cell (for example, high current density), the phosphate ion as the electrolyte is carried by the current through the matrix in the direction from the oxidant electrode to the fuel electrode, so that the electrolyte of the oxidant side porous portion 9 is removed. The phenomenon of moving to the fuel side porous portion 8 occurs. Therefore, the electrolyte overflows into the fuel-side flow path 4 and the gas diffusivity in the fuel-side porous portion 8 is significantly reduced to deteriorate the characteristics, so that a sufficient amount of electrolyte is stored to secure a long life. There was a problem that it could not be done.

【0005】この発明は上記のような問題点を解消する
ためになされたものであり、燃料側流路への電解質の溢
れや燃料側多孔部でのガス拡散性の低下を防止できると
ともに、長期の寿命を確保するのに充分な量の電解質を
貯蔵できる燃料電池を得ることを目的とする。
The present invention has been made in order to solve the above-mentioned problems, and it is possible to prevent the electrolyte from overflowing into the fuel side flow passage and the deterioration of the gas diffusivity in the fuel side porous portion, and to prevent a long-term problem. It is an object of the present invention to obtain a fuel cell capable of storing a sufficient amount of electrolyte to ensure the life of the fuel cell.

【0006】[0006]

【課題を解決するための手段】この発明の請求項1に係
る燃料電池は、電解質マトリックスを介して対向する燃
料電極および酸化剤電極を有する単電池を、緻密層とこ
の両面にそれぞれ燃料ガス,酸化剤ガスを互いに直交し
て流せる流路を形成するリブとウェブからなる多孔部と
で構成したガス分離板を介して複数個積層する燃料電池
において、燃料ガスの流路を形成する燃料側多孔部の細
孔が占める容積を酸化剤ガスの流路を形成する酸化剤側
多孔部の細孔が占める容積よりも大きくしたものであ
る。
A fuel cell according to claim 1 of the present invention comprises a unit cell having a fuel electrode and an oxidant electrode facing each other with an electrolyte matrix in between, a dense layer and a fuel gas on both surfaces thereof, respectively. In a fuel cell in which a plurality of gas separators are formed with a gas separating plate composed of ribs forming a flow path that allows oxidant gas to flow in a direction orthogonal to each other and a porous portion made of a web, a fuel-side porosity forming a flow path of fuel gas is formed. The volume occupied by the pores of the portion is larger than the volume occupied by the pores of the oxidant-side porous portion forming the flow path of the oxidant gas.

【0007】また、請求項2に係る燃料電池は、請求項
1において、燃料側多孔部のウェブの厚さを酸化剤側の
ウェブの厚さより厚くしたものである。
A fuel cell according to a second aspect of the present invention is the fuel cell according to the first aspect, wherein the thickness of the web on the fuel side porous portion is larger than the thickness of the oxidant side web.

【0008】また、請求項3に係る燃料電池は、請求項
1において、燃料側多孔部のリブの幅を酸化剤側多孔部
のリブの幅より大きくしたものである。
According to a third aspect of the present invention, in the fuel cell according to the first aspect, the width of the rib of the fuel side porous portion is larger than the width of the rib of the oxidant side porous portion.

【0009】また、請求項4に係る燃料電池は、請求項
1において、燃料側多孔部のポロシティを酸化剤側多孔
部のポロシティより大きくしたものである。
According to a fourth aspect of the present invention, in the fuel cell according to the first aspect, the porosity of the fuel side porous portion is larger than that of the oxidant side porous portion.

【0010】また、請求項5に係る燃料電池は、燃料ガ
スの流路を形成する燃料側多孔部の細孔径を酸化剤ガス
の流路を形成する酸化剤側多孔部の細孔径よりも大きく
したものである。
Further, in the fuel cell according to the present invention, the pore diameter of the fuel-side porous portion forming the fuel gas passage is larger than the pore diameter of the oxidant-side porous portion forming the oxidant gas passage. It was done.

【0011】また、請求項6に係る燃料電池は、燃料ガ
スの流路を形成する燃料側多孔部と酸化剤ガスの流路を
形成する酸化剤側多孔部の平均細孔径はほぼ等しく且つ
燃料側多孔部の細孔径分布をブロードにしたものであ
る。
Further, in the fuel cell according to the sixth aspect, the average pore diameters of the fuel-side porous portion forming the fuel gas passage and the oxidant-side porous portion forming the oxidant gas passage are substantially equal to each other, and The pore size distribution of the side porous portion is broadened.

【0012】また、請求項7に係る燃料電池は、燃料ガ
スの流路を形成する燃料側多孔部と酸化剤ガスの流路を
形成する酸化剤側多孔部の平均細孔径はほぼ等しくし且
つ酸化剤側多孔部の細孔径分布をブロードにしたもので
ある。
Further, in the fuel cell according to the seventh aspect, the average pore diameters of the fuel side porous portion forming the fuel gas flow passage and the oxidant side porous portion forming the oxidant gas flow passage are substantially equal to each other. The pore size distribution of the oxidant side porous portion is broadened.

【0013】また、請求項8に係る燃料電池は、燃料ガ
スの流路を形成する燃料側多孔部と酸化剤ガスの流路を
形成する酸化剤側多孔部の平均細孔径はほぼ等しくし且
つ両側多孔部の細孔径分布をブロードにしたものであ
る。
Further, in the fuel cell according to the eighth aspect, the average pore diameters of the fuel side porous portion forming the fuel gas flow passage and the oxidant side porous portion forming the oxidant gas flow passage are substantially equal to each other. The pore size distribution of the porous parts on both sides is broadened.

【0014】また、請求項9に係る燃料電池は、請求項
1ないし8のいずれかにおいて、燃料側多孔部および酸
化剤側多孔部へのりん酸貯蔵量が両多孔部共細孔容積の
40〜60%であるようにしたものである。
A fuel cell according to a ninth aspect of the present invention is the fuel cell according to any one of the first to eighth aspects, wherein the amount of phosphoric acid stored in the fuel-side porous portion and the oxidant-side porous portion is 40 of both the porous portions. .About.60%.

【0015】[0015]

【作用】この発明の請求項1における燃料電池は、燃料
側多孔部の細孔容積を酸化剤側多孔部の細孔容積よりも
大きくしたことにより、酸化剤側多孔部の電解質が燃料
側多孔部に移動しても燃料側多孔部のりん酸フィルレベ
ルが一定レベル以上には増加しないため、燃料側流路に
電解質が溢れたり、燃料側多孔部でのガス拡散性の低下
を防止できる。
In the fuel cell according to the first aspect of the present invention, the pore volume of the fuel-side porous portion is made larger than that of the oxidant-side porous portion, so that the electrolyte in the oxidant-side porous portion has the fuel-side porous portion. Since the phosphoric acid fill level of the fuel-side porous portion does not increase above a certain level even if the fuel-side porous portion is moved to the above portion, it is possible to prevent the electrolyte from overflowing into the fuel-side flow passage and the deterioration of the gas diffusibility in the fuel-side porous portion.

