JPH08189919A - Ultrasonic flaw detection test method - Google Patents

Ultrasonic flaw detection test method

Info

Publication number
JPH08189919A
JPH08189919A JP7000573A JP57395A JPH08189919A JP H08189919 A JPH08189919 A JP H08189919A JP 7000573 A JP7000573 A JP 7000573A JP 57395 A JP57395 A JP 57395A JP H08189919 A JPH08189919 A JP H08189919A
Authority
JP
Japan
Prior art keywords
ultrasonic
crack
ultrasonic waves
thin tube
reflected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7000573A
Other languages
Japanese (ja)
Inventor
Takashi Konishi
隆 小西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP7000573A priority Critical patent/JPH08189919A/en
Publication of JPH08189919A publication Critical patent/JPH08189919A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/11Analysing solids by measuring attenuation of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/269Various geometry objects
    • G01N2291/2695Bottles, containers

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE: To precisely find inclination and size of crack with a single sensor, relating to an ultrasonic flaw detection test method for a thin tube such as a heat-transfer pipe. CONSTITUTION: Water 3 is sealed in a testing body 2 such as a thin tube, and bidirectional ultrasonic probe 1 is disposed with eccentric quantity S from axis center of the tube. From the probe 1, ultrasonic waves 20 and 21 provided with the same characteristics are emitted in the A and B directions, different by 180 degrees from each other, and each ultrasonic wave 20 and 21 repeats reflection between on the inner and outer surfaces of the tube with an incident angle i and a refractive angle r, and advances in the clockwise direction F and the counterclokwise direction P, respectively, and reflected by a crack 4 to be returned, and the reflected waves are measured by the probe 1. By finding respective reflected wave ratios, inclination angle and size of the crack 4 are precisely detected, so that a plurality of probes are not required to be disposed, as conventionally did, and ultrasonic waves of the same characteristic are easily emitted.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は伝熱管、等の管の欠陥検
査に適用される超音波探傷試験方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic flaw detection test method applied to defect inspection of heat transfer tubes and the like.

【0002】[0002]

【従来の技術】超音波探触子は水晶などの圧電素子(電
圧を加えると寸法が変化し、力を加えて寸法を変化させ
ると電圧を発生する性質を有する素子)の両面に電極を
取付け、片面に吸音材を設けてその反対面から超音波が
発信するようにしている。
2. Description of the Related Art An ultrasonic probe has electrodes attached to both sides of a piezoelectric element such as a crystal (an element which has a property of changing its size when a voltage is applied and generating a voltage when a force is applied to change its size). A sound absorbing material is provided on one surface so that ultrasonic waves can be transmitted from the opposite surface.

【0003】その代表的な超音波探触子の例を図4に示
す。図において圧電素子11の両面には電極13,14
が設けられ、ケース12に収納されている。圧電素子1
1の片面側には(電極14側)吸音材15が設けられ、
超音波17は保護膜16を通して一方向のみに発信され
るようになっている。
An example of a typical ultrasonic probe is shown in FIG. In the figure, electrodes 13, 14 are provided on both surfaces of the piezoelectric element 11.
Is provided and is housed in the case 12. Piezoelectric element 1
The sound absorbing material 15 (on the side of the electrode 14) is provided on one side of 1
The ultrasonic wave 17 is transmitted only in one direction through the protective film 16.

【0004】超音波探傷試験では被検査体中の欠陥
(傷,き裂等)を見つけると共に、その形態を求めるこ
とが重要で、特に割れに至るき裂のような進展性のある
欠陥についてはその必要性が特に大きい。
In the ultrasonic flaw detection test, it is important to find defects (scratches, cracks, etc.) in the object to be inspected and to determine their morphology. Particularly, for defects having a progressive property such as cracks leading to cracks. The need is particularly great.

