JPH08190816A - Oxide super conducting wire and its manufacture - Google Patents

Oxide super conducting wire and its manufacture

Info

Publication number
JPH08190816A
JPH08190816A JP7232320A JP23232095A JPH08190816A JP H08190816 A JPH08190816 A JP H08190816A JP 7232320 A JP7232320 A JP 7232320A JP 23232095 A JP23232095 A JP 23232095A JP H08190816 A JPH08190816 A JP H08190816A
Authority
JP
Japan
Prior art keywords
metal
silver
superconducting
superconducting wire
tape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7232320A
Other languages
Japanese (ja)
Other versions
JP3873304B2 (en
Inventor
Toshiya Doi
俊哉 土井
Takeshi Ozawa
武 小沢
Toyotaka Yuasa
豊隆 湯浅
Kazuhisa Higashiyama
和寿 東山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP6224745A external-priority patent/JPH07192546A/en
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP23232095A priority Critical patent/JP3873304B2/en
Publication of JPH08190816A publication Critical patent/JPH08190816A/en
Application granted granted Critical
Publication of JP3873304B2 publication Critical patent/JP3873304B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE: To obtain a high superconducting critical current density at the liquid nitrogen temperature range by compounding a metallic body having a cubic aggregate structure and an oxide superconducting substance. CONSTITUTION: Pure silver is rolled at 220 deg.C so as to obtain 0.05mm thickness, and the same is annealed at 800 deg.C for two hours so as to form a silver tape board 10 in which crystal planes 100} of 80% or more are in parallel with a tape plane and orientation <100> is arranged in parallel with a rolling direction. Solution composed of 11 of water, 0.01mol of thallium nitrate, 0.02mol of barium nitrate, 0.02mol of calcium nitrate, 0.03mol of copper nitrate, 0.05mol of glycine is atomized by ultrasonic so as to deposit on the silver board 10 of 800 deg.C in 3μm thickness. The same is annealed at 850 deg.C for 50 hours in an atmosphere of oxygen and Tl2 O vapour so as to form a superconducting substance 11. The (c) axis orientation of the crystal of 80% or more stay within 1 degree against the normal line of the board 10, the (a) axis thereof coincides with the rolling direction of the silver tape, and critical current density of 80kA/cm<2> is obtained at a temperature of 77K and in a magnetic field of 1T.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、液体窒素の凝固点63
Kまで冷却することによって超電導性を発現する酸化物
系超電導物質と、結晶の方位制御を行った金属体を複合
体化することによって、磁場中においても高い超電導臨
界電流密度(Jc)を流すことが可能である超電導線材
或いは超電導体の構成及びその作製方法に関するもので
ある。また、それら本発明による超電導線材或いは超電
導体を使用することで、従来のものに比べて大幅に経済
的メリットを生じる超電導マグネット,超電導NMR装
置,超電導MRI装置,超電導発電装置,超電導エネル
ギー貯蔵装置,磁気シ−ルド装置,シンクロトロン放射
光発生装置,磁気分別装置,素粒子加速器などの装置に
関する。
BACKGROUND OF THE INVENTION The present invention relates to a freezing point 63 of liquid nitrogen.
By flowing a high superconducting critical current density (Jc) even in a magnetic field by forming a complex with an oxide-based superconducting material that exhibits superconductivity by cooling to K and a metal body whose crystal orientation is controlled. The present invention relates to a structure of a superconducting wire or a superconductor that can be manufactured and a manufacturing method thereof. Further, by using the superconducting wire or the superconductor according to the present invention, a superconducting magnet, a superconducting NMR apparatus, a superconducting MRI apparatus, a superconducting power generating apparatus, a superconducting energy storage apparatus, which has a great economic merit compared to the conventional ones, The present invention relates to devices such as a magnetic shield device, a synchrotron radiation generation device, a magnetic separation device, and an elementary particle accelerator.

【0002】また磁場中においても高いJcを有する超
電導線材或いは超電導体を開発する過程で発明した立方
体集合組織を有する銀テープ及びその作製方法に関する
ものである。
The present invention also relates to a silver tape having a cubic texture invented in the process of developing a superconducting wire or superconductor having a high Jc even in a magnetic field, and a method for producing the same.

【0003】[0003]

【従来の技術】1986年に最初の酸化物高温超電導物
質が発見されて以来、数十種類以上に及ぶ酸化物超電導
物質が発見されている。それらの中で、物質の安定性,
合成のしやすさの程度等の理由から、実用化を目指した
研究が現在も行われている酸化物超電導物質は、 (1)(Tl1-X1-X2PbX1BiX2)(Sr1-X3BaX3)2
nー1Cun2n+3 ここで、0≦X1≦0.9, 0≦X2≦0.5, 0≦X1+X2≦1, 0≦X3≦1, n=1,2,3,4,5 (以下、Tl−1層系と略す) (2)Tl2Ba2Canー1Cun2n+4 ここで、n=1,2,3,4,5 (以下、Tl−2層系と略す) (3)(Bi1ーX1PbX1)2Sr2Canー1Cun2n+4 ここで、0≦X1≦0.4, n=1,2,3 (以下、Bi−2層系と略す) (4)LnBa2Cu37+X1 ここで、LnはYもしくは希土類元素 −0.5≦X1≦0.1 (以下、Y系と略す) の4種類の物質系にほぼしぼられてきている。
2. Description of the Related Art Since the discovery of the first oxide high temperature superconducting material in 1986, more than several tens of oxide superconducting materials have been discovered. Among them, the stability of matter,
Oxide superconducting materials, which are still being researched for practical use because of their ease of synthesis, are (1) (Tl 1-X1-X2 Pb X1 Bi X2 ) (Sr 1- X3 Ba X3 ) 2 C
a n-1 Cu n O 2n + 3 where 0 ≦ X1 ≦ 0.9, 0 ≦ X2 ≦ 0.5, 0 ≦ X1 + X2 ≦ 1, 0 ≦ X3 ≦ 1, n = 1,2,3,4 , 5 (hereinafter referred to as Tl-1-layer system) (2) Tl 2 Ba 2 Ca n over 1 Cu n O 2n + 4 where, n = 1,2,3,4,5 (hereinafter, Tl-2 abbreviated as layer system) (3) (Bi 1 over X1 Pb X1) 2 Sr 2 Ca n over 1 Cu n O 2n + 4 where, 0 ≦ X1 ≦ 0.4, n = 1,2,3 ( hereinafter, Bi-2 layer system) (4) LnBa 2 Cu 3 O 7 + X1 where Ln is Y or a rare earth element of −0.5 ≦ X1 ≦ 0.1 (hereinafter abbreviated as Y system). It has been almost squeezed by the material system.

【0004】これらの中でBi−2層系の物質は結晶の
配向化(結晶を特定の向きに揃えること)が行いやす
く、また結晶粒界部での超電導電流の通りが良く、従っ
て磁場が掛かっていない状態での超電導輸送電流密度
(トランスポートJc)は高い値がえられている(Japa
nese Journal Of Applied Physics, vol. 30, 1991, p
p.L2083−L2084)。しかしながら、この物質系はその結
晶構造に由来する本質的な問題によって、液体窒素での
冷却が可能な温度領域でのピンニング力が非常に弱くな
るという致命的な問題がある(Physica C, vol. 177, 1
991, pp.431-437)。それ故、40K程度以下の温度領域
で使用するには非常に良い特性を持った超電導線材を作
製することが可能であるが、60K以上の温度領域で使
用する線材には用いることができなかった。
Among these, the Bi-2 layer type material is easy to orient the crystal (to align the crystal in a specific direction), and the superconducting flow at the grain boundary portion is good, so that the magnetic field is large. The superconducting transport current density (transport Jc) is high when it is not applied (Japa
nese Journal Of Applied Physics, vol. 30, 1991, p
p.L2083-L2084). However, this material system has a fatal problem that the pinning force becomes extremely weak in the temperature range where it can be cooled by liquid nitrogen due to the essential problem derived from its crystal structure (Physica C, vol. 177, 1
991, pp.431-437). Therefore, it is possible to produce a superconducting wire having very good characteristics for use in a temperature range of about 40K or lower, but it was not possible to use it for a wire used in a temperature range of 60K or higher. .

【0005】一方、Tl−1層系,Tl−2層系とY系
の物質は、その臨界温度(Tc)近傍まで高いピンニン
グ力を発揮することは可能であるが、結晶の方位を揃え
ることが難しく、それ故に結晶粒界部での超電導電流の
通りが悪く、現在までに実用化に必要な一応の目安と考
えられる温度77K,磁場1Tにおけるトランスポート
Jcが1万A/cm2 を越える超電導線材は得られていな
い(Physica C, vol.220, 1994, pp.310−322, Hitachi
Review, vol. 39, 1990, p.55, Japanese Journal Of
Applied Physics, vol. 27, 1988, pp. L185−L187)。
On the other hand, the Tl-1 layer system, the Tl-2 layer system and the Y system material can exhibit a high pinning force up to the vicinity of their critical temperature (Tc), but the crystal orientations should be aligned. Is difficult, and therefore the flow of superconducting current at the grain boundaries is poor, and the transport Jc at a temperature of 77K and a magnetic field of 1T, which is considered to be a tentative standard required for practical use, exceeds 10,000 A / cm 2 . No superconducting wire has been obtained (Physica C, vol.220, 1994, pp.310−322, Hitachi
Review, vol. 39, 1990, p.55, Japanese Journal Of
Applied Physics, vol. 27, 1988, pp. L185-L187).

【0006】最近、77Kにおけるピンニング力の強い
Tl−1層系,Y系の物質の結晶の方位を揃えて、77
Kでの磁場中でも高いJcが得られるような超電導線材
を作製することを目指した研究も各所で行われるように
なってきた。例えば、Iijima達は「Proceedings of 5th
International Symposium on Superconductivity,Nove
mber 16−19, 1992, Kobe, Japan, pp.661−664」にお
いて、多結晶のNi基合金上にIon−Beam−Assisted De
position法で結晶の方向を揃えたYttria−Stabilized−
Zirconiaを作製し、その上にpulsed laser deposition
法でY系超電導物質を作製する方法を開示している。ま
たDeluca達は「Physica C vol. 205,1993, pp.21−31」
において、多結晶Yttria−Stabilized−Zirconiaの上に
spraypyrolysis法によってTl−1層系超電導物質
を作製する方法を開示している。また、芳野達は、特開
平3−9311 号において、(100)または(110)結
晶面が圧延面に平行に並んだ銀テープを用いることで、
結晶の方向を揃えた超電導体の作製方法を開示してい
る。またYoshino達は「Abstracts of 6th Internat
ional Symposium on Superconductivity, October26−2
3, 1992,Hiroshima, Japan. p.119」において、銀結晶
の(110)面がテープ表面に平行に並んだ銀テープ上
にionized−cluster−beam−deposition法でY系超電導
物質を作製する方法を開示している。
Recently, the crystal orientations of the Tl-1 layer system and the Y system materials having a strong pinning force at 77K have been aligned to 77
Research aiming at producing a superconducting wire capable of obtaining a high Jc even in a magnetic field at K has been conducted in various places. For example, Iijima et al. "Proceedings of 5th
International Symposium on Superconductivity, Nove
mber 16-19, 1992, Kobe, Japan, pp.661-664 "on a polycrystalline Ni-based alloy.
Yttria-Stabilized-with the crystal orientation aligned by the position method
Zirconia is prepared and pulsed laser deposition is performed on it.
A method for producing a Y-based superconducting material by the method is disclosed. Also, Deluca et al. "Physica C vol. 205, 1993, pp.21-31"
On top of the polycrystalline Yttria-Stabilized-Zirconia
Disclosed is a method for producing a Tl-1 layer type superconducting substance by a spray pyrolysis method. Also, Tatsuyoshi Yoshino, in JP-A-3-9311, uses a silver tape in which (100) or (110) crystal planes are arranged in parallel with a rolling surface.
Disclosed is a method for producing a superconductor in which the directions of crystals are aligned. In addition, Yoshino and others are `` Abstracts of 6th Internat
ional Symposium on Superconductivity, October26-2
3, 1992, Hiroshima, Japan. P. 119 ”discloses a method for producing a Y-based superconducting substance by the ionized-cluster-beam-deposition method on a silver tape in which (110) planes of silver crystals are arranged in parallel with the tape surface.

【0007】また、現在までのところでは、液体窒素で
冷却できる温度以上の領域においては、実用に耐える性
能の超電導線材を作製することができなかったため、液
体窒素等の液体ヘリウムより沸点の高い冷媒による冷却
によって動作するような超電導機器は存在しなかった。
Further, until now, it has been impossible to produce a superconducting wire having a performance that can withstand practical use in a temperature range above the temperature at which it can be cooled by liquid nitrogen, so a refrigerant having a boiling point higher than that of liquid helium such as liquid nitrogen. There was no superconducting device that could operate by cooling with.

【0008】また、結晶の{100}面が<100>方
向に揃ったいわゆる立方体集合組織となった銀テープ
は、現在まで得られていなかった(例えば、長島晋一編
著「集合組織」、丸善株式会社)。
Further, a silver tape having a so-called cubic texture in which the {100} planes of the crystals are aligned in the <100> direction has not been obtained until now (for example, “texture” by Shinichi Nagashima, Maruzen Co., Ltd.). Company).

【0009】[0009]

【発明が解決しようとする課題】上記従来技術の中で、
Bi−2層系の超電導物質を用いている技術は、77K
におけるピンニング力が弱いと云う点問題があって、6
0K以上の温度領域では磁場がBi−2層系超電導物質
に印加された場合に臨界電流密度が大きく低下するとい
う問題があって、液体窒素冷却で作動する超電導機器へ
の利用が大きく制限されるといった点が問題であった。
Among the above-mentioned conventional techniques,
The technology using the Bi-2 layer superconducting material is 77K.
There is a problem that the pinning power is weak in 6
In the temperature range of 0 K or higher, there is a problem that the critical current density is greatly reduced when a magnetic field is applied to the Bi-2 layer system superconducting material, which greatly limits the use in superconducting equipment that operates by liquid nitrogen cooling. That was a problem.

【0010】Iijima達の技術では結晶の方向を揃えたYt
tria−Stabilized−Zirconiaを作製する際に真空を必要
とするプロセスIon−Beam−Assisted Deposition法を使
用しなければいけない。しかし、長尺(例ば1km)の線
材を作製することを想定した場合、この様なプロセスは
非常に経済性が悪いことが予想される。従って、Ni基
合金上に結晶の方向を揃えたYttria−Stabilized−Zirc
oniaを作製し、その上にY系超電導物質を作製する様な
技術では長尺の超電導線材を製品として作製することは
難しいと考えられる。
According to the technique of Iijima et al., Yt in which crystal directions are aligned
The process Ion-Beam-Assisted Deposition, which requires a vacuum, must be used in making the tria-Stabilized-Zirconia. However, when it is assumed that a long wire (for example, 1 km) is to be produced, such a process is expected to be very economical. Therefore, Yttria-Stabilized-Zirc with the crystal orientation aligned on the Ni-based alloy
It is considered that it is difficult to produce a long superconducting wire as a product by a technique of producing onia and then producing a Y-based superconducting substance on it.

【0011】Deluca達の技術ではセラッミクスであるYt
tria−Stabilized−Zirconiaを長尺のものとして作製す
る点に大きな困難が予想され、長尺の超電導線材を製品
として作製することは難しいと考えられる。
Deluca's technology is ceramics Yt
It is expected that there will be great difficulty in producing tria-Stabilized-Zirconia as a long product, and it will be difficult to produce a long superconducting wire as a product.

【0012】芳野達の技術では、超電導物質の結晶のc
軸の方向を揃えることにしか留意されておらず、結晶の
a軸の方向を揃えられていないため、77Kにおける臨
界電流密度は1万A/cm2 と低い値に留まっている。
[0012] According to Yoshino's technique, c of a crystal of a superconducting substance is used.
Since only attention is paid to aligning the directions of the axes, and the directions of the a-axes of the crystals are not aligned, the critical current density at 77K remains as low as 10,000 A / cm 2 .

【0013】Yoshino 達の技術では銀結晶の(110)
面がテープ表面に平行に並んでいる。高いJcを得るた
めには超電導結晶の(001)面の向きを平行に揃える
必要があるが、銀結晶の(110)面と超電導結晶の
(001)面のマッチングはあまりよくないため、Yosh
ino 達の技術では超電導結晶の向きがまだ充分に揃って
おらず、その結果Jcの値も77K,0Tで4万5千A
/cm2 とそれほど高いものにはなっていない。
According to Yoshino et al.'S technology, silver crystal (110)
The sides are parallel to the tape surface. In order to obtain a high Jc, it is necessary to align the directions of the (001) plane of the superconducting crystal in parallel. However, the matching of the (110) plane of the silver crystal and the (001) plane of the superconducting crystal is not so good, so Yosh
The technology of ino et al. has not yet fully aligned the orientation of the superconducting crystals, and as a result, the Jc value is 77K, 0T, 45,000A.
It is not so high as / cm 2 .

【0014】Iijima達,Deluca達,Yoshino 達の開示す
る従来の技術では、超電導物質と複合化させる基材の性
質に充分な配慮がなされていないため、長尺の超電導線
材を製品として作製することは難しかった。
In the conventional technique disclosed by Iijima et al., Deluca et al., And Yoshino et al., Since the property of the base material to be composited with the superconducting substance is not sufficiently considered, a long superconducting wire is produced as a product. Was difficult.