【0016】また、請求項2における燃料電池は、燃料
側多孔部のウェブの厚さを酸化剤側多孔部のウェブの厚
さより厚くしたことにより、燃料側多孔部の細孔容積を
酸化剤側多孔部の細孔容積よりも大きくできる。
In the fuel cell according to the present invention, the thickness of the web of the fuel side porous portion is made larger than that of the oxidant side porous portion, so that the pore volume of the fuel side porous portion is increased to the oxidant side. It can be made larger than the pore volume of the porous portion.

【0017】また、請求項3における燃料電池は、燃料
側多孔部のリブの幅を酸化剤側多孔部のリブの幅よりも
大きくしたことにより、燃料側多孔部の細孔容積を酸化
剤側多孔部の細孔容積よりも大きくできる。
Further, in the fuel cell according to the present invention, the width of the rib of the fuel side porous portion is made larger than the width of the rib of the oxidant side porous portion, so that the pore volume of the fuel side porous portion is increased to the oxidant side. It can be made larger than the pore volume of the porous portion.

【0018】また、請求項4における燃料電池は、燃料
側多孔部のポロシティを酸化剤側多孔部のポロシティよ
りも大きくしたことにより、燃料側多孔部の細孔容積を
酸化剤側多孔部の細孔容積よりも大きくできる。
In the fuel cell according to the present invention, the porosity of the fuel-side porous portion is made larger than the porosity of the oxidant-side porous portion so that the pore volume of the fuel-side porous portion is smaller than that of the oxidant-side porous portion. It can be larger than the pore volume.

【0019】また、請求項5における燃料電池は、燃料
側多孔部の細孔径を酸化剤側多孔部の細孔径より大きく
したことにより、酸化剤側多孔部から燃料側多孔部への
電解質の移動を抑制することができ、燃料側流路への電
解質の溢れや、燃料側多孔部でのガス拡散性の低下を防
止できる。
Further, in the fuel cell according to the present invention, the pore size of the fuel side porous portion is made larger than the pore size of the oxidant side porous portion, so that the electrolyte moves from the oxidant side porous portion to the fuel side porous portion. It is possible to prevent the electrolyte from overflowing into the fuel side flow path and to prevent the gas diffusivity from decreasing in the fuel side porous portion.

【0020】また、請求項6における燃料電池は、燃料
側多孔部と酸化剤側多孔部の平均細孔径をほぼ等しくす
るとともに燃料側多孔部の細孔径分布をブロードにした
ことにより、燃料側多孔部のりん酸フィルレベルが高く
なったとき、燃料側多孔部と酸化剤側多孔部のりん酸フ
ィルレベル差に起因する毛管吸引力により酸化剤側多孔
部の方に電解質を引き戻すことができ、燃料側流路への
電解質の溢れや、燃料側多孔部でのガス拡散性の低下を
防止できる。
In the fuel cell according to the sixth aspect, the average pore diameters of the fuel-side porous portion and the oxidant-side porous portion are made substantially equal and the pore diameter distribution of the fuel-side porous portion is broadened so that the fuel-side porous portion is When the phosphoric acid fill level of the portion becomes high, the electrolyte can be pulled back toward the oxidant side porous part by the capillary suction force caused by the difference in the phosphoric acid fill level between the fuel side porous part and the oxidant side porous part, It is possible to prevent the electrolyte from overflowing into the fuel-side flow path and the decrease in gas diffusivity in the fuel-side porous portion.

【0021】また、請求項7における燃料電池は、燃料
側多孔部と酸化剤側多孔部の平均細孔径をほぼ等しくす
るとともに、酸化剤側多孔部の細孔径分布をブロードに
したことにより、酸化剤側多孔部のりん酸フィルレベル
が低くなったとき、燃料側多孔部と酸化剤側多孔部のり
ん酸フィルレベル差に起因する毛管吸引力により酸化剤
側多孔部の方に電解質を引き戻すことができ、燃料側流
路への電解質の溢れや、燃料側多孔部でのガス拡散性の
低下を防止できる。
Further, in the fuel cell according to the present invention, the average pore diameters of the fuel-side porous portion and the oxidant-side porous portion are made substantially equal to each other, and the pore diameter distribution of the oxidant-side porous portion is broadened, so that the oxidation is performed. When the phosphoric acid fill level in the agent-side porous part becomes low, the electrolyte is pulled back toward the oxidant-side porous part by the capillary suction force caused by the difference in the phosphoric acid fill level between the fuel-side porous part and the oxidant-side porous part. Therefore, it is possible to prevent the electrolyte from overflowing into the fuel-side flow path and the decrease in gas diffusivity in the fuel-side porous portion.

【0022】また、請求項8における燃料電池は、燃料
側多孔部と酸化剤側多孔部の平均細孔径をほぼ等しくす
るとともに両多孔部の細孔径分布をブロードにしたこと
により、燃料側多孔部のりん酸フィルレベルが高くなっ
たときや酸化剤側多孔部のりん酸フィルレベルが低くな
ったとき、燃料側多孔部と酸化剤側多孔部のりん酸フィ
ルレベル差に起因する毛管吸引力により酸化剤側多孔部
の方に電解質を引き戻すことができ、燃料側流路への電
解質の溢れや、燃料側多孔部でのガス拡散性の低下を防
止できる。
Further, in the fuel cell according to the present invention, the average pore diameters of the fuel-side porous portion and the oxidant-side porous portion are made substantially equal to each other, and the pore diameter distributions of both porous portions are broadened, so that the fuel-side porous portion is formed. When the phosphoric acid fill level of the oxidizer side becomes high or the phosphoric acid fill level of the oxidizer side porous part becomes low, the capillary suction force caused by the difference in the phosphoric acid fill level between the fuel side porous part and the oxidizer side porous part The electrolyte can be pulled back toward the oxidant-side porous portion, and the electrolyte can be prevented from overflowing into the fuel-side flow passage and the gas diffusivity in the fuel-side porous portion can be prevented from decreasing.

【0023】また、請求項9における燃料電池は、燃料
側多孔部と酸化剤側多孔部へのりん酸貯蔵量を両多孔部
共細孔容積の40%〜60%にしたことにより、燃料側
流路への電解質の溢れや、燃料側多孔部でのガス拡散性
の低下なしで、長期の寿命を確保することができる。
Further, in the fuel cell according to the ninth aspect, the storage amount of phosphoric acid in the fuel-side porous portion and the oxidant-side porous portion is set to 40% to 60% of the pore volume of both porous portions. It is possible to secure a long service life without overflow of the electrolyte into the flow path and deterioration of gas diffusivity in the fuel side porous portion.