【0005】き裂の大きさ、向き等を推定する方法の1
つとして、き裂で反射する超音波の強さからこれらを求
める方法がある。通常は人工的に作成した既知の寸法の
欠陥(たとえばドリルの横孔、ドリルの孔底など)から
の反射超音波の強さと比較して推定するが、き裂のよう
な方向性を持つ欠陥では、超音波の入射方向によって反
射超音波の強さが大きく異なる。これはフレッチング疲
労き裂のような場合が一つの例で、このき裂による割れ
が被検体表面に垂直ではなく大きく傾斜して進展する場
合に見られる。このような割れに対して、その大きさを
知るためには割れの傾き角を求めることが必要である。
A method for estimating the size, direction, etc. of a crack
As one of them, there is a method of obtaining these from the strength of ultrasonic waves reflected by a crack. Defects with crack-like directionality, which are usually estimated by comparison with the intensity of reflected ultrasonic waves from artificially created defects of known dimensions (for example, horizontal hole of drill, bottom of hole of drill, etc.) Then, the intensity of the reflected ultrasonic wave varies greatly depending on the incident direction of the ultrasonic wave. This is an example of a case such as fretting fatigue crack, and it is observed when the crack caused by this crack propagates with a large inclination rather than perpendicular to the surface of the subject. In order to know the size of such cracks, it is necessary to obtain the tilt angle of the cracks.

【0006】それには、割れに対して時計及び反時計両
方向から超音波を入射し、それぞれについて超音波の反
射強度を求めて両者の比(以下これを超音波反射強度比
Rと称す)から推定する方法が考えられる。この超音波
反射強度比Rを適正に求めるには同一の超音波特性(超
音波の発信強さ、受信感度、周波数特性など)を有する
超音波探触子を用いて測定を行うことが必要である。と
ころが従来の自動超音波探傷試験には逆向きに配置され
た一対の探触子(すなわち、別々の探触子)により行わ
れるため、完全に同一の超音波特性を同時に発信させる
ことは出来ないのが現状である。
For this purpose, ultrasonic waves are incident on the crack from both the clockwise and counterclockwise directions, the ultrasonic wave reflection intensities are obtained for each, and the ratio is estimated from the ratio of the two (hereinafter referred to as the ultrasonic wave reflection intensity ratio R). There are possible ways to do this. In order to properly obtain the ultrasonic reflection intensity ratio R, it is necessary to perform measurement using an ultrasonic probe having the same ultrasonic characteristics (ultrasonic transmission strength, reception sensitivity, frequency characteristics, etc.). is there. However, since the conventional automatic ultrasonic flaw detection test is performed by a pair of probes arranged in opposite directions (that is, separate probes), completely identical ultrasonic characteristics cannot be transmitted simultaneously. is the current situation.

【0007】前記の必要性に応える本発明に類似した技
術として、特開昭58−34358号に開示されたもの
がある。この概要は、管を対象とする超音波探傷装置に
関するもので、5個の探触子から成る探傷ヘッドに軸方
向でかつ互いに逆向きの一対の斜角探触子と、周方向で
かつ逆向きの一対の斜角探触子と垂直探触子の5個の探
触子を備えることにより、方向性のある欠陥を1回の探
傷作業で確実に検出するものである。
A technique similar to the present invention which meets the above-mentioned need is disclosed in Japanese Patent Laid-Open No. 58-34358. This outline relates to an ultrasonic flaw detector for a pipe, and includes a pair of bevel probes axially and in opposite directions to each other in a flaw detection head composed of five probes, and a circumferential and reverse direction. By providing a pair of facing angle beam probes and five vertical probes, a directional defect can be reliably detected by a single flaw detection operation.

【0008】しかしながら、特開昭58−34358号
の方法では管外面に軸方向及び周方向共に逆向きの一対
の探触子を配置したもので、このような配置では垂直方
向を除き、それぞれの方向用に各2個の探触子が不可欠
であり、それぞれの超音波特性を完全に一致させること
はほとんど不可能である。
However, in the method disclosed in Japanese Patent Laid-Open No. 58-34358, a pair of probes are arranged on the outer surface of the tube in opposite axial and circumferential directions. Two probes for each direction are indispensable, and it is almost impossible to perfectly match the ultrasonic characteristics of each probe.