【0015】本発明の目的は、酸化物超電導物質の結晶
を好ましい方向に揃えるために好適な基材を提供し、そ
の基材と酸化物超電導物質を複合化することで、磁場中
においても高い臨界電流密度を有する超電導体及び超電
導線材を提供することにある。また、本発明による超電
導線材を使用することで初めて可能になる、液体窒素で
冷却できる温度以上の温度領域で動作する超電導マグネ
ット,NMR装置,MRI装置,磁気浮上列車,超電導
発電機,エネルギー貯蔵装置,磁気シールド装置,シン
クロトロン放射光装置,素粒子加速器等の超電導を利用
する応用機器を提供することも本発明の目的である。
An object of the present invention is to provide a base material suitable for aligning crystals of an oxide superconducting material in a preferred direction, and by compounding the base material and the oxide superconducting material, it is possible to achieve high magnetic field. It is to provide a superconductor and a superconducting wire having a critical current density. In addition, the use of the superconducting wire according to the present invention makes it possible for the first time to operate a superconducting magnet, an NMR apparatus, an MRI apparatus, a magnetic levitation train, a superconducting generator, an energy storage apparatus that operates in a temperature range higher than the temperature that can be cooled by liquid nitrogen. It is also an object of the present invention to provide an application device utilizing superconductivity such as a magnetic shield device, a synchrotron radiation device, and an elementary particle accelerator.

【0016】[0016]

【課題を解決するための手段】上記目的は、酸化物超電
導物質を立方体集合組織を有している金属体と複合化し
て超電導線材または超電導体とすることによって達成さ
れる。立方体集合組織とは、例えば長嶋晋一編著「集合
組織」丸善株式会社出版の133,185ページに記載
のあるように{100}<001>方位の集合組織のこ
とである。
The above object can be achieved by compounding an oxide superconducting material with a metal body having a cubic texture to form a superconducting wire or a superconductor. The cubic texture is, for example, a texture having a {100} <001> orientation as described in “Texture” published by Maruzen Co., Ltd., edited by Shinichi Nagashima, pages 133 and 185.

【0017】立方体集合組織を有している金属体の金属
結晶の{100}面を、該金属体と酸化物超電導物質の
界面に平行に揃えた場合のほうが、両者の複合体である
超電導体の超電導臨界電流密度(Jc)は高くできる。
When the {100} plane of the metal crystal of the metal body having a cubic texture is aligned parallel to the interface between the metal body and the oxide superconducting substance, the superconductor is a composite of the two. The superconducting critical current density (Jc) can be increased.

【0018】立方体集合組織を有している金属体の金属
結晶の{100}面と酸化物超電導物質の(001)面
を平行になるようにした場合のほうが、酸化物超電導物
質の結晶粒子の結晶方位を揃えやすく、Jcを高くする
ことができる。ここで、平行とは、両者の方向が10度
以内で揃っていることを指す。金属結晶の{100}面
の方向と界面の角度,金属結晶の{100}面と酸化物
超電導物質の(001)面の角度を色々と変化させてJc
を測定したところ、5度以上になると10%程度に、1
0度以上になると急激にJcが低下した。
When the {100} plane of the metal crystal of the metal body having a cubic texture and the (001) plane of the oxide superconducting substance are made parallel to each other, the crystal grains of the oxide superconducting substance are The crystal orientation can be easily aligned, and Jc can be increased. Here, parallel means that both directions are aligned within 10 degrees. The direction of the {100} plane of the metal crystal and the angle of the interface, and the angle of the {100} plane of the metal crystal and the (001) plane of the oxide superconducting material are variously changed to obtain Jc.
Was measured, it was 10% when it was 5 degrees or more, 1
The Jc dropped sharply at 0 degrees or more.

【0019】立方体集合組織を有する金属体の金属結晶
のa,b,cの全ての結晶軸と、酸化物超電導物質の
a,b,cの全ての結晶軸が全て平行である場合が最も
高いJcを与える。1軸だけでも平行に揃えることで、
ある程度はJcの値を向上させることはできるが、実用
化を考えた際には不十分である。
It is the highest when all the crystal axes of a, b and c of the metal crystal of the metal body having the cubic texture and all the crystal axes of a, b and c of the oxide superconducting material are parallel to each other. Give Jc. By aligning only one axis in parallel,
Although the value of Jc can be improved to some extent, it is insufficient when considering practical use.

【0020】99%の結晶の{100}面が平行でかつ
<001>方位が揃っている状態(立方体集合組織を有
している)の銀テープを作製し、その上に、酸化物超電
導物質を、その結晶方位を揃える程度を種々に変化させ
て作製し、Jcの変化を調べた。金属結晶の{100}
面と酸化物超電導物質の(001)面の角度が10度以
内になっているものが全体の60%を下回らない範囲で
は、従来技術による超電導線もしくは超電導体のJcよ
りも高いJc値が得られている。ただし、金属結晶の
{100}面と酸化物超電導物質の(001)面の角度
が10度以内になっているものが全体の80%を下回る
ようになると、Jcは急激に低下していることから、金
属結晶の{100}面と酸化物超電導物質の(001)
面の角度が10度以内になっているものが全体の80%
以上となっている事が好ましい。また、金属の結晶の<
110>方向と酸化物超電導物質結晶の[110]方向
が10度以内になっているものが全体の60%を下回ら
ない範囲では、従来技術による超電導線もしくは超電導
体のJcよりも高いJc値が得られている。ただし、金
属の結晶の<110>方向と酸化物超電導物質結晶の
[110]方向が10度以内になっているものが全体の
80%を下回るようになると、Jcは急激に低下してい
ることから、金属の結晶の<110>方向と酸化物超電
導物質結晶の[110]方向が10度以内になっている
ものが全体の80%以上となっている事が好ましい。ま
た、金属の結晶の<100>方向と酸化物超電導物質結
晶の[100]方向が10度以内になっているものが全
体の60%を下回らない範囲では、従来技術による超電
導線もしくは超電導体のJcよりも高いJc値が得られ
ている。ただし、金属の結晶の<100>方向と酸化物
超電導物質結晶の[100]方向が10度以内になって
いるものが全体の80%を下回るようになると、Jcは
急激に低下していることから、金属の結晶の<100>
方向と酸化物超電導物質結晶の[100]方向が10度
以内になっているものが全体の80%となっている事が
好ましい。
99% of the crystal {100} planes are parallel and the <001> orientation is aligned (having a cubic texture) to prepare a silver tape, on which an oxide superconducting material is formed. Was manufactured by varying the degree of aligning the crystal orientations, and the change in Jc was investigated. Metal crystal {100}
In the range where the angle between the plane and the (001) plane of the oxide superconducting material is within 10 degrees, the Jc value higher than the Jc of the conventional superconducting wire or superconducting wire can be obtained within the range of not less than 60%. Has been. However, when the angle between the {100} plane of the metal crystal and the (001) plane of the oxide superconducting material is within 10 degrees, when less than 80% of the whole, Jc sharply decreases. From the (100) plane of the metal crystal and the (001) plane of the oxide superconducting material.
80% of the total angle is within 10 degrees
The above is preferable. In addition, metal crystals <
In the range where the 110> direction and the [110] direction of the oxide superconducting substance crystal are within 10 degrees, the Jc value higher than the Jc value of the superconducting wire or the superconducting wire according to the prior art is not exceeded. Has been obtained. However, when the <110> direction of the metal crystal and the [110] direction of the oxide superconducting material crystal are within 10 degrees, when less than 80% of the whole, Jc sharply decreases. Therefore, it is preferable that the <110> direction of the metal crystal and the [110] direction of the oxide superconducting material crystal are within 10 degrees, which is 80% or more of the whole. In addition, in the range where the <100> direction of the metal crystal and the [100] direction of the oxide superconducting material crystal are within 10 degrees within 60% of the whole, the superconducting wire or the superconducting wire according to the conventional technique is A Jc value higher than Jc is obtained. However, when the <100> direction of the metal crystal and the [100] direction of the oxide superconducting material crystal are within 10 degrees, when less than 80% of the whole, Jc sharply decreases. From <100> of metal crystals
It is preferable that the direction and the [100] direction of the crystal of the oxide superconducting material are within 10 degrees, which is 80% of the whole.

【0021】{100}面がテープ表面に平行で、かつ
<110>方向がテープ長手方向に揃っている結晶の割
合を変化させた銀テープを作製し、その上に酸化物超電
導物質層を注意深く形成し、Jcの変化を調べた。{1
00}面が<110>方向に揃っている結晶の割合が8
0%を下回るようになると、Jcは急激に低下すること
が分かった。
A silver tape having {100} planes parallel to the tape surface and varying the proportion of crystals whose <110> direction is aligned with the tape longitudinal direction was prepared, and an oxide superconducting material layer was carefully formed thereon. Formed and examined for changes in Jc. {1
The ratio of crystals in which the {00} planes are aligned in the <110> direction is 8
It has been found that Jc drops sharply when it falls below 0%.

【0022】立方体集合組織を有している金属テープは
銀の他にも、使用する酸化物超電導物質の性質を、超電
導体の熱処理時に損なわないものであればどのような元
素からなるものであっても構わない。例えば、純銀,銀
と金の合金,銀とパラジウムの合金,銀と銅の合金,銀
のマトリックス相にMgO等の酸化物を分散させた分散
強化型合金等であっても構わない。FCC構造の金属の
方が、立方体集合組織を得やすいので好ましい。ただ
し、BCC構造の金属であっても、立方体集合組織は得
られるので、BCC金属でも構わないが、HCP構造の
金属では良い特性の超電導体を得ることはできない。
The metal tape having a cubic texture may be composed of any element other than silver as long as it does not impair the properties of the oxide superconducting material used during the heat treatment of the superconductor. It doesn't matter. For example, pure silver, an alloy of silver and gold, an alloy of silver and palladium, an alloy of silver and copper, and a dispersion strengthening alloy in which an oxide such as MgO is dispersed in a silver matrix phase may be used. A metal having an FCC structure is preferable because a cubic texture can be easily obtained. However, since a cubic texture can be obtained even with a metal having a BCC structure, a BCC metal may be used, but a superconductor having good characteristics cannot be obtained with a metal having an HCP structure.

【0023】超電導線としての高い臨界電流密度を得る
ためには、超電導部分を流れる超電導臨界電流密度を高
くする必要があるのはもちろんであるが、超電導物質と
超電導でない物質の構成比率も重要なファクターにな
る。当然のことながら、超電導物質の占める割合が高い
ほど、超電導線のJcは高くなる。本発明による方法で
は、金属テープは薄ければ薄いほど良く、一方、超電導
物質層は厚ければ厚いほど良い。しかしながらそれらの
厚さには自ずと限界がある。経済性を考えたとき、金属
テープは圧延で作る必要があるが、その場合5ミクロン
未満の厚さの金属テープを作製することは非常に困難で
あった。また、超電導物質の結晶は、基材の結晶からの
影響を受けることによって、その方向が揃うので、超電
導物質層が3ミクロンを越えると結晶の方向が乱れてく
る。この様なことから、長手方向に垂直な断面における
金属体の面積S1と酸化物超電導物質の面積S2の比
率、S1/S2を0.6 より大きくすることは難しい。
また、S1/S2の値が小さくなりすぎると超電導線全
体としての臨界電流密度が低くなりすぎるので好ましく
ない。経済的な観点から考慮するとS1/S2の値は最
低でも0.01 は必要である。
In order to obtain a high critical current density as a superconducting wire, it is needless to say that the superconducting critical current density flowing through the superconducting portion should be high, but the composition ratio of the superconducting substance and the non-superconducting substance is also important. Become a factor. As a matter of course, the higher the proportion of the superconducting material, the higher the Jc of the superconducting wire. In the method according to the invention, the thinner the metal tape, the better, while the thicker the superconducting material layer, the better. However, their thickness is naturally limited. In consideration of economic efficiency, the metal tape needs to be manufactured by rolling, but in that case, it was very difficult to manufacture the metal tape having a thickness of less than 5 microns. Further, the crystal of the superconducting material is influenced by the crystal of the base material, so that the directions thereof are aligned, so that the crystal direction is disturbed when the superconducting material layer exceeds 3 microns. For this reason, it is difficult to make the ratio S1 / S2 of the area S1 of the metal body and the area S2 of the oxide superconducting material in the cross section perpendicular to the longitudinal direction larger than 0.6.
If the value of S1 / S2 is too small, the critical current density of the entire superconducting wire will be too low, which is not preferable. From an economical point of view, the value of S1 / S2 must be at least 0.01.

【0024】尚、金属体はテープ状である場合が多い
が、あっても、線状,管状等の形状であっても同じ原理
で、高いJcの超電導線材が得られる。
Although the metal body is often in the form of a tape, a superconducting wire having a high Jc can be obtained by the same principle regardless of whether the metal body is in the shape of a wire, a tube or the like.

【0025】酸化物超電導物質としては、液体窒素で冷
却できる温度以上の領域で必要とする磁場よりも高い不
可逆磁場(その磁場以上では有限の抵抗を発生してしま
う最小の磁場)を有している超電導物質を用いる必要が
ある。例えば、Tl,Sr,Ca,Cu,Oをベースに
して合成された超電導物質は高いTcと高い不可逆磁場
Hc*の故に好ましい。この超電導物質群はフレキシビ
リテイーに富んでおり結晶のサイトの元素置換が非常に
起こりやすい。具体的な組成式を示すと (TlX1PbX2BiX3HgX4CuX5)(Sr1-X6BaX6)2
Canー1Cun2n+3+X7 (ここで、0≦X1≦1.0,0≦X2≦1.0,0≦X
3≦0.5,0≦X4≦1.0,0≦X5≦1.0 ,0.
5≦X1+X2+X3+X4+X5≦1,0≦X6≦
1,−0.5≦X7≦0.5,n=1,2,3,4,5)
である。また、LnBa2Cu37+X1(ここで、Lnは
Yもしくは希土類元素、−0.5≦X1≦0.1 )の組
成式で表わされる酸化物超電導物質群も、高い不可逆磁
場を有しており、本発明に好ましい物質である。また、
組成が (Tl1-X1-X2-X3PbX1BiX2HgX3)2(Sr1-X4
X4)2Can-1Cun2n+3+X5 (ここでn=2,3,4,5,6,0≦X1≦0.8,
0≦X2≦0.5,0≦X3≦1.0,0≦X1+X2+
X3≦1,0≦X4≦1,−0.5≦X5≦0.5)であ
る超電導物質は、上記のTl−1層系或いはY系の超電
導物質群に比べて、不可逆磁場は少し小さくなるが、こ
のような物質群を使用しても構わない。
The oxide superconducting material has an irreversible magnetic field (the minimum magnetic field that produces a finite resistance above the magnetic field) higher than the magnetic field required in the region above the temperature where it can be cooled with liquid nitrogen. It is necessary to use existing superconducting materials. For example, superconducting materials synthesized on the basis of Tl, Sr, Ca, Cu, O are preferable because of their high Tc and high irreversible magnetic field Hc *. This superconducting substance group is rich in flexibility, and element substitution of crystal sites is very likely to occur. A specific composition formula is (Tl X1 Pb X2 Bi X3 Hg X4 Cu X5 ) (Sr 1-X6 Ba X6 ) 2
C n-1 Cu n O 2n + 3 + X7 (where 0 ≦ X1 ≦ 1.0, 0 ≦ X2 ≦ 1.0, 0 ≦ X
3 ≦ 0.5, 0 ≦ X4 ≦ 1.0, 0 ≦ X5 ≦ 1.0, 0.0.
5 ≦ X1 + X2 + X3 + X4 + X5 ≦ 1,0 ≦ X6 ≦
1, -0.5 ≦ X7 ≦ 0.5, n = 1, 2, 3, 4, 5)
Is. Further, the oxide superconducting substance group represented by the composition formula of LnBa 2 Cu 3 O 7 + X1 (where Ln is Y or a rare earth element, −0.5 ≦ X1 ≦ 0.1) also has a high irreversible magnetic field. Therefore, it is a preferable substance for the present invention. Also,
The composition is (Tl 1-X1-X2-X3 Pb X1 Bi X2 Hg X3 ) 2 (Sr 1-X4 B
a X4) 2 Ca n-1 Cu n O 2n + 3 + X5 ( where n = 2,3,4,5,6,0 ≦ X1 ≦ 0.8,
0 ≦ X2 ≦ 0.5, 0 ≦ X3 ≦ 1.0, 0 ≦ X1 + X2 +
X3 ≦ 1,0 ≦ X4 ≦ 1, −0.5 ≦ X5 ≦ 0.5) has a slightly smaller irreversible magnetic field than the above Tl-1 layer system or Y system superconducting substance group. However, such a substance group may be used.

【0026】組成式、(Bi1ーX1PbX1)2Sr2Canー1
Cun2n+4(ここで、0≦X1≦0.4,n=1,2,
3)で表される超電導物質群は、液体窒素冷却できる温
度領域ではそれほど高い不可逆磁場を持っていないの
で、本発明の趣旨から少し外れるが、この様な超電導物
質を使用した場合でも、立方体集合組織を有する金属体
と複合体化させることによって、Jc(ただし、不可逆
磁場以下の磁場中での)をより高くすることができる。
また、より低温度領域(例えば、液体ヘリウムで冷却)
で使用した場合のJcが大幅に向上する。
Compositional formula, (Bi 1 -X1 Pb X1 ) 2 Sr 2 Ca n -1
Cu n O 2n + 4 (where 0 ≦ X1 ≦ 0.4, n = 1, 2,
The superconducting material group represented by 3) does not have such a high irreversible magnetic field in the temperature range where liquid nitrogen can be cooled, so it is slightly outside the scope of the present invention, but even when such a superconducting material is used, a cubic assembly is used. By forming a complex with a metal body having a tissue, Jc (in a magnetic field below the irreversible magnetic field) can be increased.
Also, lower temperature range (for example, cooling with liquid helium)
When used in, the Jc is greatly improved.