【0024】[0024]

【実施例】【Example】

実施例1.以下、この発明の実施例1を図に基づいて説
明する。図1はこの発明の実施例1における燃料電池の
要部を示す斜視図、図2は(A)に図1における線II
A−IIAに沿った断面図を(B)に図1における線I
IB−IIBに沿った断面図を示すものである。図にお
いて、1〜5,7は従来と同様でありその説明は省略す
る。12はガス分離板で緻密層7とその両面にリブ状に
形成された燃料側多孔部13および酸化剤側多孔部14
により一体構成化されている。ここで、燃料側多孔部1
3はウェブ13aの厚さS1を0.9mmとして、酸化
剤側多孔部14のウェブ14aの厚さS2の0.6mm
より厚くし全体積を大きくして細孔部を増し、細孔容積
を大きくしてある。なお、l1、l2は1.5mmと同じ
にしてある。
Example 1. Embodiment 1 of the present invention will be described below with reference to the drawings. 1 is a perspective view showing a main part of a fuel cell according to Embodiment 1 of the present invention, and FIG. 2 is a line II in FIG.
A sectional view taken along the line A-IIA is shown in FIG.
It is a sectional view along IB-IIB. In the figure, 1 to 5 and 7 are the same as the conventional one, and the description thereof is omitted. Reference numeral 12 denotes a gas separation plate, and the dense layer 7 and the fuel-side porous portion 13 and the oxidant-side porous portion 14 which are formed in a rib shape on both surfaces thereof.
Are integrally configured by. Here, the fuel side porous portion 1
3, the thickness S 1 of the web 13a is 0.9 mm, and the thickness S 2 of the web 14a of the oxidant side porous portion 14 is 0.6 mm.
It is made thicker to increase the total volume, increase the pores, and increase the pore volume. Note that l 1 and l 2 are the same as 1.5 mm.

【0025】次に動作について説明する。通常条件での
動作は従来と同様であるので省略し、高電流密度条件で
運転した場合の挙動について説明する。電解質がりん酸
の場合、水素イオンの輸率は0.90〜0.95である
ため、電解質中の電流の大部分は水素イオンによって運
ばれるが、5〜10%はりん酸イオンによって運ばれ
る。電解質中の電流の向きは燃料電極から酸化剤電極の
方向であるため、りん酸イオンは酸化剤電極から燃料電
極の方向に運ばれる。このようにして移動してきたりん
酸イオンはりん酸となり燃料側多孔部13内に蓄積さ
れ、フィルレベル(占有する割合)が高くなる。電流密
度が小さい場合には、りん酸量の移動量も少なく、燃料
側と酸化剤側とのりん酸の濃度差を駆動とする燃料側か
ら酸化剤側への戻りにより平準化されるため、性能上大
きな問題とはならない。しかし、高電流密度で運転した
場合には、温度差による戻り量に比較して、電流により
運ばれるりん酸量が圧倒的に多くなるため、燃料側多孔
部13中のりん酸量が多くなる。この構成では燃料側多
孔部13のウェブ13aの厚さを酸化剤側多孔部14の
ウェブ14aの厚さ1.5倍とし、燃料側多孔部13の
細孔容積が大きいことにより、燃料側多孔部13のりん
酸フィルレベルが一定レベル以上に増加しないため、燃
料側流路に電解質が溢れたり、ガス拡散性が著しく低下
することが防止できる。
Next, the operation will be described. Since the operation under the normal condition is the same as the conventional one, the description thereof will be omitted, and the behavior when operating under the high current density condition will be described. When the electrolyte is phosphoric acid, since the transport number of hydrogen ions is 0.90 to 0.95, most of the electric current in the electrolyte is carried by hydrogen ions, but 5-10% is carried by phosphate ions. . Since the direction of the electric current in the electrolyte is from the fuel electrode to the oxidant electrode, the phosphate ions are carried from the oxidant electrode to the fuel electrode. The phosphate ions thus transferred become phosphoric acid and are accumulated in the fuel-side porous portion 13, so that the fill level (occupied ratio) becomes high. When the current density is small, the amount of transfer of the phosphoric acid amount is also small, and the level difference is caused by the return from the fuel side to the oxidant side, which is driven by the difference in phosphoric acid concentration between the fuel side and the oxidant side. It does not cause a big problem in performance. However, when operating at a high current density, the amount of phosphoric acid carried by the current becomes overwhelmingly larger than the amount of return due to the temperature difference, so the amount of phosphoric acid in the fuel side porous portion 13 increases. . In this structure, the thickness of the web 13a of the fuel-side porous portion 13 is 1.5 times the thickness of the web 14a of the oxidant-side porous portion 14, and the pore volume of the fuel-side porous portion 13 is large. Since the phosphoric acid fill level of the portion 13 does not increase above a certain level, it is possible to prevent the electrolyte from overflowing into the fuel side passage and the gas diffusivity from being significantly reduced.

【0026】実施例2.燃料側多孔部13と酸化剤側多
孔部14のウェブ厚さS1およびS2は0.6mmと同じ
にし、燃料側多孔部13のリブ13bの幅l1を2.0
mm、酸化剤側多孔部14のリブ14bの幅l2を1.
5mmとした以外は実施例1と同様の構成とした。
Example 2. The web thickness S 1 and S 2 of the fuel-side porous portion 13 and the oxidant-side porous portion 14 are the same as 0.6 mm, and the width l 1 of the rib 13b of the fuel-side porous portion 13 is 2.0.
mm, the width l 2 of the rib 14b of the oxidant side porous portion 14 is 1.
The configuration was the same as in Example 1 except that the thickness was 5 mm.

【0027】この構成により、高電流密度条件で運転し
た場合、燃料側多孔部13のリブ13bの幅を酸化剤側
多孔部14のリブ14bの幅の約1.3倍とし、燃料側
多孔部13の細孔容積を大きくしてあるため、実施例1
と同様流路へのりん酸の溢れや、ガス拡散性の低下を防
止できる。
With this configuration, when operating under high current density conditions, the width of the rib 13b of the fuel side porous portion 13 is set to about 1.3 times the width of the rib 14b of the oxidant side porous portion 14, so that the fuel side porous portion is formed. Since the pore volume of 13 is large,
In the same manner as above, it is possible to prevent the overflow of phosphoric acid into the flow path and the decrease in gas diffusivity.

【0028】実施例3.燃料側多孔部13と酸化剤側多
孔部14のウェブの厚さS1,S2およびリブの幅l1
2はそれぞれ0.6mmおよび1.5mmと同一寸法
とし、燃料側多孔部13をポロシティ(全体積に対する
空隙容積の割合)80%の材料を用い、酸化剤側多孔部
14のポロシティ60%の材料を用いた以外は実施例1
と同様の構成とした。
Example 3. The web thicknesses S 1 and S 2 of the fuel-side porous portion 13 and the oxidant-side porous portion 14 and the rib width l 1 ,
l 2 has the same dimensions of 0.6 mm and 1.5 mm respectively, the fuel side porous portion 13 is made of a material having a porosity (ratio of void volume to the total volume) of 80%, and the oxidizer side porous portion 14 has a porosity of 60%. Example 1 except that materials were used
It has the same configuration as.

【0029】この構成により、高電流密度条件で運転し
た場合、燃料側多孔部13のポロシティが酸化剤側多孔
部14のポロシティの約1.3倍とし、燃料側多孔部1
3の細孔容積を大きくしてあるため、実施例1および2
と同様の効果が得られる。
With this configuration, when operated under high current density conditions, the porosity of the fuel side porous portion 13 is about 1.3 times the porosity of the oxidant side porous portion 14, and the fuel side porous portion 1
Since the pore volume of No. 3 is large, the pores of Examples 1 and 2 are
The same effect can be obtained.