【0009】[0009]

【発明が解決しようとする課題】前述のように、き裂の
大きさ、向き等を推定する方法の1つとして、き裂で反
射する超音波の強さから求める方法がある。通常は人工
的に作成した既知の寸法の欠陥(たとえばドリルの横
孔、ドリルの孔底など)からの反射超音波の強さと比較
して行うが、き裂のような方向性を持つ欠陥では、超音
波の入射方向によって反射超音波の強さが大きく異な
る。これはフレッチング疲労き裂のように、き裂による
割れが被検体表面に垂直ではなく、大きく傾斜して進展
する場合に見られる。
As described above, as one of the methods for estimating the size, direction, etc. of a crack, there is a method for obtaining it from the intensity of ultrasonic waves reflected by the crack. This is usually done by comparing the intensity of the reflected ultrasonic waves from artificially created defects of known dimensions (for example, the horizontal hole of a drill, the hole bottom of a drill, etc.), but for defects with a directional property such as a crack. The intensity of reflected ultrasonic waves varies greatly depending on the incident direction of ultrasonic waves. This is seen when the cracks due to the cracks are not perpendicular to the surface of the subject but propagate with a large inclination like the fretting fatigue cracks.

【0010】このような傾斜した割れの傾き角を求める
ために、割れに対して反対側の両方向から超音波を入射
し、それぞれについて超音波の反射強度を求めて両者の
比(以下これを超音波反射強度比Rと称す)から推定す
る方法がある。
In order to obtain the inclination angle of such an inclined crack, ultrasonic waves are incident from both directions on the opposite side to the crack, the reflection intensity of the ultrasonic wave is calculated for each, and the ratio of the two (hereinafter There is a method of estimating from the sound wave reflection intensity ratio R).

【0011】この超音波反射強度比Rを適正に求めるに
は前述のように同一の超音波特性(超音波の発信強さ、
受信感度、周波数特性など)を有する超音波探触子を用
いて測定を行うことが必要であるため、従来の自動超音
波探傷試験には逆向きに配置された一対の探触子(すな
わち、別々の探触子)により行われている。そのため完
全に同一の超音波特性を同時に発信させることは出来な
かった。
In order to properly obtain this ultrasonic wave reflection intensity ratio R, as described above, the same ultrasonic wave characteristics (the ultrasonic wave transmission intensity,
Since it is necessary to perform measurement using an ultrasonic probe having reception sensitivity, frequency characteristics, etc.), a pair of probes (that is, Separate probes). Therefore, it was not possible to transmit completely the same ultrasonic characteristics at the same time.

【0012】本発明の目的は、1つの超音波探触子から
双方向に超音波の諸特性が完全に等しい超音波を発信す
る探触子を用いて、き裂の検出、き裂の傾き及びき裂寸
法の推定を精度よく行う方法を提供することにある。
It is an object of the present invention to detect a crack and to incline a crack by using a probe which emits ultrasonic waves having completely equal ultrasonic characteristics from one ultrasonic probe in both directions. Another object of the present invention is to provide a method for accurately estimating the crack size.

【0013】[0013]

【課題を解決するための手段】そのため本発明は、細管
の内部に互に反対方向に特性の等しい超音波を発射する
超音波センサを細管の軸芯から偏芯して配置し、この超
音波センサから細管の壁面に対して互に反対方向に超音
波を発射し、細管の壁内部の欠陥部からの反射波を測定
し、その比から欠陥部を検出する方法を提供する。
Therefore, according to the present invention, an ultrasonic sensor for emitting ultrasonic waves having the same characteristics in opposite directions to each other is arranged eccentrically from the axial center of the thin tube inside the thin tube. Provided is a method of emitting ultrasonic waves from a sensor in opposite directions to a wall surface of a thin tube, measuring a reflected wave from a defective portion inside the wall of the thin tube, and detecting the defective portion from the ratio.