【0027】本発明が適用できる超電導物質はこれらに
限らず、一般的に結晶の方向を揃えることで特性が向上
する全ての物質にたいして適用できる技術である。
The superconducting substance to which the present invention can be applied is not limited to these, but is a technique that can be applied to all substances whose characteristics are generally improved by aligning the crystal directions.

【0028】従来の超電導応用機器はすべて30K以下
の温度領域でしか超電導状態にならない超電導物質を使
用していたため、その運転には液体ヘリウムを必要と
し、コストが非常に掛かった。この点を解決するために
本発明では液体窒素での冷却で十分に超電導状態になる
物質を用いた超電導線材或いは超電導体を使用するの
で、冷却に掛かるコストを大幅に低減することができ
る。更に、本発明で作製した超電導線材或いは超電導体
を使用して、超電導応用機器を作製した場合、従来の超
電導機器においては非常に考慮する必要のあった、クエ
ンチ(何らかの原因によって、超電導体の一部が常電導
状態に転移したとき、それが急激に伝播して超電導体の
全体が常電導状態に転移してしまい、その際に急激に多
量の熱を発生する現象)に関する問題が大いに低減さ
れ、実質的にはまずクエンチが起こらないような超電導
機器とすることができる。従って、従来は行う必要のあ
ったクエンチ対策が必要なくなり、それに見合った大幅
なコスト低減が図れる。
Since all the conventional superconducting equipment uses a superconducting substance which is in a superconducting state only in a temperature range of 30 K or less, liquid helium is required for its operation, which is very costly. In order to solve this point, the present invention uses a superconducting wire or a superconductor made of a substance that becomes sufficiently in a superconducting state by cooling with liquid nitrogen, so that the cost for cooling can be greatly reduced. Furthermore, when a superconducting applied device is manufactured using the superconducting wire or the superconducting wire manufactured by the present invention, quenching (for some reason, the superconducting When a part changes to the normal conduction state, it rapidly propagates and the entire superconductor changes to the normal conduction state, and at that time, a large amount of heat is suddenly generated. In the first place, a superconducting device in which quenching does not substantially occur can be provided. Therefore, it is not necessary to take a quenching measure that has been necessary in the past, and a significant cost reduction can be achieved.

【0029】本発明を実用製品に適用する際の立方体集
合組織を有する金属体としては、銀がもっとも好ましい
が、立方体集合組織を有する銀の多結晶体は、これまで
存在しなかった。そこで、我々は銀の純度,加工度,圧
延温度,熱処理温度及び時間を種々検討することによっ
て、遂に銀の立方体集合組織を得ることに成功した。具
体的には、99.0 %以上の純度の銀を、100℃以上
300℃以下、好ましくは150℃以上200℃以下の
温度で、加工度80%以上になるように線引き、或いは
圧延加工を施し、その後400℃以上の温度で5分以上
の熱処理を行うことで、銀の立方体集合組織を得ること
ができる。この立方体集合組織を持つ銀は、酸化物超電
導物質と複合化して使用する他にも、異方性が全くない
ため、電流や信号を伝えたりする導線等に使用すると従
来の銀線よりも良い特性が得られる。また、GaAs半
導体素子の基板として使用したところ、GaAs単結晶
基板上に作成したGaAs半導体素子の性能と同等の特
性が確認できた。このことから、本発明の立方体集合組
織を持つ銀はGaAs単結晶よりも安価な基板として利
用できることがわかる。また、何らかの物質の結晶方位
を揃えて作製する必要がある場合、本発明による立方体
集合組織の銀を基板に用いれば、大きな面積のものが安
価に得られる。
Silver is most preferable as a metal body having a cubic texture when the present invention is applied to a practical product, but a silver polycrystal having a cubic texture has not been present so far. Therefore, we have succeeded in finally obtaining a silver cubic texture by examining various factors such as the purity of silver, the workability, rolling temperature, heat treatment temperature and time. Specifically, silver with a purity of 99.0% or more is drawn or rolled at a temperature of 100 ° C. or higher and 300 ° C. or lower, preferably 150 ° C. or higher and 200 ° C. or lower so that the workability is 80% or higher. After that, a silver cube texture can be obtained by performing heat treatment at a temperature of 400 ° C. or higher for 5 minutes or longer. Since silver having this cubic texture has no anisotropy in addition to being used in combination with an oxide superconducting material, it is better than conventional silver wires when used for conducting wires that carry currents and signals. The characteristics are obtained. Further, when it was used as a substrate for a GaAs semiconductor device, the same characteristics as the performance of a GaAs semiconductor device formed on a GaAs single crystal substrate were confirmed. From this, it is understood that the silver having the cubic texture of the present invention can be used as a substrate which is cheaper than the GaAs single crystal. Further, when it is necessary to prepare some substances by aligning the crystal orientations thereof, silver having a cubic texture according to the present invention can be used for a substrate to obtain a large area at low cost.

【0030】[0030]

【作用】我々は図1,図2,図3に示す様な結晶構造
(図1,図2は2単位格子で、図3は単位格子で描いて
いる)をもつ超電導物質が高い不可逆磁場(ある温度に
おいて、電気抵抗がゼロである超電導電流を試料に流す
ことが可能である最大印加磁場の値のこと。これ以上の
磁場を試料に印加すると試料は抵抗を発生する。)を持
ちえることを示し、その超電導物質にピンニングセンタ
を導入して高い不可逆磁場を持つ超電導体を作製する方
法を可能にしてきた。その過程で、不可逆磁場を高くす
ることの出来る超電導物質を用いて多結晶体(要するに
単結晶ではなく、結晶粒界が存在する超電導体)で超電
導線材を作製するときには、超電導物質の結晶のc軸が
同じ方向を向いている(c軸配向)ようにしてやった方
が高いJcを持った超電導体が出来ることを、超電導物
質の結晶のa,b,c軸が全て同じ方向を向いている
(3軸配向)ようにしてやった方がより高いJcを持っ
た超電導体が出来ることを、見いだした。そこで今回高
い不可逆磁場を持ちえる超電導物質を配向させて高いJ
cを持つ超電導線材或いは超電導体の構造及び作製方法
を考案した。
We have found that a superconducting material having a crystal structure as shown in FIGS. 1, 2 and 3 (two unit lattices in FIGS. 1 and 2 and a unit lattice in FIG. 3) has a high irreversible magnetic field ( The value of the maximum applied magnetic field that allows a superconducting current with zero electric resistance to flow through the sample at a certain temperature. When a magnetic field higher than this value is applied to the sample, the sample can generate resistance. We have made possible a method for producing a superconductor with a high irreversible magnetic field by introducing a pinning center into the superconducting material. In the process, when a superconducting wire is produced with a polycrystalline body (that is, not a single crystal but a superconductor in which crystal grain boundaries exist) using a superconducting material capable of increasing the irreversible magnetic field, c of the crystal of the superconducting material is used. It is possible to make a superconductor with a higher Jc when the axes are oriented in the same direction (c-axis orientation). The a, b and c axes of the crystal of the superconducting material are all oriented in the same direction. It was found that a superconductor having a higher Jc can be obtained by performing (triaxial orientation). Therefore, this time, by aligning a superconducting material that can have a high irreversible magnetic field
A structure and a manufacturing method of a superconducting wire or a superconductor having c have been devised.

【0031】通常の市販の銀テープの上にY系,Tl−
1層系,Tl−2層系等の超電導物質を作製しても、酸
化物超電導物質の結晶の向きが十分に揃わず、温度77
K,磁場1T中におけるJcも数千A/cm2 程度と高い
値は得られない。また、結晶の{110}面が表面に平
行に揃った銀テープの上にY系,Tl−1層系,Tl−
2層系等の超電導物質を作製しても、酸化物超電導物質
の結晶の向きが十分に揃わず、温度77K,無磁場でJ
c=数万A/cm2 ,温度77K,磁場1T中におけるJ
cは数千A/cm2 程度と十分に高い値は得られない。ま
た、結晶の{100}が表面に平行に揃っているが<1
00>方向は揃っていない銀テープの上にY系,Tl−
1層系,Tl−2層系等の超電導物質を作製しても、酸
化物超電導物質の結晶の向きが十分に揃わず、温度77
K,無磁場でJc=数万A/cm2 ,温度77K,磁場1
T中におけるJcは数千A/cm2 程度とやはり十分に高
い値は得られない。しかし、立方体集合組織を有する銀
テープの上に、酸化物超電導物質を作製したところ、温
度77K,磁場1T中におけるJcが1万A/cm2 以上
の非常に特性の良い超電導線材を得ることができた。こ
の理由に関しては色々な可能性が考えられるが、恐ら
く、立方体集合組織を持つ銀テープの表面の銀原子の配
列が、超電導物質の理想的な結晶配向である3軸配向に
とって好ましい状況になっている為であると考えられ
る。
Y-based, Tl-
Even if a superconducting substance such as a one-layer system or a T1-2 layer system is produced, the crystal orientation of the oxide superconducting substance is not sufficiently aligned, and the temperature is 77
K and Jc in a magnetic field of 1 T cannot be as high as several thousand A / cm 2 . In addition, on the silver tape in which the {110} planes of the crystals are aligned parallel to the surface, Y system, Tl-1 layer system, Tl-
Even if a superconducting material such as a two-layer system is produced, the crystal orientations of the oxide superconducting material are not sufficiently aligned, and the temperature is 77K and the magnetic field is J.
c = J, tens of thousands A / cm 2 , temperature 77K, magnetic field 1T
c is a value of several thousand A / cm 2, which is not sufficiently high. Also, the {100} of the crystals are aligned parallel to the surface, but <1
00> Y direction, Tl-
Even if a superconducting substance such as a one-layer system or a T1-2 layer system is produced, the crystal orientation of the oxide superconducting substance is not sufficiently aligned, and the temperature is 77
K, Jc = tens of thousands A / cm 2 without magnetic field, temperature 77K, magnetic field 1
The value of Jc in T is about several thousand A / cm 2, which is not sufficiently high. However, when an oxide superconducting material was produced on a silver tape having a cubic texture, a superconducting wire with a Jc of 10,000 A / cm 2 or more at a temperature of 77 K and a magnetic field of 1 T was obtained. did it. There are various possible reasons for this, but it is likely that the arrangement of silver atoms on the surface of the silver tape having a cubic texture is favorable for the triaxial orientation, which is the ideal crystal orientation of the superconducting material. It is thought that it is because there is.

【0032】また、立方体集合組織を有する銀と金の合
金,銀とパラジウムの合金,銀と銅の合金,銀のマトリ
ックス相にMgOを分散させた分散強化型合金,銀のマ
トリックス相に金属間化合物を分散させた分散強化型合
金を使用した場合にも、立方体集合組織を有する銀テー
プの上に、酸化物超電導物質を作製した場合と同様に高
いJcが得られた。また、立方体集合組織を有するN
i,Ni−Fe合金,Cu,Cu−Al合金を使用した
場合にも、立方体集合組織を有する銀テープの上に、酸
化物超電導物質を作製した場合と同様に高いJcが得ら
れるものと考えられる。
In addition, an alloy of silver and gold having a cubic texture, an alloy of silver and palladium, an alloy of silver and copper, a dispersion-strengthened alloy in which MgO is dispersed in a silver matrix phase, and an intermetallic material in the silver matrix phase. Even when the dispersion-strengthened alloy in which the compound was dispersed was used, a high Jc was obtained as in the case of producing the oxide superconducting material on the silver tape having the cubic texture. In addition, N having a cubic texture
Even when i, Ni-Fe alloy, Cu, or Cu-Al alloy is used, it is considered that a high Jc can be obtained as in the case of producing an oxide superconducting material on a silver tape having a cubic texture. To be

【0033】本発明に記載の超電導物質,非超電導物質
及びその他の物質の組成は、厳密にこの値だけに限られ
るものではない。実際には、これらの酸化物には若干の
組成不定性があり各構成元素の含有比率が、十数パ−セ
ントから30パ−セント程度までずれることもある。従
って、本発明において記載している物質の組成が若干異
なっていても、その結晶構造が基本的に同じであれば、
本発明に記載の物質と同じものである。
The composition of the superconducting substance, non-superconducting substance and other substances described in the present invention is not strictly limited to this value. Actually, these oxides have some composition indefiniteness, and the content ratio of each constituent element may deviate from about a dozen percent to about 30 percent. Therefore, even if the composition of the substance described in the present invention is slightly different, if the crystal structure is basically the same,
It is the same as the substance described in the present invention.

【0034】本発明によって作製した超電導体を使用す
ることによって、液体窒素冷却で動作する、特性の良い
超電導マグネットの作製が可能になる。そしてこのマグ
ネットを使用することによって液体窒素冷却で動作する
NMR装置,SQUID装置,MRI装置,磁気浮上列
車等の作製が可能になる。超電導マグネットを利用した
装置の全てを、本発明の超電導体を使用した線材を使用
した超電導で置き換えることが可能であり、そのことに
よって液体窒素冷却で動作する様にできる。液体窒素冷
却で動作するようにすることによって、単に運転コスト
(液体ヘリウムと液体窒素の価格差)が安くなるメリッ
ト以上に超電導装置の信頼性(クエンチと呼ばれる超電
導が急激に破壊する現象を抑え込む為に、種々の措置が
施される必要がある)を確保するためのコスト,冷凍機
に掛かるコスト,断熱にかかるコストが大幅に低減す
る。従って、本発明による超電導線材,コイルを用いて
超電導装置を作製することによって、装置の価格を大幅
に低減することが可能になる。
By using the superconductor produced by the present invention, it becomes possible to produce a superconducting magnet which operates with liquid nitrogen cooling and has good characteristics. By using this magnet, it is possible to fabricate an NMR apparatus, a SQUID apparatus, an MRI apparatus, a magnetic levitation train, etc. that operate by cooling with liquid nitrogen. It is possible to replace all of the devices using the superconducting magnet with the superconducting material using the wire material using the superconducting material of the present invention, whereby it is possible to operate with liquid nitrogen cooling. By operating with liquid nitrogen cooling, the reliability of the superconducting device (suppressing a phenomenon called rapid quenching of superconductivity) is suppressed beyond the merit of simply lowering the operating cost (price difference between liquid helium and liquid nitrogen). In addition, the cost for securing various measures), the cost for the refrigerator, and the cost for heat insulation are significantly reduced. Therefore, by manufacturing a superconducting device using the superconducting wire and coil according to the present invention, the cost of the device can be significantly reduced.

【0035】[0035]

【実施例】以下、本発明の実施例を説明する。Embodiments of the present invention will be described below.

【0036】[実施例1]まず最初に、立方体集合組織
を有する銀テープを作製した。幅10mm,厚さ5mm,長
さ50mmの市販の銀(99.99% )の塊を、220℃
に保った状態のまま5回の圧延処理で、厚さ0.05mm
まで薄くした。このとき途中で焼鈍工程を入れてはいけ
ない。このテープを800℃で2時間アニールして、銀
テープ基板とした。X線回折測定で銀の結晶の方位を調
べたところ、約80%の結晶粒の{100}面がテープ
表面に平行でかつその<100>方位が圧延を掛けた方
向に平行に揃っていることが確認できた。
[Example 1] First, a silver tape having a cubic texture was prepared. A block of commercially available silver (99.99%) with a width of 10 mm, a thickness of 5 mm and a length of 50 mm is heated to 220 ° C.
Rolled 5 times while keeping the thickness at 0,5 mm thickness
I made it thin. At this time, the annealing process should not be inserted in the middle. This tape was annealed at 800 ° C. for 2 hours to obtain a silver tape substrate. When the orientation of silver crystals was examined by X-ray diffraction measurement, the {100} plane of about 80% of the crystal grains was parallel to the tape surface, and the <100> orientation was aligned parallel to the rolling direction. I was able to confirm that.

【0037】次に、上で作った立方体集合組織を有する
銀テープの上に、超電導物質を作製した。1リットルの
蒸留水に、純度98%以上の硝酸タリウムを0.01 モ
ル,硝酸バリウムを0.02モル,硝酸カルシウムを0.
02モル,硝酸銅を0.03モル,グリシンを0.05
モルを溶かして原料溶液を作製した。超音波振動子を用
いて、この溶液を直径数ミクロンの液滴にして銀テープ
基板の上に吹き付け、厚さ3ミクロンの前駆体を堆積し
た。この時の基板温度は800℃とした。これを酸素ガ
スとTl2O 蒸気が共存する雰囲気下で850℃におい
て50時間アニールすることによって超電導物質にし
た。図4に、でき上がった超電導体の構造を示す。10
は立方体集合組織を有する銀テープ基板であり、11は
酸化物超電導物質である。
Next, a superconducting substance was prepared on the silver tape having the cubic texture prepared above. To 1 liter of distilled water, 0.01 mol of thallium nitrate having a purity of 98% or more, 0.02 mol of barium nitrate and 0.02 mol of calcium nitrate were added.
02 mol, copper nitrate 0.03 mol, glycine 0.05
A raw material solution was prepared by melting the moles. Using an ultrasonic oscillator, this solution was made into droplets having a diameter of several microns and sprayed onto a silver tape substrate to deposit a precursor having a thickness of 3 microns. The substrate temperature at this time was 800 ° C. This was annealed at 850 ° C. for 50 hours in an atmosphere in which oxygen gas and Tl 2 O vapor coexist to obtain a superconducting material. FIG. 4 shows the structure of the completed superconductor. 10
Is a silver tape substrate having a cubic texture, and 11 is an oxide superconducting material.