【0030】実施例4.燃料側多孔部13と酸化剤側多
孔部14のウェブ厚さS1,S2およびリブ幅l1,l2
それぞれ0.6mmおよび1.5mmと同一寸法とし、
燃料側多孔部13の平均細孔径を40μmの材料(細孔
径分布が図3のa)を用い、酸化剤側多孔部14の平均
細孔径を20μmの材料(細孔径分布が図3のb)を用
いた以外は実施例1と同様の構成とした。
Example 4. The web thicknesses S 1 and S 2 and the rib widths l 1 and l 2 of the fuel-side porous portion 13 and the oxidant-side porous portion 14 are the same as 0.6 mm and 1.5 mm, respectively,
A material having an average pore diameter of 40 μm in the fuel side porous portion 13 (having a pore diameter distribution of FIG. 3a) and a material having an average pore diameter of the oxidizing agent side porous portion 14 of 20 μm (a pore diameter distribution of b in FIG. 3) The configuration was the same as in Example 1 except that

【0031】次に動作について説明する。高電流密度条
件で運転した場合、実施例1の動作について説明したと
同様、燃料側多孔部のりん酸フィルレベルが高くなり、
酸化剤側多孔部のフィルレベルが低下するが、酸化剤側
多孔部の細孔径を燃料側多孔部のものより小さくしてい
るため、燃料側多孔部から酸化剤側多孔部に引き戻す方
向に毛管吸引力が働く。なお、毛管吸引力は次式で表さ
れる。 ΔP=2γcosθ(R2−R1)/R12 ここで、ΔP;毛管吸引力、γ;表面張力、θ;接触
角、R1,R2;細孔径を示す。毛管吸引力は細孔径の差
が大きいほど大きくなる。したがって、燃料側多孔部へ
の過度な偏りを防止でき、燃料側多孔部での流路へのり
ん酸の溢れや、ガス拡散性の低下を防止できる。
Next, the operation will be described. When operated under high current density conditions, the phosphoric acid fill level of the fuel side porous portion becomes high, as described in the operation of Example 1,
Although the fill level of the oxidant side porous part decreases, since the pore size of the oxidant side porous part is smaller than that of the fuel side porous part, the capillary in the direction of pulling back from the fuel side porous part to the oxidant side porous part. The suction power works. The capillary suction force is expressed by the following equation. ΔP = 2γ cos θ (R 2 −R 1 ) / R 1 R 2 Here, ΔP: capillary suction force, γ: surface tension, θ: contact angle, R 1 , R 2 ; pore size. Capillary suction force increases as the difference in pore size increases. Therefore, it is possible to prevent excessive deviation toward the fuel-side porous portion, and prevent overflow of phosphoric acid into the flow path at the fuel-side porous portion and deterioration of gas diffusivity.

【0032】実施例5.燃料側多孔部13と酸化剤側多
孔部14のウェブ厚さS1,S2およびリブ幅l1,l2
それぞれ0.6mmおよび1.5mmと同一寸法とし、
燃料側多孔部13の平均細孔径が40μmの材料(細孔
径分布が図3のa)を用い、酸化剤側多孔部14の平均
細孔径は40μmであるが細孔径分布が図2のcに示す
ようにブロード(幅広に分布している)な材料を用いた
以外は実施例1と同様の構成とした。
Example 5. The web thicknesses S 1 and S 2 and the rib widths l 1 and l 2 of the fuel-side porous portion 13 and the oxidant-side porous portion 14 are the same as 0.6 mm and 1.5 mm, respectively,
The fuel side porous portion 13 is made of a material having an average pore diameter of 40 μm (the pore diameter distribution is a in FIG. 3). The oxidant side porous portion 14 has an average pore diameter of 40 μm, but the pore diameter distribution is shown in FIG. 2c. As shown, the same configuration as in Example 1 was used except that a broad (widely distributed) material was used.

【0033】次に動作について説明する。高電流密度条
件で運転した場合、実施例1の動作について説明したと
同様、燃料側多孔部13のりん酸フィルレベルが高くな
り、酸化剤側多孔部14のフィルレベルが低下するが、
酸化剤側多孔部14の細孔径分布をブロードにしている
ため、酸化剤側多孔部14のりん酸フィルレベルの僅か
な変化で電解質で満たされている部分の細孔径が大きく
変化するため、燃料側多孔部13から酸化剤側多孔部1
4に引き戻す方向に毛管吸引力が働く。したがって、燃
料側多孔部13への過度な偏りを防止でき、燃料側多孔
部13での流路へのりん酸の溢れや、ガス拡散性の低下
を防止できる。
Next, the operation will be described. When operated under a high current density condition, the phosphate fill level of the fuel-side porous portion 13 increases and the fill level of the oxidant-side porous portion 14 decreases, as described in the operation of the first embodiment.
Since the pore size distribution of the oxidant-side porous part 14 is broad, a slight change in the phosphate fill level of the oxidant-side porous part 14 causes a large change in the pore size of the part filled with the electrolyte. From the side porous portion 13 to the oxidant side porous portion 1
Capillary suction force works in the direction of returning to 4. Therefore, it is possible to prevent excessive deviation toward the fuel-side porous portion 13, and prevent overflow of phosphoric acid into the flow path in the fuel-side porous portion 13 and deterioration of gas diffusivity.

【0034】実施例6.燃料側多孔部13と酸化剤側多
孔部14のウェブ厚さS1,S2およびリブ幅l1,l2
それぞれ0.6mmおよび1.5mmと同一寸法とし、
酸化剤側多孔部14の平均細孔径が40μmの材料(細
孔径分布が図3のa)を用い、燃料側多孔部13の平均
細孔径は40μmであるが細孔径分布が図3のcに示す
ようにブロードな材料を用いた以外は実施例1と同様の
構成とした。
Embodiment 6 FIG. The web thicknesses S 1 and S 2 and the rib widths l 1 and l 2 of the fuel-side porous portion 13 and the oxidant-side porous portion 14 are the same as 0.6 mm and 1.5 mm, respectively,
A material having an average pore size of 40 μm in the oxidant-side porous part 14 (pore size distribution is a in FIG. 3) is used, and the average pore size of the fuel-side porous part 13 is 40 μm, but the pore size distribution is in c of FIG. As shown, the same structure as in Example 1 was used except that a broad material was used.