【0014】即ち、本発明は、特性が互いに等しい超音
波を互に反対方向に発信する1個の超音波センサを熱交
換器、蒸気発生器等に使用される細管内に同細管の軸芯
から偏芯して配置し、同超音波センサから互に反対方向
の同細管内壁面に向け、超音波を発射し、同双方向の超
音波が同細管壁の内部を互に円周方向に伝播し、同細管
壁の内部に割れ、等の欠陥部がある場合には同欠陥部よ
り反射し、戻ってくる各反射波を測定し、同測定値の比
を求めることにより前記細管に生じる欠陥部の有無、方
向、大きさ等を検出することを特徴とする超音波探傷試
験方法を提供する。
That is, according to the present invention, one ultrasonic sensor which emits ultrasonic waves having the same characteristics in mutually opposite directions is provided in a thin tube used in a heat exchanger, a steam generator, etc. Are eccentric to each other, and ultrasonic waves are emitted from the same ultrasonic sensor toward the inner wall surface of the same tube in opposite directions to each other, and ultrasonic waves of the same bidirectional direction are arranged inside the same tube in the circumferential direction. If there is a defective portion such as a crack that propagates to the inside of the thin tube wall, is reflected from the defective portion, the reflected waves that return are measured, and the ratio of the measured values is calculated to obtain the thin tube. There is provided an ultrasonic flaw detection test method characterized by detecting the presence, absence, direction, size, and the like of a defective portion that occurs in the.

【0015】[0015]

【作用】本発明はこのような手段により、薄肉管状の細
管の内面側から超音波を入射すると、超音波は細管の外
面と内面で反射を繰返しながら管全周を伝播する。この
時、互に180°反対方向から発信強さ、受信感度、周
波数特性、等の諸特性の等しい超音波を細管の壁面に対
して入射すると上述と同様に超音波は細管全周を伝播す
るが、伝播方向は逆方向の向きとなる。もし、細管に割
れ、等の欠陥部が存在すれば、欠陥部に対しその両側か
ら超音波が入射したことに等しく、その超音波特性は完
全に等しいので、絶対値としての感度較正は不要とな
り、両者の超音波反射強度比から、割れの大きさ、傾き
を知ることができる。
According to the present invention, when an ultrasonic wave is incident from the inner surface side of a thin tubular tube by such means, the ultrasonic wave propagates the entire circumference of the tube while being repeatedly reflected on the outer surface and the inner surface of the thin tube. At this time, when ultrasonic waves having the same characteristics such as transmission intensity, receiving sensitivity, frequency characteristics, etc. are incident on the wall surface of the thin tube from opposite directions of 180 °, the ultrasonic wave propagates around the entire circumference of the thin tube as described above. However, the propagation direction is the opposite direction. If there is a defect such as a crack in the thin tube, it means that ultrasonic waves are incident on both sides of the defect, and the ultrasonic characteristics are completely the same, so sensitivity calibration as an absolute value is not necessary. The size and inclination of the crack can be known from the ultrasonic reflection intensity ratio of the two.

【0016】このような方法により、従来は複数のセン
サを必要とし、しかも特性を同じくする必要があったが
1個の超音波センサで行うことができ、精度良く試験が
なされるものである。
According to such a method, a plurality of sensors have been conventionally required and the characteristics must be the same, but one ultrasonic sensor can be used for the test with high accuracy.

【0017】[0017]

【実施例】以下、本発明の実施例を図面に基づいて具体
的に説明する。図1は本発明の超音波探傷試験方法に係
る超音波探触子を伝熱管に適用した構成図である。図に
おいて、双方向超音波探触子1(以下、単に探触子と称
す)を用いて伝熱管のような薄肉細管の被検査体2の検
査を行っている状況を示している。被検査体2の内側は
超音波の伝達を容易にするため水3が注入されている。
ここで4は被検査体2の内部での傾斜した割れを示す。
Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 is a configuration diagram in which an ultrasonic probe according to the ultrasonic flaw detection test method of the present invention is applied to a heat transfer tube. The figure shows a situation in which a bidirectional ultrasonic probe 1 (hereinafter, simply referred to as a probe) is used to inspect an object 2 to be inspected, which is a thin thin tube such as a heat transfer tube. Water 3 is injected into the inside of the device under test 2 in order to facilitate transmission of ultrasonic waves.
Here, 4 indicates an inclined crack inside the inspection object 2.