【0038】出来上がった超電導体の超電導臨界温度を
直流4端子法で測定したところ107Kで電気抵抗がゼロに
なることが確認できた。77Kの臨界電流密度を測定し
たところ、ゼロ磁場で500,000A/cm2,1Tの磁場を基
板に垂直に印加したときには80,000A/cm2であった。
When the superconducting critical temperature of the finished superconductor was measured by the DC 4-terminal method, it was confirmed that the electric resistance became zero at 107K. The measured critical current density of 77K, the magnetic field 500,000A / cm 2, 1T in zero magnetic field when applied perpendicular to the substrate was 80,000 A / cm 2.

【0039】X線回折測定によって超電導物質の結晶の
c軸がどの方向を向いているのかを調べたところ、基板
の法線に対して1度以内に80%の結晶のc軸の向きが
入っていた。また、超電導物質の結晶のa軸(或いはb
軸)が銀テープの圧延方向と一致しているものが80%
以上あることが確認できた。
When the direction of the c-axis of the crystal of the superconducting material was examined by X-ray diffraction measurement, 80% of the c-axis of the crystal entered within 1 degree with respect to the normal to the substrate. Was there. In addition, the a-axis (or b) of the crystal of the superconducting material
80% when the axis is in line with the rolling direction of the silver tape
It was confirmed that there was above.

【0040】[比較例1]実施例1で使用したものと同
じ市販の銀の塊を、室温状態のまま5回の圧延処理で、
厚さ0.05mm まで薄くし、その後800℃で5時間ア
ニールして、比較用の銀テープ基板とした。X線回折測
定で銀の結晶の方位を調べたところ、{110}面がテ
ープ表面に平行に揃っていた。この基板上に、実施例1
とまったく同様にして超電導物質を作製した。出来上が
った超電導体の超電導臨界温度を直流4端子法で測定し
たところ107Kで電気抵抗がゼロになることが確認で
きた。77Kの臨界電流密度を測定したところ、ゼロ磁
場で48,000A/cm2 ,1Tの磁場を基板に垂直に印加し
たときには5,000A/cm2であった。
[Comparative Example 1] The same commercially available ingot of silver used in Example 1 was rolled 5 times at room temperature,
The thickness was reduced to 0.05 mm and then annealed at 800 ° C. for 5 hours to obtain a silver tape substrate for comparison. When the orientation of silver crystals was examined by X-ray diffraction measurement, the {110} planes were aligned parallel to the tape surface. On this substrate, Example 1
A superconducting material was prepared in exactly the same manner as in. When the superconducting critical temperature of the completed superconductor was measured by the DC 4-terminal method, it was confirmed that the electric resistance became zero at 107K. The measured critical current density of 77K, the magnetic field of 48,000A / cm 2, 1T in zero magnetic field when applied perpendicular to the substrate was 5,000 A / cm 2.

【0041】X線回折測定によって超電導物質の結晶の
c軸がどの方向を向いているのかを調べたところ、基板
の法線に対して5度以内に80%の結晶のc軸の向きが
入っていた。しかし、超電導物質の結晶のa軸(或いは
b軸)の方位に関しては特に揃っているようなことはな
かった。
When the direction of the c-axis of the crystal of the superconducting material was examined by X-ray diffraction measurement, 80% of the c-axis of the crystal entered within 5 degrees with respect to the normal to the substrate. Was there. However, the orientation of the a-axis (or b-axis) of the crystal of the superconducting material has not been particularly aligned.

【0042】[比較例2]実施例1で使用したものと同
じ市販の銀の塊の上に、実施例1とまったく同様にして
超電導物質を作製した。出来上がった超電導体の超電導
臨界温度を直流4端子法で測定したところ107Kで電
気抵抗がゼロになることが確認できた。77Kの臨界電
流密度を測定したところ、ゼロ磁場で35,000A/cm2
1Tの磁場を基板に垂直に印加したときには1,000
A/cm2であった。
[Comparative Example 2] A superconducting material was prepared in exactly the same manner as in Example 1 on the same commercially available mass of silver as that used in Example 1. When the superconducting critical temperature of the completed superconductor was measured by the DC 4-terminal method, it was confirmed that the electric resistance became zero at 107K. When the critical current density of 77K was measured, it was 35,000A / cm 2 at zero magnetic field,
1,000 when a 1T magnetic field is applied vertically to the substrate
It was A / cm 2 .

【0043】X線回折測定によって超電導物質の結晶の
c軸がどの方向を向いているのかを調べたところ、基板
の法線に対して5度以内に80%の結晶のc軸の向きが
入っていた。しかし、超電導物質の結晶のa軸(或いは
b軸)の方位に関しては特に揃っているようなことはな
かった。
When the direction of the c-axis of the crystal of the superconducting material was examined by X-ray diffraction measurement, 80% of the c-axis of the crystal entered within 5 degrees with respect to the normal to the substrate. Was there. However, the orientation of the a-axis (or b-axis) of the crystal of the superconducting material has not been particularly aligned.

【0044】以上のように、実施例1,比較例1,2の
結果から、立方体集合組織を有している金属体と、酸化
物超電導物質を組み合わせて超電導体とすることによっ
て、非常にJcの高い超電導体或いは超電導線材が得ら
れることが分かる。
As described above, from the results of Examples 1 and Comparative Examples 1 and 2, by combining a metal body having a cubic texture and an oxide superconducting substance into a superconductor, it is possible to obtain a very high Jc. It can be seen that a superconductor or a superconducting wire having a high conductivity can be obtained.

【0045】[実施例2]実施例1で使用した立方体集
合組織を有する銀テープの上に、超電導物質を作製し
た。1リットルの蒸留水に、純度98%以上の硝酸タリ
ウムを0.005 モル,硝酸鉛を0.005モル,硝酸
ストロンチウムを0.02モル,硝酸カルシウムを0.0
2モル,硝酸銅を0.03モル,グリシンを0.04 モ
ルを溶かして原料溶液を作製した。超音波振動子を用い
て、この溶液を直径数ミクロンの液滴にして銀テープ基
板の上に吹き付け、厚さ3ミクロンの前駆体を堆積し
た。この時の基板温度は800℃とした。これを酸素ガ
スとTl2O 蒸気が共存する雰囲気下で860℃におい
て50時間アニールすることによって超電導体を得た。
[Example 2] A superconducting substance was prepared on the silver tape having a cubic texture used in Example 1. In 1 liter of distilled water, 0.005 mol of thallium nitrate having a purity of 98% or more, 0.005 mol of lead nitrate, 0.02 mol of strontium nitrate and 0.02 mol of calcium nitrate were added.
A raw material solution was prepared by dissolving 2 mol, 0.03 mol of copper nitrate and 0.04 mol of glycine. Using an ultrasonic oscillator, this solution was made into droplets having a diameter of several microns and sprayed onto a silver tape substrate to deposit a precursor having a thickness of 3 microns. The substrate temperature at this time was 800 ° C. This was annealed at 860 ° C. for 50 hours in an atmosphere in which oxygen gas and Tl 2 O vapor coexist to obtain a superconductor.

【0046】出来上がった超電導体の超電導臨界温度を
直流4端子法で測定したところ121Kで電気抵抗がゼロに
なることが確認できた。77Kの臨界電流密度を測定し
たところ、ゼロ磁場で800,000A/cm2,1Tの磁場を基
板に垂直に印加したときには100,000A/cm2であった。
When the superconducting critical temperature of the finished superconductor was measured by the DC 4-terminal method, it was confirmed that the electric resistance became zero at 121K. The measured critical current density of 77K, the magnetic field 800,000A / cm 2, 1T in zero magnetic field when applied perpendicular to the substrate was 100,000 A / cm 2.

【0047】X線回折測定によって超電導物質の結晶の
c軸がどの方向を向いているのかを調べたところ、基板
の法線に対して1度以内に80%の結晶のc軸の向きが
入っていた。また、超電導物質の結晶のa軸(或いはb
軸)が銀テープの圧延方向と一致しているものが80%
以上あることが確認できた。
When the direction of the c-axis of the crystal of the superconducting material was examined by X-ray diffraction measurement, 80% of the c-axis of the crystal entered within 1 degree with respect to the normal to the substrate. Was there. In addition, the a-axis (or b) of the crystal of the superconducting material
80% when the axis is in line with the rolling direction of the silver tape
It was confirmed that there was above.

【0048】[比較例3]実施例1で使用したものと同
じ市販の銀の塊を、20℃に保った状態のまま5回の圧
延処理で、厚さ0.05mm まで薄くし、その後800℃
で2時間アニールして、比較用の銀テープ基板とした。
この基板上に、実施例2とまったく同様にして超電導物
質を作製した。出来上がった超電導体の超電導臨界温度
を直流4端子法で測定したところ121Kで電気抵抗が
ゼロになることが確認できた。77Kの臨界電流密度を
測定したところ、ゼロ磁場で30,000A/cm2 ,1Tの磁
場を基板に垂直に印加したときには2,000A/cm2
であった。
[Comparative Example 3] The same commercial silver lump as used in Example 1 was thinned to a thickness of 0.05 mm by rolling five times while keeping it at 20 ° C, and then 800 ℃
It was annealed for 2 hours to prepare a silver tape substrate for comparison.
A superconducting substance was produced on this substrate in exactly the same manner as in Example 2. When the superconducting critical temperature of the completed superconductor was measured by the DC 4-terminal method, it was confirmed that the electric resistance became zero at 121K. The measured critical current density of 77K, the magnetic field of 30,000A / cm 2, 1T in zero magnetic field when applied perpendicular to the substrate 2,000 A / cm 2
Met.

【0049】X線回折測定によって超電導物質の結晶の
c軸がどの方向を向いているのかを調べたところ、基板
の法線に対して5度以内に80%の結晶のc軸の向きが
入っていた。しかし、超電導物質の結晶のa軸(或いは
b軸)の方位に関しては特に揃っているようなことはな
かった。
When the direction of the c-axis of the crystal of the superconducting material was examined by X-ray diffraction measurement, 80% of the c-axis of the crystal entered within 5 degrees with respect to the normal to the substrate. Was there. However, the orientation of the a-axis (or b-axis) of the crystal of the superconducting material has not been particularly aligned.

【0050】[比較例4]実施例1で使用したものと同
じ市販の銀の塊の上に、実施例2とまったく同様にして
超電導物質を作製した。出来上がった超電導体の超電導
臨界温度を直流4端子法で測定したところ121Kで電
気抵抗がゼロになることが確認できた。77Kの臨界電
流密度を測定したところ、ゼロ磁場で25,000A/cm2
1Tの磁場を基板に垂直に印加したときには1,000
A/cm2であった。
[Comparative Example 4] A superconducting material was prepared in exactly the same manner as in Example 2 on the same commercially available mass of silver as that used in Example 1. When the superconducting critical temperature of the completed superconductor was measured by the DC 4-terminal method, it was confirmed that the electric resistance became zero at 121K. When the critical current density of 77K was measured, it was 25,000A / cm 2 at zero magnetic field,
1,000 when a 1T magnetic field is applied vertically to the substrate
It was A / cm 2 .

【0051】X線回折測定によって超電導物質の結晶の
c軸がどの方向を向いているのかを調べたところ、基板
の法線に対して5度以内に80%の結晶のc軸の向きが
入っていた。しかし、超電導物質の結晶のa軸(或いは
b軸)の方位に関しては特に揃っているようなことはな
かった。
When the direction of the c-axis of the crystal of the superconducting material was examined by X-ray diffraction measurement, 80% of the c-axis of the crystal entered within 5 ° with respect to the normal to the substrate. Was there. However, the orientation of the a-axis (or b-axis) of the crystal of the superconducting material has not been particularly aligned.

【0052】以上のように、実施例2,比較例3,4の
結果から、立方体集合組織を有している金属体と、酸化
物超電導物質を組み合わせて超電導体とすることによっ
て、非常にJcの高い超電導体或いは超電導線材が得ら
れることが分かる。
As described above, from the results of Examples 2, Comparative Examples 3 and 4, by combining a metal body having a cubic texture and an oxide superconducting substance into a superconductor, it is possible to obtain a very high Jc. It can be seen that a superconductor or a superconducting wire having a high conductivity can be obtained.

【0053】[実施例3]実施例1で使用した立方体集
合組織を有する銀テープの上に、超電導物質を作製し
た。1リットルの蒸留水に、純度98%以上の硝酸イッ
トリウムを0.01モル,硝酸バリウムを0.02モル,
硝酸銅を0.03モル,グリシンを0.02モルを溶かし
て原料溶液を作製した。超音波振動子を用いて、この溶
液を直径数ミクロンの液滴にして銀テープ基板の上に吹
き付け、厚さ3ミクロンの前駆体を堆積した。この時の
基板温度は800℃とした。これを酸素ガス雰囲気下で
870℃において50時間アニールすることによって超電
導体を得た。
[Example 3] A superconducting substance was prepared on the silver tape having a cubic texture used in Example 1. In 1 liter of distilled water, 0.01 mol of yttrium nitrate having a purity of 98% or more and 0.02 mol of barium nitrate were added.
A raw material solution was prepared by dissolving 0.03 mol of copper nitrate and 0.02 mol of glycine. Using an ultrasonic oscillator, this solution was made into droplets having a diameter of several microns and sprayed onto a silver tape substrate to deposit a precursor having a thickness of 3 microns. The substrate temperature at this time was 800 ° C. In an oxygen gas atmosphere
A superconductor was obtained by annealing at 870 ° C. for 50 hours.

【0054】出来上がった超電導体の超電導臨界温度を
直流4端子法で測定したところ92Kで電気抵抗がゼロ
になることが確認できた。77Kの臨界電流密度を測定
したところ、ゼロ磁場で400,000A/cm2,1Tの磁場を
基板に垂直に印加したときには80,000A/cm2 であっ
た。
When the superconducting critical temperature of the completed superconductor was measured by the DC 4-terminal method, it was confirmed that the electric resistance became zero at 92K. The measured critical current density of 77K, the magnetic field 400,000A / cm 2, 1T in zero magnetic field when applied perpendicular to the substrate was 80,000 A / cm 2.

【0055】X線回折測定によって超電導物質の結晶の
c軸がどの方向を向いているのかを調べたところ、基板
の法線に対して1度以内に80%の結晶のc軸の向きが
入っていた。また、超電導物質の結晶のa軸(或いはb
軸)が銀テープの圧延方向と一致しているものが80%
以上あることが確認できた。
When the direction of the c-axis of the crystal of the superconducting material was examined by X-ray diffraction measurement, 80% of the c-axis of the crystal entered within 1 degree with respect to the normal to the substrate. Was there. In addition, the a-axis (or b) of the crystal of the superconducting material
80% when the axis is in line with the rolling direction of the silver tape
It was confirmed that there was above.

【0056】[比較例5]実施例1で使用したものと同
じ市販の銀の塊を、20℃に保った状態のまま5回の圧
延処理で、厚さ0.05mm まで薄くし、その後800℃
で2時間アニールして、比較用の銀テープ基板とした。
この基板上に、実施例3とまったく同様にして超電導物
質を作製した。出来上がった超電導体の超電導臨界温度
を直流4端子法で測定したところ83Kで電気抵抗がゼ
ロになることが確認できた。77Kの臨界電流密度を測
定したところ、ゼロ磁場で10,000A/cm2 ,1Tの磁場
を基板に垂直に印加したときには800A/cm2であっ
た。
[Comparative Example 5] The same commercial silver ingot as used in Example 1 was thinned to a thickness of 0.05 mm by rolling five times while keeping it at 20 ° C, and then 800 ℃
It was annealed for 2 hours to prepare a silver tape substrate for comparison.
A superconducting substance was produced on this substrate in the same manner as in Example 3. When the superconducting critical temperature of the completed superconductor was measured by the DC 4-terminal method, it was confirmed that the electric resistance became zero at 83K. When the critical current density of 77K was measured, it was 800 A / cm 2 when a magnetic field of 10,000 A / cm 2 at a zero magnetic field and a magnetic field of 1 T was applied perpendicularly to the substrate.

【0057】X線回折測定によって超電導物質の結晶の
c軸がどの方向を向いているのかを調べたところ、基板
の法線に対して5度以内に80%の結晶のc軸の向きが
入っていた。しかし、超電導物質の結晶のa軸(或いは
b軸)の方位に関しては特に揃っているようなことはな
かった。
When the direction of the c-axis of the crystal of the superconducting material was examined by X-ray diffraction measurement, 80% of the c-axis of the crystal entered within 5 degrees with respect to the normal to the substrate. Was there. However, the orientation of the a-axis (or b-axis) of the crystal of the superconducting material has not been particularly aligned.

【0058】[比較例6]実施例1で使用したものと同
じ市販の銀の塊の上に、実施例3とまったく同様にして
超電導物質を作製した。出来上がった超電導体の超電導
臨界温度を直流4端子法で測定したところ83Kで電気
抵抗がゼロになることが確認できた。77Kの臨界電流
密度を測定したところ、ゼロ磁場で9,000A/cm2
1Tの磁場を基板に垂直に印加したときには900A/
cm2 であった。
[Comparative Example 6] A superconducting substance was prepared in exactly the same manner as in Example 3 on the same commercially available mass of silver as that used in Example 1. When the superconducting critical temperature of the completed superconductor was measured by the DC 4-terminal method, it was confirmed that the electric resistance became zero at 83K. When the critical current density of 77K was measured, it was 9,000 A / cm 2 at zero magnetic field,
900 A / m when a magnetic field of 1 T is applied vertically to the substrate
It was cm 2 .