【0035】次に動作について説明する。高電流密度条
件で運転した場合、実施例1の動作について説明したと
同様、燃料側多孔部13のりん酸フィルレベルが高くな
り、酸化剤側多孔部14のフィルレベルが低下するが、
燃料側多孔部13の細孔径分布をブロードにしているた
め、燃料側多孔部13のりん酸フィルレベルの僅かな変
化で電解質で満たされている部分の細孔径が大きく変化
するため、燃料側多孔部13から酸化剤側多孔部14に
引き戻す方向に毛管吸引力が働く。したがって、燃料側
多孔部13への過度な偏りを防止でき、燃料側多孔部1
3での流路へのりん酸の溢れや、ガス拡散性の低下を防
止できる。
Next, the operation will be described. When operated under a high current density condition, the phosphate fill level of the fuel-side porous portion 13 increases and the fill level of the oxidant-side porous portion 14 decreases, as described in the operation of the first embodiment.
Since the pore size distribution of the fuel side porous portion 13 is broad, a slight change in the phosphate fill level of the fuel side porous portion 13 causes a large change in the pore diameter of the portion filled with the electrolyte. Capillary suction force acts in the direction of returning from the portion 13 to the oxidant side porous portion 14. Therefore, it is possible to prevent an excessive bias toward the fuel-side porous portion 13, and
It is possible to prevent the phosphoric acid from overflowing into the flow path in 3 and the deterioration of gas diffusivity.

【0036】実施例7.燃料側多孔部13と酸化剤側多
孔部14のウェブ厚さS1,S2およびリブ幅l1,l2
それぞれ0.6mmおよび1.5mmと同一寸法とし、
酸化剤側多孔部14および燃料側多孔部13の平均細孔
径は40μmであるが細孔径分布が図3のcに示すよう
にブロードな材料を用いた以外は実施例1と同様の構成
とした。
Example 7. The web thicknesses S 1 and S 2 and the rib widths l 1 and l 2 of the fuel-side porous portion 13 and the oxidant-side porous portion 14 are the same as 0.6 mm and 1.5 mm, respectively,
The oxidizer-side porous portion 14 and the fuel-side porous portion 13 have an average pore diameter of 40 μm, but have the same configuration as in Example 1 except that a broad material is used as shown in FIG. .

【0037】次に動作について説明する。高電流密度条
件で運転した場合、実施例1の動作について説明したと
同様、燃料側多孔部13のりん酸フィルレベルが高くな
り、酸化剤側多孔部14のフィルレベルが低下するが、
燃料側多孔部13および酸化剤側多孔部14の細孔径分
布をブロードにしているため、燃料側多孔部13および
酸化剤側多孔部14のりん酸フィルレベルの僅かな変化
で電解質で満たされている部分の細孔径が大きく変化す
るため、燃料側多孔部13から酸化剤側多孔部14に引
き戻す方向に毛管吸引力が働く。したがって、燃料側多
孔部13への過度な偏りを防止でき、燃料側多孔部13
での流路へのりん酸の溢れや、ガス拡散性の低下を防止
できる。
Next, the operation will be described. When operated under a high current density condition, the phosphate fill level of the fuel-side porous portion 13 increases and the fill level of the oxidant-side porous portion 14 decreases, as described in the operation of the first embodiment.
Since the pore size distributions of the fuel-side porous portion 13 and the oxidant-side porous portion 14 are broad, the electrolyte is filled with a slight change in the phosphate fill level of the fuel-side porous portion 13 and the oxidant-side porous portion 14. Since the pore diameter of the existing portion changes greatly, the capillary suction force acts in the direction of returning from the fuel side porous portion 13 to the oxidant side porous portion 14. Therefore, it is possible to prevent excessive deviation toward the fuel-side porous portion 13, and
It is possible to prevent the overflow of phosphoric acid into the flow path and the reduction of gas diffusivity.

【0038】実施例8.実施例1から実施例7までの構
成および比較のため従来構成の小型単セルを組み立て、
りん酸フィルレベルと水素ゲインとの関係をもとめた。
従来構成では、燃料側多孔部および酸化剤側多孔部には
いずれも平均細孔径が40μmの材料(細孔径分布が図
3のa)を用いた。なお、水素ゲインは、燃料として純
水素と模擬改質ガス(80%H2−20%CO2)を用い
たときの特性差であり、燃料電極のガス拡散性の指標と
なるものである。結果を図4に示す。
Example 8. Assembling a small single cell having a conventional structure for the structures of Example 1 to Example 7 and comparison,
The relationship between the phosphate level and the hydrogen gain was sought.
In the conventional configuration, a material having an average pore diameter of 40 μm (pore diameter distribution is a in FIG. 3) was used for both the fuel-side porous portion and the oxidant-side porous portion. The hydrogen gain is a characteristic difference when pure hydrogen and simulated reformed gas (80% H 2 -20% CO 2 ) are used as fuel, and is an index of gas diffusibility of the fuel electrode. FIG. 4 shows the results.

【0039】図4より、従来例では、りん酸フィルレベ
ルが45%を越えると水素ゲインが大きくなり(線Ha
参照)、燃料側電極のガス拡散性が低下するのに対し、
実施例1〜実施例7に示したこの発明のセルでは、りん
酸フィルレベルが最大60%程度まで安定な特性を示す
(線Hb参照)ことが判る。したがって、実施例1〜実
施例7で示した構成では、燃料側のガス拡散性の低下な
しに、りん酸フィルレベルを最大60%まで高めること
ができ、長期の寿命を確保することが可能となる。
From FIG. 4, in the conventional example, the hydrogen gain becomes large when the phosphoric acid fill level exceeds 45% (line Ha
(See), while the gas diffusivity of the fuel side electrode decreases,
It can be seen that the cells of the present invention shown in Examples 1 to 7 exhibit stable characteristics up to a phosphoric acid fill level of about 60% (see line Hb). Therefore, with the configurations shown in Examples 1 to 7, it is possible to increase the phosphoric acid fill level up to 60% without lowering the gas diffusivity on the fuel side, and it is possible to secure a long life. Become.

【0040】[0040]

【発明の効果】以上のようにこの発明の請求項1によれ
ば、電解質マトリックスを介して対向する燃料電極およ
び酸化剤電極を有する単電池を、緻密層とこの両面にそ
れぞれ燃料ガス,酸化剤ガスを互いに直交して流せる流
路を形成するリブとウェブからなる多孔部とで構成した
ガス分離板を介して複数個積層する燃料電池において、
燃料ガスの流路を形成する燃料側多孔部の細孔が占める
容積を酸化剤ガスの流路を形成する酸化剤側多孔部の細
孔が占める容積よりも大きくしたので、燃料側多孔部の
りん酸フィルレベルが一定レベル以上には増加しないた
め燃料側流路に電解質が溢れたり、燃料側多孔部でのガ
ス拡散性の低下を防止できるとともに、長期の寿命を確
保するのに充分な量の電解質を貯蔵できる燃料電池が得
られる効果がある。
As described above, according to claim 1 of the present invention, a unit cell having a fuel electrode and an oxidant electrode that face each other with an electrolyte matrix in between, a dense layer, and a fuel gas and an oxidant on both sides thereof, respectively. In a fuel cell in which a plurality of layers are stacked via a gas separation plate composed of ribs that form channels that allow gas to flow in a direction orthogonal to each other and a porous portion formed of a web,
Since the volume occupied by the pores of the fuel side porous portion forming the fuel gas passage is made larger than the volume occupied by the pores of the oxidant side porous portion forming the oxidant gas passage, Since the phosphate fill level does not increase above a certain level, it is possible to prevent the electrolyte from overflowing into the fuel side flow path and prevent the gas diffusivity from decreasing in the fuel side porous part, and to secure a long life. There is an effect that a fuel cell that can store the electrolyte can be obtained.