【0018】本実施例では超音波探触子1は割れ4の発
生部に対してほぼ対称となるような位置に被検査体2の
中心から偏芯してセットされる。この偏芯量による被検
査体2への超音波の入射角度は次式により決まる。
In this embodiment, the ultrasonic probe 1 is set eccentrically from the center of the object 2 to be inspected at a position which is substantially symmetrical with respect to the portion where the crack 4 is generated. The angle of incidence of ultrasonic waves on the device under test 2 due to this eccentricity is determined by the following equation.

【0019】[0019]

【数1】 [Equation 1]

【0020】図1において、超音波探触子1よりA方向
(時計方向F)に発信された超音波20は被検査体2の
A位置から被検査体2の内外面で20a,20bのよう
に反射を繰返しながら、図中、時計方向Fで割れ4に到
達する。一部の超音波が割れ4で反射され、同一経路を
たどって戻り、超音波探触子1に受信される。
In FIG. 1, the ultrasonic waves 20 transmitted from the ultrasonic probe 1 in the A direction (clockwise direction F) are shown as 20a and 20b on the inner and outer surfaces of the inspection object 2 from the position A of the inspection object 2. While repeating the reflection, the crack 4 is reached in the clockwise direction F in the figure. Part of the ultrasonic waves is reflected by the crack 4, returns along the same path, and is received by the ultrasonic probe 1.

【0021】同様にB方向(反時計方向P)に発信され
た同一特性の超音波21は被検査体2のB位置から被検
査体2の内外面で21a,21bのように反射を繰返し
ながら、図中反時計方向Pで割れ4に到達し、同様に割
れ4で反射し、再び超音波探触子1で受信される。
Similarly, the ultrasonic waves 21 having the same characteristics transmitted in the B direction (counterclockwise P) are repeatedly reflected from the B position of the inspection object 2 on the inner and outer surfaces of the inspection object 2 as shown by 21a and 21b. , Reaches the crack 4 in the counterclockwise direction P in the figure, is similarly reflected by the crack 4, and is received by the ultrasonic probe 1 again.

【0022】すなわち、同一の超音波探触子1から18
0°異なるA方向及びB方向へ発信された同一特性の超
音波が被検査体2の内部を時計方向及び反時計方向に伝
播して割れ4に達することになり、それらの反射波が割
れ4の両方向からの超音波反射強度を示し、その比が反
射強度比Rとなる。なお、被検査体2内での超音波の伝
播時の角度(屈折角)は、次式で表わされる。
That is, the same ultrasonic probes 1 to 18
Ultrasonic waves having the same characteristics, which are transmitted in directions A and B different by 0 °, propagate in the inside of the device under test 2 in the clockwise direction and the counterclockwise direction and reach the crack 4, and the reflected waves thereof are broken. The ultrasonic wave reflection intensities from both directions are shown, and the ratio is the reflection intensity ratio R. The angle (refraction angle) when the ultrasonic wave propagates in the inspection object 2 is expressed by the following equation.

【0023】[0023]

【数2】 [Equation 2]

【0024】図2はこのような試験に用いられる双方向
同特性超音波探触子の構造図を示す。圧電素子5はケー
ス6でその外縁を保持されており、圧電素子5はその両
面の電極7及び8に電圧を印加することにより、電圧の
変化に応じてその厚さが伸び縮みする。圧電素子5はそ
の両面が自由度であるため、その振動が超音波として保
護膜9及び10を介してA,Bの双方向へ同一の特性で
発信される構造となっている。
FIG. 2 shows a structural diagram of a bidirectional ultrasonic probe having the same characteristics used for such a test. The outer edge of the piezoelectric element 5 is held by the case 6, and the thickness of the piezoelectric element 5 expands and contracts according to the change of the voltage by applying a voltage to the electrodes 7 and 8 on both surfaces thereof. Since both sides of the piezoelectric element 5 have a degree of freedom, the vibration is transmitted as ultrasonic waves in both directions A and B through the protective films 9 and 10 with the same characteristics.