【0059】X線回折測定によって超電導物質の結晶の
c軸がどの方向を向いているのかを調べたところ、基板
の法線に対して5度以内に80%の結晶のc軸の向きが
入っていた。しかし、超電導物質の結晶のa軸(或いは
b軸)の方位に関しては特に揃っているようなことはな
かった。
When the direction of the c-axis of the crystal of the superconducting material was examined by X-ray diffraction measurement, 80% of the c-axis of the crystal entered within 5 degrees with respect to the normal to the substrate. Was there. However, the orientation of the a-axis (or b-axis) of the crystal of the superconducting material has not been particularly aligned.

【0060】以上のように、実施例3,比較例5,6の
結果から、立方体集合組織を有している金属体と、酸化
物超電導物質を組み合わせて超電導体とすることによっ
て、非常にJcの高い超電導体或いは超電導線材が得ら
れることが分かる。
As described above, from the results of Examples 3 and Comparative Examples 5 and 6, by combining a metal body having a cubic texture and an oxide superconducting substance into a superconductor, it is possible to obtain a very high Jc. It can be seen that a superconductor or a superconducting wire having a high conductivity can be obtained.

【0061】[実施例4]実施例1,2および3で用い
た立方体集合組織を有する銀テープ基板の代りに、Ag
−40%Au,Ag−20%Au,Ag−10%Pd,
Ag−10%Cu合金、及びAg母相に粒径0.1ミク
ロンのMgOを堆積率にして0.1%分散させた酸化物
分散型合金を、圧延+熱処理加工して立方体集合組織を
有する金属テープとして、その上に実施例1,2および
3と同様にして超電導物質を作製し、超電導テープを得
た。いずれの場合においても、実施例1,2および3で
得られたものと同程度(Jcで90%以内)の性能のも
のが得られた。
Example 4 Instead of the silver tape substrate having the cubic texture used in Examples 1, 2, and 3, Ag was used.
-40% Au, Ag-20% Au, Ag-10% Pd,
An Ag-10% Cu alloy and an oxide dispersion type alloy in which MgO having a grain size of 0.1 micron is dispersed at a deposition rate of 0.1% in an Ag matrix to have a cubic texture by rolling + heat treatment. As a metal tape, a superconducting substance was produced thereon in the same manner as in Examples 1, 2, and 3 to obtain a superconducting tape. In any case, the performance of the same level (Jc within 90%) as that obtained in Examples 1, 2, and 3 was obtained.

【0062】[実施例5]実施例1と同様にして、厚さ
5ミクロン,幅1cm,長さ100mの立方体集合組織を
有する銀テープを作製した。この上に、実施例3と同様
な方法で長さ100mの超電導線材を作製した。外径30c
mのボビンにテープ状の超電導線材を巻取って熱処理を
行い、その後、線材全長に渡るJcを測定したところゼ
ロ磁場においてJc(all)=50,000A/cm2であった
(このJc(all)は臨界電流値を銀を含む線材全体
の断面積で割ったものである)。磁場中でのJc(al
l)を測定するために100mの線材より10cm長さの
試料片を10ピース無作為に切りだして直流4端子法で
Jc(all)を測定した。最も特性の悪かった試料片の
測定結果は、77Kにおいて磁場を掛けない状態、0.
01T,0.1T,1T,5Tの磁場を試料の長手方向
に対して直角な方向に印加したときのJc(all)はそ
れぞれ50,000,38,000,23,000,11,000,10,000A/cm
2 であった。
Example 5 In the same manner as in Example 1, a silver tape having a cube texture having a thickness of 5 μm, a width of 1 cm and a length of 100 m was produced. On this, a superconducting wire rod having a length of 100 m was manufactured in the same manner as in Example 3. Outer diameter 30c
The tape-shaped superconducting wire was wound around a bobbin of m and heat treated, and then Jc over the entire length of the wire was measured and found to be Jc (all) = 50,000A / cm 2 at zero magnetic field (this Jc (all) Is the critical current value divided by the cross-sectional area of the entire wire including silver). Jc (al in a magnetic field
In order to measure l), 10 pieces of 10 cm long sample pieces were randomly cut from a 100 m wire and Jc (all) was measured by a DC 4-terminal method. The measurement result of the sample piece with the worst characteristics was 0.
When the magnetic fields of 01T, 0.1T, 1T, and 5T are applied in the direction perpendicular to the longitudinal direction of the sample, Jc (all) is 50,000, 38,000, 23,000, 11,000, 10,000A / cm, respectively.
Was 2 .

【0063】[実施例6]2枚のSrTiO3(100)単
結晶基板を用意し、それらの単結晶の[001]方向は
平行に保ち、かつ互いの[100]方向のなす角度(a
度)のみを色々と変化させた状態で2枚のSrTiO
3(100)単結晶基板を接合して、バイクリスタル基板
を作製した。このバイクリスタル基板の上に実施例1と
同様の方法で超電導物質を作製した。X線回折測定によ
って、超電導物質の結晶の向きを調べたところ、下のS
rTiO3(100)単結晶の[001]及び[100]
及び[010]方向と、超電導結晶の[001]及び
[100]及び[010]方向が一致する結晶が全体の
98%以上あることが確認された。従って、バイクリス
タル基板上に作製した超電導物質の結晶は、バイクリス
タル基板の結晶粒界の丁度上の場所で、[100]方向
がa度ずれた状態(c軸方向は一致)になることがわか
る。即ち、角度aを種々に変化させたバイクリスタル基
板の上に超電導物質を作製すれば、c軸の方向を揃えた
状態で、a軸方向のなす角度を違えた種々の試料を作製
できることがわかる。
[Example 6] Two SrTiO 3 (100) single crystal substrates were prepared, the [001] directions of these single crystals were kept parallel, and the angle (a
2 sheets of SrTiO 3 with various degrees
A (100) single crystal substrate was bonded to produce a bicrystal substrate. A superconducting material was produced on this bicrystal substrate in the same manner as in Example 1. The crystal orientation of the superconducting material was examined by X-ray diffraction measurement.
[001] and [100] of rTiO 3 (100) single crystal
It was confirmed that 98% or more of all the crystals had the [010] direction and the [001] direction of the superconducting crystal, and the [100] and [010] directions thereof coincided with each other. Therefore, the crystal of the superconducting material formed on the bicrystal substrate may be in a state in which the [100] direction is deviated by a degree (the c-axis direction is the same) at a position just above the crystal grain boundary of the bicrystal substrate. Recognize. That is, it can be seen that if a superconducting material is produced on a bicrystal substrate with variously changed angles a, it is possible to produce various samples with different angles formed by the a-axis directions with the c-axis directions aligned. .

【0064】図5に、c軸の方向を揃えた状態のTlB
2Ca2Cu39超電導物質膜で、a軸方向のなす角度
がaである結晶粒界を流れる臨界電流密度Jc(a)を、
a軸方向のなす角度が0である結晶粒界を流れる臨界電
流密度Jc(0)で割った値を示す。図から分かるよう
に、a軸方向のなす角度が10度以上になると、その結
晶粒界を越えて流れうる臨界電流密度の値が急に小さく
なることが分かる。従って、特性の良い超電導線材を作
製するためには、超電導物質の結晶のc軸を揃えるのみ
ならず、a軸の方向も10度以内に揃えねばならないこ
とが分かる。
In FIG. 5, TlB with the c-axis direction aligned.
In the a 2 Ca 2 Cu 3 O 9 superconducting material film, the critical current density Jc (a) flowing through a grain boundary whose angle with the a-axis direction is a is
The value is divided by the critical current density Jc (0) flowing through the crystal grain boundary where the angle formed by the a-axis direction is 0. As can be seen from the figure, when the angle formed by the a-axis direction is 10 degrees or more, the value of the critical current density that can flow beyond the crystal grain boundary suddenly decreases. Therefore, in order to produce a superconducting wire having good characteristics, it is understood that not only the c-axis of the crystal of the superconducting substance must be aligned, but also the direction of the a-axis must be aligned within 10 degrees.

【0065】[実施例7]圧延及び熱処理条件を変える
ことによって、立方体集合組織となっている割合を変化
させた銀テープを作製し、その上に実施例1と同様の方
法で超電導物質を作製した。X線回折測定によって、テ
ープ表面に{100}面が平行でかつ圧延方向に対して
<100>方向が平行である銀結晶の割合を調べた。ま
た、作製した超電導体(TlBa2Ca2Cu39)試料
の臨界電流密度を直流4端子法で測定した。
Example 7 A silver tape having a cubic texture changed by changing rolling and heat treatment conditions was prepared, and a superconducting substance was prepared thereon by the same method as in Example 1. did. The proportion of silver crystals in which the {100} plane was parallel to the tape surface and the <100> direction was parallel to the rolling direction was examined by X-ray diffraction measurement. Further, the critical current density of the produced superconductor (TlBa 2 Ca 2 Cu 3 O 9 ) sample was measured by the DC 4-terminal method.

【0066】図6に、両者の関係を示す。図から分かる
ように、テープ表面に{100}面が平行でかつ圧延方
向に対して<100>方向が平行である銀結晶の割合
(立方体集合組織の割合)が80%以下になると磁場中
の臨界電流密度の値が大幅に低下することが分かる。従
って、特性の良い超電導線材を作製するためには、テー
プ表面に{100}面が平行でかつ圧延方向に対して<
100>方向が平行である銀結晶の割合(立方体集合組
織の割合)を80%以上にした銀テープを用いなければ
ならないことが分かる。
FIG. 6 shows the relationship between the two. As can be seen from the figure, when the ratio of silver crystals whose {100} plane is parallel to the tape surface and <100> direction is parallel to the rolling direction (cubic texture ratio) is 80% or less, It can be seen that the value of the critical current density is significantly reduced. Therefore, in order to produce a superconducting wire with good characteristics, the {100} plane is parallel to the tape surface and <
It can be seen that a silver tape in which the ratio of silver crystals having 100> directions parallel to each other (the ratio of cubic texture) is 80% or more must be used.

【0067】また、X線回折測定によって、超電導結晶
の[100]方向が、立方体集合組織を形成している銀
結晶の<100>方向に対して10度以内であるものの
割合を見積もったところ、80%であった。
Further, when the [100] direction of the superconducting crystal was within 10 degrees with respect to the <100> direction of the silver crystal forming the cubic texture by X-ray diffraction measurement, the proportion was estimated. It was 80%.

【0068】[実施例8]実施例5で作製したものと同
じ超電導テープ線材を10本作製した。この線材を10
本束ねて集合体化し、図7に示す断面構造を有する10
0m長さの超電導線を作製した。この超電導線の表面に
5ミクロン程度の厚さにアルミナをコーテイングし、そ
れをパンケーキ状に巻いて、超電導コイルを作製した。
この様なコイルを8つ作製し、縦方向に積層して、図8
に示す超電導マグネットを作製した。コイルを液体窒素
に浸漬し、電流を流して磁場を発生させたところ、最大
磁場2.6 テスラーを発生させることが出来た。
[Embodiment 8] Ten superconducting tape wire rods similar to those produced in Embodiment 5 were produced. This wire rod 10
10 bundled into a bundle and have a sectional structure shown in FIG.
A superconducting wire having a length of 0 m was produced. Alumina was coated on the surface of this superconducting wire to a thickness of about 5 μm and wound in a pancake shape to prepare a superconducting coil.
Eight such coils are produced and stacked in the vertical direction, as shown in FIG.
The superconducting magnet shown in was produced. When the coil was immersed in liquid nitrogen and an electric current was applied to generate a magnetic field, a maximum magnetic field of 2.6 Tesler could be generated.

【0069】[実施例9]実施例1での作製方法に準じ
て作製した超電導テープ線材を用いて種々の断面構造を
有する超電導導体を作製した。その断面構造を、図9,
図10,図11に示す。この超電導線の表面に5ミクロ
ン程度の厚さにアルミナをコーテイングし、それをパン
ケーキ状に巻いて、超電導コイルを作製した。この様な
コイルを8つ作製し、縦方向に積層して、図8に示す構
成の超電導マグネットを作製した。コイルを液体窒素に
浸漬し、電流を流して磁場を発生させたところ、何れの
超電導導体を使用した場合でも最大磁場2.1〜2.8テ
スラーの磁場を発生させることが出来た。
Example 9 Superconducting conductors having various cross-sectional structures were produced using the superconducting tape wire produced according to the production method of Example 1. Its sectional structure is shown in FIG.
This is shown in FIGS. Alumina was coated on the surface of this superconducting wire to a thickness of about 5 μm and wound in a pancake shape to prepare a superconducting coil. Eight such coils were produced and laminated in the longitudinal direction to produce a superconducting magnet having the structure shown in FIG. When the coil was immersed in liquid nitrogen and an electric current was applied to generate a magnetic field, a maximum magnetic field of 2.1 to 2.8 Tesler could be generated regardless of which superconducting conductor was used.

【0070】[実施例10]実施例8で作製した超電導
マグネットを使用して図12に示すような構成のNMR
装置を作製し、水素原子の核磁気共鳴が測定できること
を確認した。市販のHe冷却で運転するタイプの物に比
べて、断熱が簡略化出来ることから、製造コストが10
%以上削減出来ることが分かった。また高価な液体ヘリ
ウムを用いないですむことから運転コストも大幅に低減
出来ることが分かった。
[Embodiment 10] Using the superconducting magnet prepared in Embodiment 8, NMR having the structure shown in FIG.
A device was produced and it was confirmed that nuclear magnetic resonance of hydrogen atoms could be measured. The manufacturing cost is 10 because the heat insulation can be simplified as compared with the commercially available He-cooled type.
It turns out that it can be reduced by more than%. It was also found that operating costs can be significantly reduced because expensive liquid helium is not required.

【0071】NMR装置とMRI装置の基本的な動作原
理は同じであるので本発明による超電導体を用いて作製
した超電導線材を使用した超電導マグネットを使ったM
RI装置の作製が可能であることが分かる。製造コスト
を見積ったところ、ヘリウム冷凍機の代わりに構造がず
っと簡単で安価な窒素冷凍機で済むこと、断熱が1重で
済むこと、更に動作温度が77Kと従来のMRI装置の
動作温度4.2K に比べて随分と高くなっていることか
ら、超電導線材の比熱が100程度大きくなっているた
めクエンチの心配がなく、その対策を行う必要がないこ
とから、少なくとも20%のコストダウンが可能である
ことが分かった。
Since the basic operation principle of the NMR apparatus and the MRI apparatus is the same, the M using the superconducting magnet using the superconducting wire produced by using the superconductor according to the present invention is used.
It can be seen that the RI device can be manufactured. Estimating the manufacturing cost, instead of a helium refrigerator, a nitrogen refrigerator with a much simpler structure and cheaper cost, a single heat insulation, an operating temperature of 77K and an operating temperature of a conventional MRI device 4. Since it is much higher than 2K, there is no concern about quenching because the specific heat of the superconducting wire is about 100, and there is no need to take measures against it, so at least 20% cost reduction is possible. I knew it was.

【0072】[実施例11]本発明で作製した超電導体
を使用した磁気シールドを作製した。厚さ3cmの超電導
体の板で立方体を作製し、78Kの窒素ガスで冷却し、
シールド超電導状態にして、外部より50ガウスの磁場
を与えた。内部に入れたホール素子で内部の磁場を測定
したところ、ホール素子の検出可能限界以下の小さな磁
場であった。外部磁場を3000ガウスにしたとき内部
の磁場は1ガウス程度であった。本発明による超電導体
を用いて作製した磁気シールドは十分な特性を有するこ
とが確認できた。
[Embodiment 11] A magnetic shield using the superconductor produced in the present invention was produced. A cube is made of a superconducting plate with a thickness of 3 cm and cooled with nitrogen gas of 78K,
A shielded superconducting state was applied and a magnetic field of 50 gauss was applied from the outside. When the internal magnetic field was measured with the Hall element placed inside, it was a small magnetic field below the detectable limit of the Hall element. When the external magnetic field was set to 3000 gauss, the internal magnetic field was about 1 gauss. It was confirmed that the magnetic shield manufactured using the superconductor according to the present invention has sufficient characteristics.

【0073】[実施例12]大型の粒子加速器、例えば
リングの直径が1kmの加速器リングにつける粒子ビーム
収束用の4極電磁石をすべて本発明による超電導線材を
用いたマグネットで作製した場合、従来の液体ヘリウム
冷却の超電導マグネットで作製した場合に比べてどの程
度のコスト低減になるかを見積った。ヘリウム冷凍機の
代わりに構造がずっと簡単で安価な窒素冷凍機で済むこ
と、断熱が簡単で良いこと、比熱の大きい液体窒素であ
ることから冷媒を超電導マグネットに供給するシステム
が非常に簡略化出来ることから、20%以上のコスト低
減になることが分かった。
[Embodiment 12] A large particle accelerator, for example, a quadrupole electromagnet for converging a particle beam to be attached to an accelerator ring having a diameter of 1 km is manufactured by a magnet using a superconducting wire according to the present invention. It was estimated how much the cost would be reduced compared to the case where the superconducting magnet cooled by liquid helium was used. A nitrogen refrigerator that has a much simpler structure and is cheaper than a helium refrigerator can be used, heat insulation is simple and good, and liquid nitrogen with a large specific heat makes it possible to greatly simplify the system for supplying the refrigerant to the superconducting magnet. Therefore, it was found that the cost could be reduced by 20% or more.