【0041】また、この発明の請求項2によれば、請求
項1において、燃料側多孔部のウェブの厚さを酸化剤側
のウェブの厚さより厚くしたので、燃料側多孔部の細孔
容積が酸化剤側多孔部の細孔容積よりも大きくなる。
According to the second aspect of the present invention, in the first aspect, since the thickness of the web on the fuel side porous portion is larger than the thickness of the oxidizer side web, the pore volume of the fuel side porous portion is increased. Is larger than the pore volume of the oxidant side porous portion.

【0042】また、この発明の請求項3によれば、請求
項1において、燃料側多孔部のリブの幅を酸化剤側多孔
部のリブの幅より大きくしたので、燃料側多孔部の細孔
容積が酸化剤側多孔部の細孔容積より大きくなる。
According to a third aspect of the present invention, in the first aspect, the width of the rib of the fuel-side porous portion is made larger than the width of the rib of the oxidant-side porous portion. The volume becomes larger than the pore volume of the oxidant side porous portion.

【0043】また、この発明の請求項4によれば、請求
項1において、燃料側多孔部のポロシティを酸化剤側多
孔部のポロシティより大きくしたので、燃料側多孔部の
細孔容積が酸化剤側多孔部の細孔容積より大きくなる。
Further, according to claim 4 of the present invention, in claim 1, the porosity of the fuel side porous portion is made larger than the porosity of the oxidant side porous portion. It is larger than the pore volume of the side porous portion.

【0044】また、この発明の請求項5によれば、燃料
ガスの流路を形成する燃料側多孔部の細孔径を酸化剤ガ
スの流路を形成する酸化剤側多孔部の細孔径よりも大き
くしたので、酸化剤側多孔部から燃料側多孔部への電解
質の移動を抑制することができ、燃料側流路への電解質
の溢れや、燃料側多孔部でのガス拡散性の低下を防止で
きるとともに、長期の寿命を確保するのに充分な量の電
解を貯蔵できる燃料電池が得られる効果がある。
According to the fifth aspect of the present invention, the pore size of the fuel-side porous portion forming the fuel gas passage is smaller than that of the oxidant-side porous portion forming the oxidant gas passage. Since it is made larger, it is possible to suppress the migration of the electrolyte from the oxidant side porous part to the fuel side porous part, and prevent the electrolyte from overflowing into the fuel side flow path and the deterioration of the gas diffusibility in the fuel side porous part. In addition to the above, there is an effect that a fuel cell capable of storing a sufficient amount of electrolysis to secure a long life is obtained.

【0045】また、この発明の請求項6によれば、燃料
ガスの流路を形成する燃料側多孔部と酸化剤ガスの流路
を形成する酸化剤側多孔部の平均細孔径はほぼ等しく且
つ燃料側多孔部の細孔径分布をブロードにしたので、燃
料側多孔部のりん酸フィルレベルが高くなったとき、燃
料側多孔部と酸化剤側多孔部の方に電解質を引き戻すこ
とができ、燃料側流路への溢れや、燃料側多孔部でのガ
ス拡散性の低下を防止できるとともに、長期の寿命を確
保するのに充分な量の電解質を貯蔵できる燃料電池が得
られる効果がある。
According to the sixth aspect of the present invention, the average pore diameters of the fuel side porous portion forming the fuel gas flow passage and the oxidant side porous portion forming the oxidant gas flow passage are substantially equal and Since the pore size distribution of the fuel side porous part is broadened, when the phosphoric acid fill level of the fuel side porous part becomes high, the electrolyte can be pulled back toward the fuel side porous part and the oxidant side porous part. There is an effect that a fuel cell can be obtained which can prevent overflow into the side flow passage and decrease in gas diffusibility in the fuel side porous portion, and can store a sufficient amount of electrolyte to secure a long life.

【0046】また、この発明の請求項7によれば、燃料
ガスの流路を形成する燃料側多孔部と酸化剤ガスの流路
を形成する酸化剤側多孔部の平均細孔径はほぼ等しくし
且つ酸化剤側多孔部の細孔径分布をブロードにしたの
で、酸化剤側多孔部のりん酸フィルレベルが低くなった
とき、燃料側多孔部と酸化剤側多孔部のりん酸フィルレ
ベル差に起因する毛管吸引力により酸化剤側多孔部の方
に電解質を引き戻すことができ、燃料側流路への電解質
の溢れや、燃料側多孔部でのガス拡散性の低下を防止で
きるとともに、長期の寿命を確保するのに充分な量の電
解質を貯蔵できる燃料電池が得られる効果がある。
According to the seventh aspect of the present invention, the average pore diameters of the fuel side porous portion forming the fuel gas flow passage and the oxidant side porous portion forming the oxidant gas flow passage are made substantially equal. Moreover, since the pore size distribution of the oxidant side porous part was broadened, when the phosphate fill level of the oxidant side porous part became low, it was caused by the difference in the phosphate fill level of the fuel side porous part and the oxidizer side porous part. Electrolyte can be pulled back to the oxidant side porous part by the capillary suction force, which can prevent the electrolyte from overflowing into the fuel side flow path and the decrease of gas diffusivity in the fuel side porous part, and long-term life. There is an effect that a fuel cell capable of storing a sufficient amount of electrolyte to secure the fuel cell is obtained.

【0047】また、この発明の請求項8によれば、燃料
ガスの流路を形成する燃料側多孔部と酸化剤ガスの流路
を形成する酸化剤側多孔部の平均細孔径はほぼ等しくし
且つ両側多孔部の細孔径分布をブロードにしたので、燃
料側多孔部のりん酸フィルレベルが高くなったときや酸
化剤側多孔部のりん酸フィルレベルが低くなったとき、
燃料側多孔部と酸化剤側多孔部のりん酸フィルレベル差
に起因する手管吸引力により酸化剤側多孔部の方に電解
質を引き戻すことができ、燃料側流路への電解質の溢れ
や、燃料側多孔部でのガス拡散性の低下を防止できると
ともに、長期の寿命を確保するのに充分な量の電解質を
貯蔵できる燃料電池が得られる効果がある。
According to the eighth aspect of the present invention, the average pore diameters of the fuel-side porous portion forming the fuel gas passage and the oxidant-side porous portion forming the oxidant gas passage are made substantially equal. And since the pore size distribution of the porous parts on both sides was made broad, when the phosphoric acid fill level of the fuel side porous part became high or when the phosphoric acid fill level of the oxidant side porous part became low,
The electrolyte can be pulled back toward the oxidant side porous part by the manual suction force caused by the phosphate fill level difference between the fuel side porous part and the oxidant side porous part, and the electrolyte overflows into the fuel side flow path, There is an effect that it is possible to obtain a fuel cell that can prevent a decrease in gas diffusibility in the fuel side porous portion and can store a sufficient amount of electrolyte to secure a long-term life.