【0025】図3は管外径約20mm、管肉圧約1mm
の細管に管表面長さ5mm、最大深さ0.5mmのき裂
を付与して、屈折角が45度であり、また超音波の波動
モードが横波である場合における、超音波反射強度比と
き裂の傾き角度との関係を示す。
FIG. 3 shows a pipe outer diameter of about 20 mm and a pipe wall pressure of about 1 mm.
When a crack with a tube surface length of 5 mm and a maximum depth of 0.5 mm is applied to the thin tube, the refraction angle is 45 degrees, and the ultrasonic wave wave mode is transverse wave, the ultrasonic reflection intensity ratio is The relationship with the inclination angle of the crack is shown.

【0026】この図3に示す特性から、き裂角度が90
°のとき超音波反射強度比は1で、き裂の傾きが90°
から離れるに従って反射強度比も1から遠ざかることが
わかる。
From the characteristics shown in FIG. 3, the crack angle is 90
When the angle is °, the ultrasonic reflection intensity ratio is 1, and the crack inclination is 90 °.
It can be seen that the reflection intensity ratio also goes away from 1 as it goes away from.

【0027】上記の実施例においては、超音波探触子1
の振動子は厚さ方向全体で伸縮しており、基本的には双
方向への超音波の発信が可能であり、この双方向へ発信
される超音波の諸特性は完全に等しいため、割れ4に対
し両面から同一の超音波20,21を発信して反射させ
ることになり、フレッティングき裂のような傾斜したき
裂の傾斜角などを、超音波反射強度比より明らかにする
ことが可能である。
In the above embodiment, the ultrasonic probe 1
Since the transducer of is expanded and contracted in the entire thickness direction, basically it is possible to transmit ultrasonic waves in both directions, and the characteristics of the ultrasonic waves transmitted in both directions are completely the same, so 4, the same ultrasonic waves 20 and 21 are emitted from both sides and reflected, and the inclination angle of an inclined crack such as a fretting crack can be clarified from the ultrasonic reflection intensity ratio. It is possible.

【0028】また、この特性を利用すると、従来は逆方
向用のものも備えた一対の探触子が必要であったが、こ
れを1つの超音波探触子1で行なうことができる。その
ために、振動方向をフリーにできる機能を有する探触子
を用いることが必要であり、圧電素子5をケース6の外
縁で保持できる構造を採用するものである。
Further, if this characteristic is utilized, conventionally, a pair of probes also provided for the reverse direction was required, but this can be performed by one ultrasonic probe 1. Therefore, it is necessary to use a probe having a function of making the vibration direction free, and a structure in which the piezoelectric element 5 can be held by the outer edge of the case 6 is adopted.

【0029】なお、前述の超音波反射強度比と割れの傾
きとの関係は放電加工あるいはマイクロカッタ等により
種々の傾き角の人工スリットを細管に加工し、超音波を
前述のように反射し、その反射波を測定して実験的に特
性データを求めることができる。
Incidentally, the relationship between the ultrasonic reflection intensity ratio and the inclination of cracks described above is obtained by processing artificial slits of various inclination angles into thin tubes by means of electric discharge machining or a micro cutter and reflecting ultrasonic waves as described above. Characteristic data can be experimentally obtained by measuring the reflected wave.