【0074】[実施例13]酸化物超電導物質として、 (TlX1PbX2BiX3HgX4CuX5)(Sr1-X6BaX6)2
Canー1Cun2n+3+X7 (ここで、0≦X1≦1.0,0≦X2≦1.0,0≦X
3≦0.5,0≦X4≦1.0,0≦X5≦1.0 ,0.
5≦X1+X2+X3+X4+X5≦1,0≦X6≦
1,−0.5≦X7≦0.5,n=1,2,3,4,5)
を用いても、実施例1から9と同様の結果が得られた。
この結果を表1に示す。
[Example 13] As an oxide superconducting material, (Tl X1 Pb X2 Bi X3 Hg X4 Cu X5 ) (Sr 1 -X6 Ba X6 ) 2
C n-1 Cu n O 2n + 3 + X7 (where 0 ≦ X1 ≦ 1.0, 0 ≦ X2 ≦ 1.0, 0 ≦ X
3 ≦ 0.5, 0 ≦ X4 ≦ 1.0, 0 ≦ X5 ≦ 1.0, 0.0.
5 ≦ X1 + X2 + X3 + X4 + X5 ≦ 1,0 ≦ X6 ≦
1, -0.5 ≦ X7 ≦ 0.5, n = 1, 2, 3, 4, 5)
The same results as in Examples 1 to 9 were obtained by using.
Table 1 shows the results.

【0075】[0075]

【表1】 [Table 1]

【0076】[実施例14]酸化物超電導物質として、
LnBa2Cu37+X1(ここで、LnはYもしくは希土
類元素、−0.5≦X1≦0.1)を用いても、実施例1
から9とほぼ同様の結果が得られたが、超電導物質の結
晶のa軸のなす角度が6度以内になるようにする必要が
あった。
Example 14 As an oxide superconducting substance,
Even if LnBa 2 Cu 3 O 7 + X1 (where Ln is Y or a rare earth element, −0.5 ≦ X1 ≦ 0.1) is used,
The results are almost the same as those of Nos. 1 to 9, but it is necessary to make the angle of the a-axis of the crystal of the superconducting substance within 6 degrees.

【0077】[実施例15]酸化物超電導物質として、 (Tl1-X1-X2-X3PbX1BiX2HgX3)2(Sr1-X4
X4)2Can-1Cun2n+3+X5 (ここでn=2,3,4,5,6,0≦X1≦0.8,
0≦X2≦0.5,0≦X3≦1.0 ,0≦X1+X2
+X3≦1,0≦X4≦1,−0.5 ≦X5≦0.5)を
用いても、従来技術による超電導線材或いは超電導体よ
りも2倍程度高い臨界電流密度が得られることが確認で
きた。
Example 15 As an oxide superconducting material, (Tl 1-X1-X2-X3 Pb X1 Bi X2 Hg X3 ) 2 (Sr 1-X4 B
a X4) 2 Ca n-1 Cu n O 2n + 3 + X5 ( where n = 2,3,4,5,6,0 ≦ X1 ≦ 0.8,
0 ≦ X2 ≦ 0.5, 0 ≦ X3 ≦ 1.0, 0 ≦ X1 + X2
It can be confirmed that even if + X3 ≦ 1,0 ≦ X4 ≦ 1, −0.5 ≦ X5 ≦ 0.5), a critical current density about twice as high as that of the conventional superconducting wire or superconductor can be obtained. It was

【0078】[実施例16]酸化物超電導物質として、
(Bi1-X1PbX1)2Sr2Can-1Cun2n+4(ここで、
0≦X1≦0.4,n=1,2,3)を用いても、従来技
術による超電導線材或いは超電導体よりも2倍程度高い
臨界電流密度が得られることが確認できた。 [実施例17]純度99.99% までの銀板を種々の温
度で圧延し、800℃で10時間アニールして、結晶の
どれだけの割合のものが立方体方位(圧延面と{10
0}面が平行で圧延方向と<100>方向が平行)から
10度以内に入っているのかを調べた。圧延前の板厚は
3mmで圧延後の板厚は0.1mm とした。結果を図13に
示す。図から、立方体集合組織を得るためには100℃
以上300℃以下で、好ましくは150℃以上200℃
以下の温度で圧延することが好ましいことが分かる。
Example 16 As an oxide superconducting substance,
(Bi 1-X1 Pb X1 ) 2 Sr 2 C n-1 C n O 2n + 4 (where
It was confirmed that even with 0 ≦ X1 ≦ 0.4, n = 1, 2, 3), a critical current density about twice as high as that of the conventional superconducting wire or superconductor can be obtained. Example 17 A silver plate having a purity of 99.99% was rolled at various temperatures and annealed at 800 ° C. for 10 hours to find out what proportion of the crystal had a cubic orientation (rolled surface and {10
0 plane was parallel and the rolling direction was parallel to the <100> direction. The plate thickness before rolling was 3 mm and the plate thickness after rolling was 0.1 mm. The results are shown in Fig. 13. From the figure, to obtain a cubic texture, 100 ℃
Above 300 ℃, preferably above 150 ℃ 200 ℃
It turns out that rolling at the following temperatures is preferable.

【0079】[実施例18]純度99.99 %までの銀
板を160℃で圧延し、種々の温度で10時間アニール
して、結晶のどれだけの割合のものが立方体方位(圧延
面と{100}面が平行で圧延方向と<100>方向が
平行)から10度以内に入っているのかを調べた。圧延
前の板厚は3mmで圧延後の板厚は0.1mm とした。結果
を図14に示す。図から、立方体集合組織を得るために
は400℃以上銀の融点以下の温度でアニールすること
が好ましいことが分かる。
Example 18 A silver plate having a purity of 99.99% was rolled at 160 ° C. and annealed at various temperatures for 10 hours to find out what proportion of crystals had a cubic orientation (rolled surface and { It was examined whether or not it was within 10 degrees from the (100) plane being parallel and the rolling direction being parallel to the <100> direction. The plate thickness before rolling was 3 mm and the plate thickness after rolling was 0.1 mm. The results are shown in Fig. 14. From the figure, it can be seen that it is preferable to anneal at a temperature of 400 ° C. or higher and a melting point of silver or lower in order to obtain a cubic texture.

【0080】[0080]

【発明の効果】本発明によれば、液体ヘリウムによる冷
却は勿論、液体窒素による冷却によって運転される、高
磁界中においても高い超電導臨界電流密度を有する超電
導体,超電導線材,超電導マグネット,超電導利用機器
が得られる。本発明による超電導体,超電導線材を用い
た超電導利用機器は、液体窒素による冷却で運転するこ
とが可能になるため、装置全体として見たとき、単に超
電導の部分を従来の超電導体,超電導線材で置き換えた
に留まらず、冷却システム,断熱構造,クエンチ対策
(超電導の破壊が急激に起こる現象を抑制する対策)な
どを大幅に簡素化することが出来、それ以上のコストメ
リットがある。
According to the present invention, a superconductor, a superconducting wire, a superconducting magnet, and a superconducting material which have a high superconducting critical current density even in a high magnetic field are operated by cooling with liquid helium as well as with liquid nitrogen. Equipment is obtained. Since the superconducting device using the superconductor and the superconducting wire according to the present invention can be operated by cooling with liquid nitrogen, the superconducting portion is simply a conventional superconductor and a superconducting wire when viewed as a whole device. Not only the replacement, but also the cooling system, heat insulation structure, quenching measures (measures for suppressing the phenomenon of rapid superconducting destruction) can be greatly simplified, and there are further cost advantages.

【図面の簡単な説明】[Brief description of drawings]

【図1】超電導物質の結晶構造を表す模式図。FIG. 1 is a schematic diagram showing a crystal structure of a superconducting substance.

【図2】Tl−2層系の超電導物質の結晶構造を表す模
式図。
FIG. 2 is a schematic view showing a crystal structure of a T1-2 layer system superconducting material.

【図3】超電導物質の結晶構造を表す模式図。FIG. 3 is a schematic diagram showing a crystal structure of a superconducting substance.

【図4】本発明による超電導線材の構造を表す模式図。FIG. 4 is a schematic diagram showing the structure of a superconducting wire according to the present invention.

【図5】c軸の方向を揃えた状態のTlBa2Ca2Cu3O9超電
導物質膜の特性図。
FIG. 5 is a characteristic diagram of a TlBa 2 Ca 2 Cu 3 O 9 superconducting material film with the c-axis directions aligned.

【図6】基材として使用する銀テープの結晶が立方体集
合組織となっている割合と、その上に作製した超電導物
質膜の臨界電流密度の関係図。
FIG. 6 is a diagram showing a relationship between a ratio of a crystal of a silver tape used as a base material having a cubic texture and a critical current density of a superconducting substance film formed thereon.

【図7】本発明による100m長さの超電導線の断面
図。
FIG. 7 is a cross-sectional view of a 100 m long superconducting wire according to the present invention.

【図8】本発明による超電導マグネットの模式図。FIG. 8 is a schematic diagram of a superconducting magnet according to the present invention.

【図9】本発明による超電導導体の断面拡大図。FIG. 9 is an enlarged cross-sectional view of a superconducting conductor according to the present invention.

【図10】本発明による超電導導体の断面拡大図。FIG. 10 is an enlarged cross-sectional view of a superconducting conductor according to the present invention.

【図11】本発明による超電導導体の断面拡大図。FIG. 11 is an enlarged cross-sectional view of a superconducting conductor according to the present invention.

【図12】本発明によるNMR装置の模式図。FIG. 12 is a schematic diagram of an NMR apparatus according to the present invention.

【図13】本発明を説明するために実施例17での説明
に使用した、銀の圧延温度と立方体集合組織となってい
る割合の関係図。
FIG. 13 is a relationship diagram between the rolling temperature of silver and the ratio of cubic texture used in the description of Example 17 for explaining the present invention.

【図14】本発明を説明するために実施例18での説明
に使用した、圧延後の銀のアニール温度と立方体集合組
織となっている割合の関係図。
FIG. 14 is a diagram showing the relationship between the annealing temperature of silver after rolling and the proportion of cubic texture, which was used in the description of Example 18 to explain the present invention.

【符号の説明】[Explanation of symbols]

1…Tl原子もしくはPb原子もしくはBi原子もしく
はHg原子、2…Sr原子もしくはBa原子、3…Ca
原子、4,6…Cu原子、5,9…酸素原子、7…Ba
原子、8…Y原子もしくは希土類原子、10…立方体集
合組織を有する金属、11,14…酸化物超電導物質、
12…立方体集合組織を有する銀テープ、13…銀被覆
材、15…励磁用電源、16…サービスポート、17…
冷媒体排出口、18…熱反射板、19…液体窒素、20
…積層した超電導コイル、21…クライオスタット。
1 ... Tl atom or Pb atom or Bi atom or Hg atom, 2 ... Sr atom or Ba atom, 3 ... Ca
Atom, 4, 6 ... Cu atom, 5, 9 ... Oxygen atom, 7 ... Ba
Atom, 8 ... Y atom or rare earth atom, 10 ... Metal having cubic texture, 11, 14 ... Oxide superconducting substance,
12 ... Silver tape having cubic texture, 13 ... Silver coating material, 15 ... Excitation power supply, 16 ... Service port, 17 ...
Refrigerant body discharge port, 18 ... Heat reflection plate, 19 ... Liquid nitrogen, 20
… Stacked superconducting coils, 21… Cryostat.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C01G 21/00 ZAA 29/00 ZAA H01B 13/00 565 D H01L 39/20 ZAA (72)発明者 東山 和寿 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Reference number within the agency FI Technical display location C01G 21/00 ZAA 29/00 ZAA H01B 13/00 565 D H01L 39/20 ZAA (72) Inventor Kazutoshi Higashiyama 7-1-1 Omika-cho, Hitachi-shi, Ibaraki Hitachi Ltd. Hitachi Research Laboratory

Claims (50)