【0048】また、この発明の請求項9によれば、請求
項1ないし8のいずれかにおいて、燃料側多孔部および
酸化剤側多孔部へのりん酸貯蔵量が両多孔部共細孔容積
の40〜60%であるようにしたので、燃料側流路への
電解質の溢れや、燃料側多孔部でのガス拡散性の低下な
しで、長期の寿命を確保することが可能となる。
According to a ninth aspect of the present invention, in any one of the first to eighth aspects, the storage amount of phosphoric acid in the fuel-side porous portion and the oxidant-side porous portion is equal to the pore volume of both porous portions. Since it is set to 40 to 60%, it is possible to secure a long service life without overflow of the electrolyte into the fuel side flow passage and deterioration of gas diffusivity in the fuel side porous portion.

【図面の簡単な説明】[Brief description of drawings]

【図1】 この発明の実施例1における燃料電池の要部
を示す斜視図である。
FIG. 1 is a perspective view showing a main part of a fuel cell according to a first embodiment of the present invention.

【図2】 図1における線IIA−IIAに沿った断面
図を(A)に線IIB−IIBに沿った断面図を(B)
に示したものである。
2A is a sectional view taken along line IIA-IIA in FIG. 1A, and FIG. 2B is a sectional view taken along line IIB-IIB in FIG.
It is shown in.

【図3】 この発明の多孔部に用いた材料の細孔分布を
示す説明図である。
FIG. 3 is an explanatory view showing the pore distribution of the material used for the porous portion of the present invention.

【図4】 燃料極のガス拡散性の指標である水素ゲイン
を比較した結果を示す説明図である。
FIG. 4 is an explanatory diagram showing a result of comparison of hydrogen gains, which is an index of gas diffusibility of a fuel electrode.

【図5】 従来の燃料電池の要部を示す斜視図である。FIG. 5 is a perspective view showing a main part of a conventional fuel cell.

【図6】 図5における線VI−VIに沿った断面図で
ある。
6 is a cross-sectional view taken along line VI-VI in FIG.

【符号の説明】[Explanation of symbols]

1 電解質マトリックス、2 電極触媒層(燃料電
極)、3 電極触媒層(酸化剤電極)、4 燃料ガス流
路、5 酸化剤ガス流路、7 緻密層、12 ガス分離
板、13 燃料側多孔部、13a ウェブ、13b リ
ブ、14 酸化剤側多孔部、14a ウェブ、14b
リブ。
1 Electrolyte Matrix, 2 Electrode Catalyst Layer (Fuel Electrode), 3 Electrode Catalyst Layer (Oxidizer Electrode), 4 Fuel Gas Flow Path, 5 Oxidizer Gas Flow Path, 7 Dense Layer, 12 Gas Separation Plate, 13 Fuel Side Porous Part , 13a web, 13b rib, 14 oxidant side porous portion, 14a web, 14b
rib.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 電解質マトリックスを介して対向する燃
料電極および酸化剤電極を有する単電池を、緻密層とこ
の両面にそれぞれ燃料ガス,酸化剤ガスを互いに直交し
て流せる流路を形成するリブとウェブからなる多孔部と
で構成したガス分離板を介して複数個積層する燃料電池
において、上記燃料ガスの流路を形成する燃料側多孔部
の細孔が占める容積を上記酸化剤ガスの流路を形成する
酸化剤側多孔部の細孔が占める容積よりも大きくしたこ
とを特徴とする燃料電池。
1. A unit cell having a fuel electrode and an oxidant electrode that face each other with an electrolyte matrix in between, a dense layer, and ribs that form flow paths on both sides of which a fuel gas and an oxidant gas can flow orthogonally to each other. In a fuel cell in which a plurality of gas separation plates composed of a porous portion made of a web are stacked, the volume occupied by the pores of the fuel-side porous portion forming the fuel gas passage is set to the oxidant gas passage. The fuel cell is characterized in that the volume is larger than the volume occupied by the pores of the oxidant-side porous portion forming the.
【請求項2】 燃料側多孔部のウェブの厚さを酸化剤側
のウェブの厚さより厚くしたことを特徴とする請求項1
に記載の燃料電池。
2. The thickness of the web on the fuel side porous portion is made thicker than the thickness of the web on the oxidizer side.
The fuel cell described in 1.
【請求項3】 燃料側多孔部のリブの幅を酸化剤側多孔
部のリブの幅より大きくしたことを特徴とする請求項1
に記載の燃料電池。
3. The width of the rib on the fuel side porous portion is made larger than the width of the rib on the oxidant side porous portion.
The fuel cell described in 1.
【請求項4】 燃料側多孔部のポロシティを酸化剤側多
孔部のポロシティより大きくしたことを特徴とする請求
項1に記載の燃料電池。
4. The fuel cell according to claim 1, wherein the porosity of the fuel side porous portion is larger than the porosity of the oxidant side porous portion.
【請求項5】 電解質マトリックスを介して対向する燃
料電極および酸化剤電極を有する単電池を、緻密層とこ
の両面にそれぞれ燃料ガス,酸化剤ガスを互いに直交し
て流せる流路を形成するリブとウェブからなる多孔部と
で構成したガス分離板を介して複数個積層する燃料電池
において、上記燃料ガスの流路を形成する燃料側多孔部
の細孔径を上記酸化剤ガスの流路を形成する酸化剤側多
孔部の細孔径よりも大きくしたことを特徴とする燃料電
池。
5. A unit cell having a fuel electrode and an oxidant electrode that face each other with an electrolyte matrix in between, a dense layer, and ribs that form flow paths on both sides of which a fuel gas and an oxidant gas can flow orthogonally to each other. In a fuel cell in which a plurality of layers are stacked through a gas separation plate configured with a porous portion formed of a web, the pore diameter of the fuel-side porous portion that forms the fuel gas passage forms the oxidant gas passage. A fuel cell, characterized in that it is made larger than the pore diameter of the oxidant side porous portion.
【請求項6】 電解質マトリックスを介して対向する燃
料電極および酸化剤電極を有する単電池を、緻密層とこ
の両面にそれぞれ燃料ガス,酸化剤ガスを互いに直交し
て流せる流路を形成するリブとウェブからなる多孔部と
で構成したガス分離板を介して複数個積層する燃料電池
において、上記燃料ガスの流路を形成する燃料側多孔部
と上記酸化剤ガスの流路を形成する酸化剤側多孔部の平
均細孔径はほぼ等しく且つ上記燃料側多孔部の細孔径分
布をブロードにして、上記燃料側多孔部のりん酸のフィ
ルレベルが高くなったとき上記両側多孔部のりん酸フィ
ルレベル差に起因する毛管吸引力差で酸化剤側多孔部の
方に上記りん酸を引き戻すようにしたことを特徴とする
燃料電池。
6. A unit cell having a fuel electrode and an oxidant electrode that face each other with an electrolyte matrix in between, a dense layer, and ribs that form flow paths on both sides of which a fuel gas and an oxidant gas can flow at right angles to each other. In a fuel cell in which a plurality of layers are stacked via a gas separation plate composed of a porous portion composed of a web, a fuel side porous portion forming a passage for the fuel gas and an oxidant side forming a passage for the oxidant gas When the average pore diameters of the porous portions are almost equal and the distribution of the pore diameters of the fuel-side porous portion is broad, and the fill level of phosphoric acid in the fuel-side porous portion becomes high, the difference between the phosphoric acid fill levels in the porous portions on both sides is high. The fuel cell is characterized in that the phosphoric acid is drawn back toward the oxidant side porous portion due to the difference in capillary suction force caused by the above.
【請求項7】 電解質マトリックスを介して対向する燃
料電極および酸化剤電極を有する単電池を、緻密層とこ
の両面にそれぞれ燃料ガス,酸化剤ガスを互いに直交し
て流せる流路を形成するリブとウェブからなる多孔部と
で構成したガス分離板を介して複数個積層する燃料電池
において、上記燃料ガスの流路を形成する燃料側多孔部
と上記酸化剤ガスの流路を形成する酸化剤側多孔部の平
均細孔径はほぼ等しくし且つ上記酸化剤側多孔部の細孔
径分布をブロードにして、酸化剤側多孔部のりん酸のフ
ィルレベルが低くなったとき上記両側多孔部のりん酸フ
ィルレベル差に起因する毛管吸引力差で上記酸化剤側多
孔部の方にりん酸を引き戻すようにしたことを特徴とす
る燃料電池。
7. A unit cell having a fuel electrode and an oxidant electrode that face each other with an electrolyte matrix in between, a dense layer, and ribs that form flow paths on both sides of which a fuel gas and an oxidant gas can flow at right angles to each other. In a fuel cell in which a plurality of layers are stacked via a gas separation plate composed of a porous portion composed of a web, a fuel side porous portion forming a passage for the fuel gas and an oxidant side forming a passage for the oxidant gas When the average pore diameters of the porous parts are made substantially equal and the pore size distribution of the oxidant side porous part is broadened to lower the phosphoric acid fill level of the oxidant side porous part, the phosphoric acid fill of the both side porous parts is reduced. A fuel cell, wherein phosphoric acid is drawn back toward the oxidant-side porous portion due to a difference in capillary suction force caused by a level difference.
【請求項8】 電解質マトリックスを介して対向する燃
料電極および酸化剤電極を有する単電池を、緻密層とこ
の両面にそれぞれ燃料ガス,酸化剤ガスを互いに直交し
て流せる流路を形成するリブとウェブからなる多孔部と
で構成したガス分離板を介して複数個積層する燃料電池
において、上記燃料ガスの流路を形成する燃料側多孔部
と上記酸化剤ガスの流路を形成する酸化剤側多孔部の平
均細孔径はほぼ等しくし且つ上記両側多孔部の細孔径分
布をブロードにして、上記燃料側多孔部のりん酸フィル
レベルが高くなり上記酸化剤側多孔部のりん酸フィルレ
ベルが低くなったとき、上記両側多孔部のりん酸フィル
レベル差に起因する毛管吸引力差で上記酸化剤側多孔部
の方に上記りん酸を引き戻すようにしたことを特徴とす
る燃料電池。
8. A unit cell having a fuel electrode and an oxidant electrode that face each other with an electrolyte matrix in between, a dense layer, and ribs that form flow paths on both sides of which a fuel gas and an oxidant gas can flow at right angles to each other. In a fuel cell in which a plurality of layers are stacked via a gas separation plate composed of a porous portion composed of a web, a fuel side porous portion forming a passage for the fuel gas and an oxidant side forming a passage for the oxidant gas The average pore diameters of the porous parts are made substantially equal and the pore size distributions of the porous parts on both sides are broadened so that the phosphoric acid fill level of the fuel side porous part becomes high and the phosphoric acid fill level of the oxidant side porous part becomes low. When it becomes, the fuel cell is characterized in that the phosphoric acid is pulled back toward the oxidant side porous portion due to the difference in the capillary suction force due to the difference in the phosphate fill level between the both side porous portions.
【請求項9】 燃料側多孔部および酸化剤側多孔部への
りん酸貯蔵量が上記両多孔部共細孔容積の40〜60%
であることを特徴とする請求項1ないし請求項7のいず
れかに記載の燃料電池。
9. The storage amount of phosphoric acid in the fuel-side porous portion and the oxidant-side porous portion is 40 to 60% of the pore volume of both the porous portions.
The fuel cell according to any one of claims 1 to 7, wherein
JP7001698A 1995-01-10 1995-01-10 Fuel cell Pending JPH08190918A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7001698A JPH08190918A (en) 1995-01-10 1995-01-10 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7001698A JPH08190918A (en) 1995-01-10 1995-01-10 Fuel cell