【0030】[0030]

【発明の効果】以上、具体的に説明したように、本発明
においては細管の内部に互に反対方向に特性の等しい超
音波を発射する超音波センサを細管の軸芯から偏芯して
配置し、この超音波センサから細管の壁面に対して互に
反対方向に超音波を発射し、細管の壁内部の欠陥部から
の反射波を測定し、その比から欠陥部を検出する方法と
したので次のような効果を有する。
As described above in detail, in the present invention, an ultrasonic sensor for emitting ultrasonic waves having the same characteristics in mutually opposite directions is arranged eccentrically from the axial center of the thin tube in the present invention. Then, ultrasonic waves were emitted from the ultrasonic sensor in opposite directions to the wall surface of the thin tube, the reflected wave from the defective portion inside the wall of the thin tube was measured, and the defective portion was detected from the ratio. Therefore, it has the following effects.

【0031】(1)双方向に超音波を発信することによ
り傷の両方向からの検査が同時に行えるようになり、フ
レッティングき裂のような傾斜したき裂の傾斜角方向、
大きさを正確に検出することができる。
(1) By transmitting ultrasonic waves bidirectionally, it becomes possible to inspect from both directions of the scratch at the same time, and the inclination angle direction of an inclined crack such as a fretting crack,
The size can be accurately detected.

【0032】(2)従来のように複数の探触子を用いる
ことなく1個の探触子で特性の同じ超音波を発射できる
ので、センサ自体の構造も簡単になり、その検出精度も
高まるものである。
(2) Since one probe can emit ultrasonic waves having the same characteristics without using a plurality of probes as in the prior art, the structure of the sensor itself can be simplified and its detection accuracy can be improved. It is a thing.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係る超音波探傷試験方法を
実施する検査状況を示す側面図である。
FIG. 1 is a side view showing an inspection situation for implementing an ultrasonic flaw detection test method according to an embodiment of the present invention.

【図2】本発明の超音波探傷試験方法に適用される双方
向超音波探触子の側面図である。
FIG. 2 is a side view of a bidirectional ultrasonic probe applied to the ultrasonic flaw detection test method of the present invention.

【図3】本発明の超音波探傷試験方法による割れ角度と
超音波反射強度比Rとの関係を示す特性図である。
FIG. 3 is a characteristic diagram showing a relationship between a crack angle and an ultrasonic reflection intensity ratio R according to the ultrasonic flaw detection test method of the present invention.

【図4】従来の超音波探触子の側面図である。FIG. 4 is a side view of a conventional ultrasonic probe.

【符号の説明】[Explanation of symbols]

1 双方向超音波探触子 2 被検査体 3 水 4 割れ 5 圧電素子 6 ケース 7,8 電極 9,10 保護膜 1 Bidirectional ultrasonic probe 2 DUT 3 Water 4 Crack 5 Piezoelectric element 6 Case 7,8 Electrode 9,10 Protective film

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 特性が互いに等しい超音波を互に反対方
向に発信する1個の超音波センサを熱交換器、蒸気発生
器等に使用される細管内に同細管の軸芯から偏芯して配
置し、同超音波センサから互に反対方向の同細管内壁面
に向け、超音波を発射し、同双方向の超音波が同細管壁
の内部を互に円周方向に伝播し、同細管壁の内部に割
れ、等の欠陥部がある場合には同欠陥部より反射し、戻
ってくる各反射波を測定し、同測定値の比を求めること
により前記細管に生じる欠陥部の有無、方向、大きさ等
を検出することを特徴とする超音波探傷試験方法。
1. An ultrasonic sensor, which emits ultrasonic waves having the same characteristics in mutually opposite directions, is eccentric from the axis of the thin tube used in a heat exchanger, a steam generator or the like. The ultrasonic sensors emit ultrasonic waves from the same ultrasonic sensor toward the inner wall surfaces of the same tube in opposite directions, and ultrasonic waves in the same direction propagate in the circumferential direction inside the thin tube wall. If there is a defect such as a crack in the inside of the thin tube wall, the defect caused in the thin tube by measuring each reflected wave that is reflected from the defective part and returned and obtains the ratio of the measured values. An ultrasonic flaw detection test method characterized by detecting the presence, direction, size, etc.
JP7000573A 1995-01-06 1995-01-06 Ultrasonic flaw detection test method Withdrawn JPH08189919A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7000573A JPH08189919A (en) 1995-01-06 1995-01-06 Ultrasonic flaw detection test method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7000573A JPH08189919A (en) 1995-01-06 1995-01-06 Ultrasonic flaw detection test method