【特許請求の範囲】[Claims] 【請求項1】少なくとも金属体と酸化物超電導物質を含
む超電導線であって、該金属体は多結晶体であり、かつ
該金属体を構成する金属結晶の60%以上の{100}
面が、該金属体と該酸化物超電導物質の界面に対して1
0度以内で平行であり、かつ該金属結晶の60%以上の
<100>方向が互いに10度以内で揃っていることを
特徴とする超電導線。
1. A superconducting wire containing at least a metal body and an oxide superconducting material, wherein the metal body is a polycrystal body and 60% or more of the metal crystals constituting the metal body {100}.
The surface is 1 with respect to the interface between the metal body and the oxide superconducting material.
A superconducting wire which is parallel within 0 degree and has 60% or more <100> directions of the metal crystals aligned with each other within 10 degrees.
【請求項2】少なくとも金属体と酸化物超電導物質を含
む超電導線であって、該金属体は多結晶体であり、かつ
該金属体を構成する金属結晶の70%以上の{100}
面が、該金属体と該酸化物超電導物質の界面に対して1
0度以内で平行であり、かつ該金属結晶の70%以上の
<100>方向が互いに10度以内で揃っていることを
特徴とする超電導線。
2. A superconducting wire containing at least a metal body and an oxide superconducting material, wherein the metal body is a polycrystal body and 70% or more of the metal crystals constituting the metal body {100}.
The surface is 1 with respect to the interface between the metal body and the oxide superconducting material.
A superconducting wire which is parallel within 0 degree and has 70% or more <100> directions of the metal crystals aligned with each other within 10 degrees.
【請求項3】少なくとも金属体と酸化物超電導物質を含
む超電導線であって、該金属体は多結晶体であり、かつ
該金属体を構成する金属結晶の80%以上の{100}
面が、該金属体と該酸化物超電導物質の界面に対して1
0度以内で平行であり、かつ該金属結晶の80%以上の
<100>方向が互いに10度以内で揃っていることを
特徴とする超電導線。
3. A superconducting wire containing at least a metal body and an oxide superconducting material, wherein the metal body is a polycrystal body and 80% or more of the metal crystals constituting the metal body {100}.
The surface is 1 with respect to the interface between the metal body and the oxide superconducting material.
A superconducting wire which is parallel within 0 degree, and 80% or more of the <100> directions of the metal crystals are aligned within 10 degrees.
【請求項4】少なくとも金属体と酸化物超電導物質を含
む超電導線であって、該金属体は多結晶体であり、かつ
該金属体を構成する金属結晶の60%以上の{100}
面が、該超電導線材の長手方向に10度以内で平行であ
り、かつ該金属結晶の60%以上の<100>方向が長
手方向に10度以内で揃っていることを特徴とする超電
導線。
4. A superconducting wire containing at least a metal body and an oxide superconducting material, wherein the metal body is a polycrystal body, and 60% or more of the metal crystals constituting the metal body {100}.
A surface of the superconducting wire is parallel to the longitudinal direction of the superconducting wire within 10 degrees, and 60% or more of <100> directions of the metal crystals are aligned within 10 degrees in the longitudinal direction.
【請求項5】少なくとも金属体と酸化物超電導物質を含
む超電導線であって、該金属体は多結晶体であり、かつ
該金属体を構成する金属結晶の70%以上の{100}
面が、該超電導線材の長手方向に10度以内で平行であ
り、かつ該金属結晶の70%以上の<100>方向が長
手方向に10度以内で揃っていることを特徴とする超電
導線。
5. A superconducting wire containing at least a metal body and an oxide superconducting substance, wherein the metal body is a polycrystal body and 70% or more of the metal crystals constituting the metal body {100}.
A superconducting wire whose surfaces are parallel to the longitudinal direction of the superconducting wire within 10 degrees and 70% or more of the <100> directions of the metal crystals are aligned within 10 degrees in the longitudinal direction.
【請求項6】少なくとも金属体と酸化物超電導物質を含
む超電導線であって、該金属体は多結晶体であり、かつ
該金属体を構成する金属結晶の80%以上の{100}
面が、該超電導線材の長手方向に10度以内で平行であ
り、かつ該金属結晶の80%以上の<100>方向が長
手方向に10度以内で揃っていることを特徴とする超電
導線。
6. A superconducting wire containing at least a metal body and an oxide superconducting material, wherein the metal body is a polycrystal body and 80% or more of the metal crystals constituting the metal body {100}.
A superconducting wire whose surfaces are parallel to the longitudinal direction of the superconducting wire within 10 degrees and 80% or more of the <100> directions of the metal crystals are aligned within 10 degrees in the longitudinal direction.
【請求項7】少なくとも金属体と酸化物超電導物質を含
む超電導線であって、該金属体は多結晶体の金属テープ
であり、かつ該金属テープを構成する金属結晶の60%
以上の{100}面が、該金属テープ表面に10度以内
で平行であり、かつ該金属結晶の60%以上の<100
>方向が該金属テープの長手方向に10度以内で揃って
いることを特徴とする超電導線。
7. A superconducting wire containing at least a metal body and an oxide superconducting material, wherein the metal body is a polycrystal metal tape, and 60% of the metal crystals constituting the metal tape.
The above {100} plane is parallel to the surface of the metal tape within 10 degrees, and 60% or more of the metal crystal <100.
> A superconducting wire whose direction is aligned within 10 degrees in the longitudinal direction of the metal tape.
【請求項8】少なくとも金属体と酸化物超電導物質を含
む超電導線であって、該金属体は多結晶体の金属テープ
であり、かつ該金属テープを構成する金属結晶の70%
以上の{100}面が、該金属テープ表面に10度以内
で平行であり、かつ該金属結晶の70%以上の<100
>方向が該金属テープの長手方向に10度以内で揃って
いることを特徴とする超電導線。
8. A superconducting wire containing at least a metal body and an oxide superconducting material, wherein the metal body is a polycrystal metal tape, and 70% of the metal crystals constituting the metal tape.
The above {100} plane is parallel to the surface of the metal tape within 10 degrees, and 70% or more of the metal crystal <100.
> A superconducting wire whose direction is aligned within 10 degrees in the longitudinal direction of the metal tape.
【請求項9】少なくとも金属体と酸化物超電導物質を含
む超電導線であって、該金属体は多結晶体の金属テープ
であり、かつ該金属テープを構成する金属結晶の80%
以上の{100}面が、該金属テープ表面に10度以内
で平行であり、かつ該金属結晶の80%以上の<100
>方向が該金属テープの長手方向に10度以内で揃って
いることを特徴とする超電導線。
9. A superconducting wire containing at least a metal body and an oxide superconducting substance, wherein the metal body is a polycrystal metal tape, and 80% of the metal crystals constituting the metal tape.
The {100} plane is parallel to the surface of the metal tape within 10 degrees, and 80% or more of the metal crystals <100.
> A superconducting wire whose direction is aligned within 10 degrees in the longitudinal direction of the metal tape.
【請求項10】請求項1,4あるいは7のいずれかに記
載の超電導線において、該酸化物超電導物質の60%以
上の結晶の(001)面が、該金属の結晶の{100}
面と10度以内で平行である事を特徴とする超電導線。
10. The superconducting wire according to claim 1, 4 or 7, wherein 60% or more of the crystals of the oxide superconducting material have (001) faces of {100} of the crystal of the metal.
A superconducting wire that is parallel to the surface within 10 degrees.
【請求項11】請求項2,5あるいは8のいずれかに記
載の超電導線において、該酸化物超電導物質の70%以
上の結晶の(001)面が、該金属の結晶の{100}
面と10度以内で平行である事を特徴とする超電導線。
11. The superconducting wire according to claim 2, 5 or 8, wherein the (001) plane of 70% or more of the oxide superconducting material has {100} of the metal crystal.
A superconducting wire that is parallel to the surface within 10 degrees.
【請求項12】請求項3,6あるいは9のいずれかに記
載の超電導線において、該酸化物超電導物質の80%以
上の結晶の(001)面が、該金属の結晶の{100}
面と10度以内で平行である事を特徴とする超電導線。
12. The superconducting wire according to claim 3, 6 or 9, wherein 80% or more of the (001) crystal faces of the oxide superconducting material have {100} crystal faces of the metal.
A superconducting wire that is parallel to the surface within 10 degrees.
【請求項13】請求項1,4あるいは7のいずれかに記
載の超電導線において、該酸化物超電導物質の60%以
上の結晶の[110]方向が、該金属の結晶の<110
>方向と10度以内で平行であることを特徴とする超電
導線。
13. The superconducting wire according to claim 1, 4 or 7, wherein 60% or more of the crystals of the oxide superconducting material have a [110] direction of <110.
> A superconducting wire which is parallel to the direction within 10 degrees.
【請求項14】請求項2,5あるいは8のいずれかに記
載の超電導線において、該酸化物超電導物質の70%以
上の結晶の[110]方向が、該金属の結晶の<110
>方向と10度以内で平行であることを特徴とする超電
導線。
14. The superconducting wire according to claim 2, 5 or 8, wherein 70% or more of crystals of the oxide superconducting material have a [110] direction of <110.
> A superconducting wire which is parallel to the direction within 10 degrees.
【請求項15】請求項3,6あるいは9のいずれかに記
載の超電導線において、該酸化物超電導物質の80%以
上の結晶の[110]方向が、該金属の結晶の<110
>方向と10度以内で平行であることを特徴とする超電
導線。
15. The superconducting wire according to claim 3, 6 or 9, wherein the [110] direction of 80% or more of the oxide superconducting material has <110 direction of the crystal of the metal.
> A superconducting wire which is parallel to the direction within 10 degrees.
【請求項16】請求項1,4あるいは7のいずれかに記
載の超電導線において、該酸化物超電導物質の60%以
上の結晶の(001)面が、該金属の結晶の{100}面
と10度以内で平行であり、かつ該酸化物超電導物質の
60%以上の結晶の[110]方向が、該金属の結晶の
<110>方向と10度以内で平行である事を特徴とす
る超電導線。
16. The superconducting wire according to claim 1, 4 or 7, wherein the (001) plane of 60% or more of the oxide superconducting substance crystal is the {100} plane of the crystal of the metal. The superconductivity is parallel within 10 degrees, and the [110] direction of 60% or more of the crystals of the oxide superconducting substance is parallel within 10 degrees with the <110> direction of the metal crystal. line.
【請求項17】請求項2,5あるいは8のいずれかに記
載の超電導線において、該酸化物超電導物質の70%以
上の結晶の(001)面が、該金属の結晶の{100}面
と10度以内で平行であり、かつ該酸化物超電導物質の
70%以上の結晶の[110]方向が、該金属の結晶の
<110>方向と10度以内で平行である事を特徴とす
る超電導線。
17. The superconducting wire according to claim 2, 5 or 8, wherein the (001) plane of 70% or more of the oxide superconducting material is the {100} plane of the crystal of the metal. The superconductivity is parallel within 10 degrees, and the [110] direction of 70% or more of the crystals of the oxide superconducting material is parallel within 10 degrees with the <110> direction of the metal crystal. line.
【請求項18】請求項3,6あるいは9のいずれかに記
載の超電導線において、該酸化物超電導物質の80%以
上の結晶の(001)面が、該金属の結晶の{100}面
と10度以内で平行であり、かつ該酸化物超電導物質の
80%以上の結晶の[110]方向が、該金属の結晶の
<110>方向と10度以内で平行である事を特徴とす
る超電導線。
18. The superconducting wire according to claim 3, 6 or 9, wherein the (001) plane of 80% or more of the oxide superconducting material is the {100} plane of the crystal of the metal. Superconductivity that is parallel within 10 degrees, and the [110] direction of 80% or more of the crystals of the oxide superconducting material is parallel within 10 degrees with the <110> direction of the metal crystal. line.
【請求項19】請求項1ないし18のいずれかに記載の
超電導線材において、該金属体と該酸化物超電導物質の
界面に垂直な断面における該金属体或いは該金属テープ
の面積S1と酸化物超電導物質部分の面積S2の比率が
0.01≦S2/S1≦0.6を満たすことを特徴とする
超電導線材。
19. The superconducting wire according to claim 1, wherein the area S1 of the metal body or the metal tape and the oxide superconductivity in a cross section perpendicular to the interface between the metal body and the oxide superconducting substance. A superconducting wire rod characterized in that the ratio of the area S2 of the substance portion satisfies 0.01 ≦ S2 / S1 ≦ 0.6.
【請求項20】請求項1ないし19のいずれかに記載の
超電導線において、該金属体が銀であることを特徴とす
る超電導線。
20. The superconducting wire according to claim 1, wherein the metal body is silver.
【請求項21】請求項1ないし19のいずれかに記載の
超電導線において、該金属体が銀を含む合金、或いは銀
に酸化物を分散させたもの、或いは銀を含む合金に酸化
物を分散させたもの、或いは銀を含む合金に金属間化合
物を分散させたものであることを特徴とする超電導線。
21. The superconducting wire according to claim 1, wherein the metal body is an alloy containing silver, a dispersion of an oxide in silver, or a dispersion of an oxide in an alloy containing silver. A superconducting wire, characterized in that it is an alloy containing silver or an alloy containing silver in which an intermetallic compound is dispersed.
【請求項22】請求項1ないし19のいずれかに記載の
超電導線において、該金属がFCC構造の金属またはF
CC構造の合金であることを特徴とする超電導線。
22. The superconducting wire according to any one of claims 1 to 19, wherein the metal has a FCC structure or F.
A superconducting wire characterized by being an alloy of CC structure.
【請求項23】請求項1ないし19のいずれかに記載の
超電導線において、該金属がBCC構造の金属またはB
CC構造の合金であることを特徴とする超電導線。
23. The superconducting wire according to claim 1, wherein the metal has a BCC structure or B.
A superconducting wire characterized by being an alloy of CC structure.
【請求項24】請求項1ないし23のいずれかに記載の
超電導線において、該酸化物超電導物質の化学組成が、 (TlX1PbX2BiX3HgX4CuX5)(Sr1-X6BaX6)2
Canー1Cun2n+3+X7 ここで、0≦X1≦1.0, 0≦X2≦1.0, 0≦X3≦0.5, 0≦X4≦1.0, 0≦X5≦1.0, 0.5≦X1+X2+X3+X4+X5≦1, 0≦X6≦1, −0.5≦X7≦0.5 n=1,2,3,4,5 で表されることを特徴とする超電導線。
24. The superconducting wire according to claim 1, wherein the oxide superconducting material has a chemical composition of (Tl X1 Pb X2 Bi X3 Hg X4 Cu X5 ) (Sr 1 -X6 Ba X6 ). 2
C n-1 C n O 2n + 3 + X7 where 0 ≦ X1 ≦ 1.0, 0 ≦ X2 ≦ 1.0, 0 ≦ X3 ≦ 0.5, 0 ≦ X4 ≦ 1.0, 0 ≦ X5 ≦ 1.0, 0.5 ≦ X1 + X2 + X3 + X4 + X5 ≦ 1, 0 ≦ X6 ≦ 1, −0.5 ≦ X7 ≦ 0.5 n = 1,2,3,4,5 line.
【請求項25】請求項1ないし23のいずれかに記載の
超電導線において、該酸化物超電導物質の化学組成が、 (Tl1-X1-X2ーX3PbX1BiX2HgX3)2(Sr1-X4
X4)2Canー1Cun2n+4+X5 ここで、0≦X1≦0.9, 0≦X2≦0.1, 0≦X3≦0.5, 0≦X1+X2+X3≦1, 0≦X4≦1, −0.5≦X5≦0.5 n=1,2,3,4,5 で表されることを特徴とする超電導線。
25. The superconducting wire according to claim 1, wherein the oxide superconducting substance has a chemical composition of (Tl 1 -X1-X2-X3 Pb X1 Bi X2 Hg X3 ) 2 (Sr 1 -X4 B
a X4) 2 Ca n over 1 Cu n O 2n + 4 + X5 where, 0 ≦ X1 ≦ 0.9, 0 ≦ X2 ≦ 0.1, 0 ≦ X3 ≦ 0.5, 0 ≦ X1 + X2 + X3 ≦ 1, 0 ≦ X4 ≦ 1, −0.5 ≦ X5 ≦ 0.5 n = 1, 2, 3, 4, 5 A superconducting wire characterized by the following.
【請求項26】請求項1ないし23のいずれかに記載の
超電導線において、該酸化物超電導物質の化学組成が、 (Bi1ーX1PbX1)2Sr2Canー1Cun2n+4+X2 ここで、0≦X1≦0.4, −0.5≦X2≦0.5 n=1,2,3 で表されることを特徴とする超電導線。
26. A superconducting wire according to any one of claims 1 to 23, the chemical composition of the oxide superconducting material, (Bi 1 over X1 Pb X1) 2 Sr 2 Ca n over 1 Cu n O 2n + 4 + X2 where 0 ≦ X1 ≦ 0.4, −0.5 ≦ X2 ≦ 0.5 n = 1, 2, 3 A superconducting wire characterized by the following.
【請求項27】請求項1ないし23のいずれかに記載の
超電導線において、該酸化物超電導物質の化学組成が、 LnBa2Cu37+X1 ここで、LnはYもしくは希土類元素から選ばれた一種
または複数。 −0.5≦X1≦0.2 n=1,2,3 で表されることを特徴とする超電導線。
27. The superconducting wire according to claim 1, wherein the oxide superconducting material has a chemical composition of LnBa 2 Cu 3 O 7 + X1, where Ln is selected from Y or a rare earth element. One or more. -0.5≤X1≤0.2 A superconducting wire characterized by being represented by n = 1, 2, 3.
【請求項28】結晶の80%以上が立方体集合組織とな
っている純度99.0 %以上の銀テープと、化学組成が (TlX1PbX2BiX3HgX4CuX5)(Sr1-X6BaX6)2
Canー1Cun2n+3+X7 ここで、0≦X1≦1.0, 0≦X2≦1.0, 0≦X3≦0.5, 0≦X4≦1.0, 0≦X5≦1.0, 0.5≦X1+X2+X3+X4+X5≦1, 0≦X6≦1, −0.5≦X7≦0.5 n=1,2,3,4,5 で表される酸化物超電導物質を、少なくともその構成要
素として含む超電導線材であって、該銀テープと該酸化
物超電導物質が直接接触していて、長手方向に垂直な断
面における該銀テープ層の面積S1と該酸化物超電導物
質層の面積S2の比率が0.01≦S2/S1≦0.6を
満たしており、該立方体集合組織を形成する銀結晶の<
110>方向と該酸化物超電導物質結晶の[110]方
向の80%以上が10度以内で平行である事を特徴とす
る超電導線。
28. A silver tape having a purity of 99.0% or more, in which 80% or more of crystals have a cubic texture, and a chemical composition is (Tl X1 Pb X2 Bi X3 Hg X4 Cu X5 ) (Sr 1-X6 Ba). X6 ) 2
C n-1 C n O 2n + 3 + X7 where 0 ≦ X1 ≦ 1.0, 0 ≦ X2 ≦ 1.0, 0 ≦ X3 ≦ 0.5, 0 ≦ X4 ≦ 1.0, 0 ≦ X5 ≦ 1.0, 0.5 ≦ X1 + X2 + X3 + X4 + X5 ≦ 1, 0 ≦ X6 ≦ 1, −0.5 ≦ X7 ≦ 0.5 An oxide superconducting material represented by n = 1, 2, 3, 4, 5 A superconducting wire containing at least the constituents thereof, wherein the silver tape and the oxide superconducting material are in direct contact with each other, and the area S1 of the silver tape layer in a cross section perpendicular to the longitudinal direction and the oxide superconducting material layer. The ratio of the area S2 satisfies 0.01 ≦ S2 / S1 ≦ 0.6, and the silver crystals forming the cubic texture <
80> direction and 80% or more of the [110] direction of the oxide superconducting material crystal are parallel within 10 degrees.
【請求項29】結晶の80%以上が立方体集合組織とな
っている純度99.0 %以上の銀テープと、化学組成が LnBa2Cu37+X1 ここで、LnはYもしくは希土類元素から選ばれた一種
または複数。 −0.5≦X1≦0.2 n=1,2,3 で表される酸化物超電導物質を、少なくともその構成要
素として含む超電導線材であって、該銀テープと該酸化
物超電導物質が直接接触していて、長手方向に垂直な断
面における該銀テープ層の面積S1と該酸化物超電導物
質層の面積S2の比率が0.01≦S2/S1≦0.6を
満たしており、該立方体集合組織を形成する銀結晶の<
110>方向と該酸化物超電導物質結晶の[110]方
向の80%以上が10度以内で平行である事を特徴とす
る超電導線。
29. A silver tape having a purity of 99.0% or more in which 80% or more of crystals have a cubic texture, and a chemical composition is LnBa 2 Cu 3 O 7 + X1, wherein Ln is Y or a rare earth element. One or more selected. -0.5≤X1≤0.2 A superconducting wire containing an oxide superconducting material represented by n = 1,2,3 as at least one of its constituent elements, wherein the silver tape and the oxide superconducting material are directly connected to each other. A ratio of the area S1 of the silver tape layer and the area S2 of the oxide superconducting material layer in a cross section perpendicular to the longitudinal direction in contact with each other satisfies 0.01 ≦ S2 / S1 ≦ 0.6, and the cube is Of the silver crystals forming the texture <
80> direction and 80% or more of the [110] direction of the oxide superconducting material crystal are parallel within 10 degrees.
【請求項30】結晶の80%以上が立方体集合組織とな
っている純度99.0 %以上の銀テープと、化学組成が (Tl1-X1-X2ーX3PbX1BiX2HgX3)2(Sr1-X4
X4)2Canー1Cun2n+4+X5 ここで、0≦X1≦0.9, 0≦X2≦0.1, 0≦X3≦0.5, 0≦X1+X2+X3≦1, 0≦X4≦1, −0.5≦X5≦0.5 n=1,2,3,4,5 で表される酸化物超電導物質を、少なくともその構成要
素として含む超電導線であって、該銀テープと該酸化物
超電導物質が直接接触していて、長手方向に垂直な断面
における該銀テープ層の面積S1と該酸化物超電導物質
層の面積S2の比率が0.01≦S2/S1≦0.6を満
たしており、該立方体集合組織を形成する銀結晶の<1
10>方向と該酸化物超電導物質結晶の[110]方向
の80%以上が10度以内で平行である事を特徴とする
超電導線。
30. A silver tape having a purity of 99.0% or more in which 80% or more of crystals have a cubic texture, and a chemical composition of (Tl 1 -X1-X2 -X3 Pb X1 Bi X2 Hg X3 ) 2 ( Sr 1-X4 B
a X4) 2 Ca n over 1 Cu n O 2n + 4 + X5 where, 0 ≦ X1 ≦ 0.9, 0 ≦ X2 ≦ 0.1, 0 ≦ X3 ≦ 0.5, 0 ≦ X1 + X2 + X3 ≦ 1, 0 ≤X4 ≤1, -0.5 ≤X5 ≤0.5 A superconducting wire containing an oxide superconducting material represented by n = 1,2,3,4,5 as at least one of its constituents, wherein the silver The tape and the oxide superconducting material are in direct contact, and the ratio of the area S1 of the silver tape layer to the area S2 of the oxide superconducting material layer in a cross section perpendicular to the longitudinal direction is 0.01 ≦ S2 / S1 ≦ 0. <1 of the silver crystals that satisfy the requirement of .6 and form the cubic texture.
A superconducting wire, wherein 80% or more of the 10> direction and the [110] direction of the oxide superconducting substance crystal are parallel within 10 degrees.
【請求項31】結晶の80%以上が立方体集合組織とな
っている純度99.0 %以上の銀テープと、化学組成が (Bi1ーX1PbX1)2Sr2Canー1Cun2n+4+X2 ここで、0≦X1≦0.4, −0.5≦X2≦0.5 n=1,2,3 で表される酸化物超電導物質を、少なくともその構成要
素として含む超電導線であって、該銀テープと該酸化物
超電導物質が直接接触していて、長手方向に垂直な断面
における該銀テープ層の面積S1と該酸化物超電導物質
層の面積S2の比率が0.01≦S2/S1≦0.6を満
たしており、該立方体集合組織を形成する銀結晶の<1
10>方向と該酸化物超電導物質結晶の[110]方向
の60%以上が10度以内で平行である事を特徴とする
超電導線。
31. More than 80% of the crystals and silver tape over 99.0% purity and has a cubic texture, chemical composition (Bi 1 over X1 Pb X1) 2 Sr 2 Ca n over 1 Cu n O 2n + 4 + X2 where 0 ≦ X1 ≦ 0.4, −0.5 ≦ X2 ≦ 0.5 superconductivity containing at least an oxide superconducting material represented by n = 1, 2, 3 as its constituent element A line in which the silver tape and the oxide superconducting material are in direct contact, and the ratio of the area S1 of the silver tape layer to the area S2 of the oxide superconducting material layer in a cross section perpendicular to the longitudinal direction is 0. 01 ≦ S2 / S1 ≦ 0.6 and <1 of silver crystals forming the cubic texture.
A superconducting wire, wherein 60% or more of the 10> direction and the [110] direction of the oxide superconducting substance crystal are parallel within 10 degrees.
【請求項32】結晶の80%以上が立方体集合組織とな
っている純度99.0 %以上の銀テープと、化学組成が (Bi1ーX1PbX1)2Sr2Canー1Cun2n+4+X2 ここで、0≦X1≦0.4, −0.5≦X2≦0.5 n=1,2,3 で表される酸化物超電導物質を、少なくともその構成要
素として含む超電導線であって、該銀テープと該酸化物
超電導物質が直接接触していて、長手方向に垂直な断面
における該銀テープ層の面積S1と該酸化物超電導物質
層の面積S2の比率が0.01≦S2/S1≦0.6を満
たしており、該立方体集合組織を形成する銀結晶の<1
10>方向と該酸化物超電導物質結晶の[110]方向
の70%以上が10度以内で平行である事を特徴とする
超電導線。
32. A silver tape having a purity of 99.0% or more in which 80% or more of crystals have a cubic texture, and a chemical composition of (Bi 1 -X1 Pb X1 ) 2 Sr 2 Can -1 Cu n O. 2n + 4 + X2 where 0 ≦ X1 ≦ 0.4, −0.5 ≦ X2 ≦ 0.5 superconductivity containing at least an oxide superconducting material represented by n = 1, 2, 3 as its constituent element A line in which the silver tape and the oxide superconducting material are in direct contact, and the ratio of the area S1 of the silver tape layer to the area S2 of the oxide superconducting material layer in a cross section perpendicular to the longitudinal direction is 0. 01 ≦ S2 / S1 ≦ 0.6 and <1 of silver crystals forming the cubic texture.
A superconducting wire, wherein 70% or more of the 10> direction and the [110] direction of the oxide superconducting substance crystal are parallel within 10 degrees.
【請求項33】結晶の80%以上が立方体集合組織とな
っている純度99.99 %以上の銀テープと、化学組成
が (Bi1ーX1PbX1)2Sr2Canー1Cun2n+4+X2 ここで、0≦X1≦0.4, −0.5≦X2≦0.5 n=1,2,3 で表される酸化物超電導物質を、少なくともその構成要
素として含む超電導線であって、該銀テープと該酸化物
超電導物質が直接接触していて、長手方向に垂直な断面
における該銀テープ層の面積S1と該酸化物超電導物質
層の面積S2の比率が0.01≦S2/S1≦0.6を満
たしており、該立方体集合組織を形成する銀結晶の<1
10>方向と該酸化物超電導物質結晶の[110]方向
の80%以上が10度以内で平行である事を特徴とする
超電導線。
33. More than 80% of the crystals and silver tapes 99.99% pure and has a cubic texture, chemical composition (Bi 1 over X1 Pb X1) 2 Sr 2 Ca n over 1 Cu n O 2n + 4 + X2 where 0 ≦ X1 ≦ 0.4, −0.5 ≦ X2 ≦ 0.5 superconductivity containing at least an oxide superconducting material represented by n = 1, 2, 3 as its constituent element A line in which the silver tape and the oxide superconducting material are in direct contact, and the ratio of the area S1 of the silver tape layer to the area S2 of the oxide superconducting material layer in a cross section perpendicular to the longitudinal direction is 0. 01 ≦ S2 / S1 ≦ 0.6 and <1 of silver crystals forming the cubic texture.
A superconducting wire, wherein 80% or more of the 10> direction and the [110] direction of the oxide superconducting substance crystal are parallel within 10 degrees.
【請求項34】金属結晶の80%以上が立方体集合組織
となっている金属テープの表面に、酸化物超電導物質も
しくは酸化物超電導物質の原料となるものを連続的に堆
積する連続堆積工程と、それを700℃以上の温度に加
熱する加熱工程を含むことを特徴とする超電導線の作製
方法。
34. A continuous deposition step of continuously depositing an oxide superconducting substance or a raw material of an oxide superconducting substance on the surface of a metal tape in which 80% or more of metal crystals have a cubic texture. A method for producing a superconducting wire, comprising a heating step of heating it to a temperature of 700 ° C. or higher.
【請求項35】金属結晶の80%以上が立方体集合組織
となっている金属テープの表面に、酸化物超電導物質も
しくは酸化物超電導物質の原料となるものを連続的に堆
積する連続堆積工程と、それを複数集めて集合体とする
集合化工程と、該集合体を700℃以上の温度に加熱する
加熱工程と、該集合体の表面に絶縁体を形成する絶縁層
形成工程を含むことを特徴とする超電導線の作製方法。
35. A continuous deposition step of continuously depositing an oxide superconducting substance or a raw material of an oxide superconducting substance on the surface of a metal tape in which 80% or more of metal crystals have a cubic texture. It is characterized by including an assembling step of collecting a plurality of them into an aggregate, a heating step of heating the aggregate to a temperature of 700 ° C. or higher, and an insulating layer forming step of forming an insulator on the surface of the aggregate. And a method for producing a superconducting wire.
【請求項36】金属結晶の80%以上が立方体集合組織
となっている金属テープの一部分を局所的に400℃以
上の温度に加熱し、その表面に、酸化物超電導物質の原
料となるものを連続的に堆積することによって超電導物
質を連続的に作製する連続加熱堆積工程を含むことを特
徴とする超電導線の作製方法。
36. A part of a metal tape in which 80% or more of metal crystals have a cubic texture is locally heated to a temperature of 400 ° C. or more, and a surface of the metal tape is used as a raw material of an oxide superconducting substance. A method for producing a superconducting wire, which comprises a continuous heating deposition step of continuously producing a superconducting material by continuously depositing.
【請求項37】金属結晶の80%以上が立方体集合組織
となっている金属テープの一部分を局所的に400℃以
上の温度に加熱し、その表面に、酸化物超電導物質の原
料となるものを連続的に堆積することによって超電導物
質を連続的に作製する連続加熱堆積工程と、それを複数
集めて集合体とする集合化工程と、該集合体の表面に絶
縁体を形成する絶縁層形成工程を含むことを特徴とする
超電導線の作製方法。
37. A part of a metal tape, in which 80% or more of metal crystals have a cubic texture, is locally heated to a temperature of 400 ° C. or more, and the surface of the metal tape is used as a raw material of an oxide superconducting substance. A continuous heating deposition step of continuously producing a superconducting material by continuously depositing, an assembly step of collecting a plurality of them into an aggregate, and an insulating layer forming step of forming an insulator on the surface of the aggregate. A method for producing a superconducting wire, comprising:
【請求項38】金属結晶の80%以上が立方体集合組織
となっている金属テープの一部分を局所的に400℃以
上の温度に加熱し、その表面に、酸化物超電導物質の原
料となるものを連続的に堆積することによって超電導物
質を連続的に作製する連続加熱堆積工程と、それを複数
集めて集合体とする集合化工程と、該集合体を700℃
以上の温度に加熱する加熱工程と、該集合体の表面に絶
縁体を形成する絶縁層形成工程を含むことを特徴とする
超電導線の作製方法。
38. A part of a metal tape, in which 80% or more of metal crystals have a cubic texture, is locally heated to a temperature of 400 ° C. or more, and the surface of the metal tape is used as a raw material of an oxide superconducting substance. A continuous heating deposition step of continuously producing a superconducting material by continuously depositing, an assembly step of collecting a plurality of them into an assembly, and the assembly at 700 ° C.
A method for producing a superconducting wire, comprising a heating step of heating to the above temperature and an insulating layer forming step of forming an insulator on the surface of the aggregate.
【請求項39】請求項34ないし38のいずれかに記載
の該金属テープが銀であることを特徴とする超電導線材
の作製方法。
39. A method for producing a superconducting wire, wherein the metal tape according to any one of claims 34 to 38 is silver.
【請求項40】請求項1ないし請求項33のいずれかに
記載の該超電導線を使用したことを特徴とする超電導マ
グネット。
40. A superconducting magnet using the superconducting wire according to any one of claims 1 to 33.
【請求項41】請求項1ないし請求項33のいずれかに
記載の該超電導線を用いて作製した該超電導線を使用し
たマグネットを使用したNMR装置。
41. An NMR apparatus using a magnet using the superconducting wire produced by using the superconducting wire according to any one of claims 1 to 33.
【請求項42】請求項34ないし請求項39のいずれか
に記載の方法を用いて作製した該超電導線を使用したマ
グネットを使用したMRI装置。
42. An MRI apparatus using a magnet using the superconducting wire produced by the method according to any one of claims 34 to 39.
【請求項43】請求項1ないし請求項31のいずれかに
記載の該超電導体を使用したマグネットを使用したシン
クロトロン放射光発生装置。
43. A synchrotron radiation light generator using a magnet using the superconductor according to any one of claims 1 to 31.
【請求項44】請求項1ないし請求項31のいずれかに
記載の該超電導体を使用したマグネットを使用した磁気
分別装置。
44. A magnetic separation device using a magnet using the superconductor according to any one of claims 1 to 31.
【請求項45】立方体集合組織を有することを特徴とす
る銀テープ。
45. A silver tape having a cubic texture.
【請求項46】多数の結晶からなる銀テープであり、8
0%以上の該結晶の{100}面が、該銀テープ表面に1
0度以内で平行であり、かつ80%以上の該結晶の<1
00>方向が該銀テープの長手方向に10度以内で揃っ
ていることを特徴とする銀テープ。
46. A silver tape comprising a large number of crystals, 8
0% or more of the {100} face of the crystal is 1 on the surface of the silver tape.
Parallel within 0 degree and 80% or more of the crystals <1
The 00> direction is aligned within 10 degrees in the longitudinal direction of the silver tape.
【請求項47】多数の結晶からなる銀板であり、80%
以上の該結晶の{100}面が、該銀板表面に10度以
内で平行であり、かつ80%以上の該結晶の<100>
方向が該銀板の長手方向に10度以内で揃っていること
を特徴とする銀板。
47. A silver plate composed of a large number of crystals, which is 80%
The {100} plane of the crystal is parallel to the surface of the silver plate within 10 degrees, and 80% or more of <100> of the crystal.
A silver plate having a direction aligned within 10 degrees in the longitudinal direction of the silver plate.
【請求項48】純度99.0% 以上の銀を、100℃以
上300℃以下の温度で塑性変形させ、その後400℃
以上銀の融点以下の温度で熱処理したことを特徴とする
銀。
48. Silver having a purity of 99.0% or more is plastically deformed at a temperature of 100 ° C. or higher and 300 ° C. or lower, and then 400 ° C.
Silver characterized by being heat-treated at a temperature not higher than the melting point of silver.
【請求項49】純度99.0% 以上の銀を、100℃以
上300℃以下の温度で塑性変形させ、その後400℃
以上銀の融点以下の温度で熱処理したことを特徴とする
銀テープ。
49. Silver having a purity of 99.0% or more is plastically deformed at a temperature of 100 ° C. or more and 300 ° C. or less, and then 400 ° C.
A silver tape which is heat-treated at a temperature not higher than the melting point of silver.
【請求項50】純度99.0% 以上の銀を、100℃以
上300℃以下の温度で、最終的なテープ厚さが最初の
銀の厚さの1/10以下になるまで圧延し、その後40
0℃以上銀の融点以下の温度で熱処理したことを特徴と
する銀テープ。
50. Rolling silver having a purity of 99.0% or more at a temperature of 100 ° C. or more and 300 ° C. or less until the final tape thickness becomes 1/10 or less of the initial silver thickness, and thereafter. 40
A silver tape which is heat-treated at a temperature of 0 ° C. or more and a melting point of silver or less.
JP23232095A 1994-09-20 1995-09-11 Oxide superconducting wire and manufacturing method thereof Expired - Fee Related JP3873304B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23232095A JP3873304B2 (en) 1994-09-20 1995-09-11 Oxide superconducting wire and manufacturing method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP6-224745 1994-09-20
JP6224745A JPH07192546A (en) 1993-10-25 1994-09-20 Oxide superconductive wire material and manufacture thereof
JP23232095A JP3873304B2 (en) 1994-09-20 1995-09-11 Oxide superconducting wire and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH08190816A true JPH08190816A (en) 1996-07-23
JP3873304B2 JP3873304B2 (en) 2007-01-24