Publications (1)

Publication Number Publication Date
JPH08190918A true JPH08190918A (en) 1996-07-23

Family

ID=11508763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7001698A Pending JPH08190918A (en) 1995-01-10 1995-01-10 Fuel cell

Country Status (1)

Country Link
JP (1) JPH08190918A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005174768A (en) * 2003-12-11 2005-06-30 Equos Research Co Ltd Membrane electrode assembly, its manufacturing method, and its usage

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005174768A (en) * 2003-12-11 2005-06-30 Equos Research Co Ltd Membrane electrode assembly, its manufacturing method, and its usage
JP4506165B2 (en) * 2003-12-11 2010-07-21 株式会社エクォス・リサーチ Membrane electrode assembly and method of using the same

Similar Documents

Publication Publication Date Title
JP6717976B2 (en) Bipolar plates with reactant gas channels of varying cross section, fuel cell stacks, and vehicles having such fuel cell stacks
KR100549683B1 (en) Solid polymer electrolyte fuel cell assembly, fuel cell stack, and method of supplying reaction gas in fuel cell
US7348086B2 (en) Fuel cell
JP5500254B2 (en) Fuel cell
WO2011099399A1 (en) Fuel cell
JPH041469B2 (en)
CN100546082C (en) Fuel cell pack
JP2017079145A (en) Fuel battery cell
JP2003323905A (en) Solid polymer fuel cell
JP2004039525A (en) Fuel cell
JP5124900B2 (en) Fuel cell having a stack structure
JP4228501B2 (en) Current collector plate of polymer electrolyte fuel cell and polymer electrolyte fuel cell
JPH03276569A (en) Fuel cell
JP4419483B2 (en) Fuel cell
JP2002373677A (en) Fuel cell
US20040157111A1 (en) Fuel cell
JP2005093244A (en) Fuel cell
JP5193435B2 (en) Solid polymer electrolyte fuel cell
JPH08190918A (en) Fuel cell
JP3603871B2 (en) Polymer electrolyte fuel cell
JPH1021944A (en) Solid polymer electrolyte fuel cell
JP6403099B2 (en) Fuel cell module
JP2020107397A (en) Fuel battery cell
JP2005228580A (en) Electrolytic material for fuel cell and fuel cell
JP2004335178A (en) Fuel cell

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040524

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050329