Publications (1)

Publication Number Publication Date
JPH08189919A true JPH08189919A (en) 1996-07-23

Family

ID=11477462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7000573A Withdrawn JPH08189919A (en) 1995-01-06 1995-01-06 Ultrasonic flaw detection test method

Country Status (1)

Country Link
JP (1) JPH08189919A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6344739B1 (en) 1999-02-12 2002-02-05 R/D Tech Inc. Eddy current probe with multi-use coils and compact configuration
JP2013170845A (en) * 2012-02-17 2013-09-02 Mitsubishi Heavy Ind Ltd Tube insertion type ultrasonic flaw detector
CN108351327A (en) * 2015-04-08 2018-07-31 东北特殊钢株式会社 The defect detection on ultrasonic basis and ultrasonic flaw detecting device of pole part

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6344739B1 (en) 1999-02-12 2002-02-05 R/D Tech Inc. Eddy current probe with multi-use coils and compact configuration
JP2013170845A (en) * 2012-02-17 2013-09-02 Mitsubishi Heavy Ind Ltd Tube insertion type ultrasonic flaw detector
CN108351327A (en) * 2015-04-08 2018-07-31 东北特殊钢株式会社 The defect detection on ultrasonic basis and ultrasonic flaw detecting device of pole part
CN108351327B (en) * 2015-04-08 2021-02-26 东北特殊钢株式会社 Ultrasonic flaw detection method and ultrasonic flaw detection device for round bar

Similar Documents

Publication Publication Date Title
RU2485388C2 (en) Device and group of sensors for pipeline monitoring using ultrasonic waves of two different types
KR890000607B1 (en) Ultrasone method and device for detecting and measuring defects in metal media
CA2648120C (en) Ultrasonic probe, ultrasonic flaw detection method, and ultrasonic flaw detection apparatus
KR101163549B1 (en) Calibration block for phased-array ultrasonic inspection
JP5003275B2 (en) Ultrasonic flaw detection apparatus and ultrasonic flaw detection method for tubular body
US8997574B2 (en) Oblique flaw detection using ultrasonic transducers
US5661241A (en) Ultrasonic technique for measuring the thickness of cladding on the inside surface of vessels from the outside diameter surface
JPH0312689B2 (en)
EP1583959A1 (en) Configurations and methods for ultrasonic time of flight diffraction analysis
US11428671B2 (en) Arrangement for non-destructive testing and a testing method thereof
KR20100124242A (en) Calibration block (reference block) and calibration procedure for phased-array ultrasonic inspection
EP1271097A2 (en) Method for inspecting clad pipe
JPS60104255A (en) Device and method for inspecting solid under nondestructive state
JP2007322350A (en) Ultrasonic flaw detector and method
CA2012374C (en) Ultrasonic crack sizing method
KR20100124238A (en) Calibration block (reference block) and calibration procedure for phased-array ultrasonic inspection
JPH07333202A (en) Flaw detector of piping
JPH08189919A (en) Ultrasonic flaw detection test method
JPH07244028A (en) Apparatus and method for ultrasonically detecting flaw on spherical body to be detected
JP3313470B2 (en) Standard specimen for non-destructive inspection of piping
JPS59155709A (en) Ultrasonic wave measuring equipment
RU2596242C1 (en) Method for ultrasonic inspection
JP2000275224A (en) Ultrasonic flaw detecting device and ultrasonic flow detecting method for thin metal member
RU2117941C1 (en) Process of ultrasonic inspection od pipes and pipe-lines
JPH05180807A (en) Method for selecting ultrasonic-wave probe and probe selected by method thereof

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020402