Family

ID=26526244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23232095A Expired - Fee Related JP3873304B2 (en) 1994-09-20 1995-09-11 Oxide superconducting wire and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3873304B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1271666A2 (en) * 2001-06-22 2003-01-02 Fujikura Ltd. Oxide superconductor layer and its production method
JP2013037849A (en) * 2011-08-05 2013-02-21 Chubu Electric Power Co Inc Superconducting wire

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1271666A2 (en) * 2001-06-22 2003-01-02 Fujikura Ltd. Oxide superconductor layer and its production method
EP1271666A3 (en) * 2001-06-22 2006-01-25 Fujikura Ltd. Oxide superconductor layer and its production method
JP2013037849A (en) * 2011-08-05 2013-02-21 Chubu Electric Power Co Inc Superconducting wire

Also Published As

Publication number Publication date
JP3873304B2 (en) 2007-01-24

Similar Documents

Publication Publication Date Title
US7781376B2 (en) High temperature superconducting wires and coils
JP2610939B2 (en) Superconductor manufacturing method
US11488746B2 (en) Superconductor with improved flux pinning at low temperatures
US6316391B1 (en) Oxide superconducting wire and method of manufacturing the same
Tomita et al. Generation of 21.5 T by a superconducting magnet system using a Bi2Sr2CaCu2O x/Ag coil as an insert magnet
JP2636049B2 (en) Method for producing oxide superconductor and method for producing oxide superconducting wire
JP2006228797A (en) Permanent current switch using magnesium diboride and its manufacturing method
JP2939544B1 (en) Mg-doped low-anisotropic high-temperature superconductor and method for producing the same
JP3873304B2 (en) Oxide superconducting wire and manufacturing method thereof
US5462922A (en) Superconductive material, a superconductive body, and a method of forming such a superconductive material or body
US5502029A (en) Laminated super conductor oxide with strontium, calcium, copper and at least one of thallium, lead, and bismuth
JPH07192546A (en) Oxide superconductive wire material and manufacture thereof
JPH09161557A (en) Oxide superconductor, oxide superconducting wire, and manufacture of the wire
JP2651018B2 (en) High magnetic field magnet
WO2013015328A1 (en) Base material for superconducting thin film, superconducting thin film, and method for manufacturing superconducting thin film
EP0734081A1 (en) Oxide superconducting wire and manufacturing method
JPH0393110A (en) Superconducting wire-rod
Kumakura et al. Performance tests of Bi-2212 insert magnets fabricated by Ag sheath method and dip-coating method
JP5614831B2 (en) Oxide superconducting current lead
Hasegawa et al. Performance test of a refrigerator cooled magnet fabricated using Bi-2212 multilayer superconducting tapes
JPH0648733A (en) Oxide superconducting substance
JPH11329118A (en) Oxide superconducting composite material and its manufacture
JPH0769626A (en) Metal oxide and production thereof
CN109785990A (en) A kind of superconducting tape or wire rod applied to high-intensity magnetic field
Easterling et al. The microstructure and properties of high T c superconducting oxides

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040810

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050920

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051017

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061016

LAPS Cancellation because of no payment of annual fees