JPH08189309A - Gas turbine combined cycle electric power generating method - Google Patents

Gas turbine combined cycle electric power generating method

Info

Publication number
JPH08189309A
JPH08189309A JP7002809A JP280995A JPH08189309A JP H08189309 A JPH08189309 A JP H08189309A JP 7002809 A JP7002809 A JP 7002809A JP 280995 A JP280995 A JP 280995A JP H08189309 A JPH08189309 A JP H08189309A
Authority
JP
Japan
Prior art keywords
steam
turbine
gas turbine
gas
power generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7002809A
Other languages
Japanese (ja)
Other versions
JP3524608B2 (en
Inventor
Masaki Iijima
正樹 飯島
Isamu Osada
勇 長田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP00280995A priority Critical patent/JP3524608B2/en
Publication of JPH08189309A publication Critical patent/JPH08189309A/en
Application granted granted Critical
Publication of JP3524608B2 publication Critical patent/JP3524608B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/15On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE: To realize a gas turbine combined cycle electric power generating method improving electric power generating efficiency. CONSTITUTION: A tubular steam superheater 5 using high temperature combustion gas as a heating source is provided between a combustor 4 and a gas turbine 6, and steam generated by an exhaust heat recovery boiler 10 is superheated and supplied to a steam turbine 12. Or a tubular steam superheater 5 using high temperature combustion gas as its heating source is provided, and also a high pressure steam turbine and a low pressure steam turbine are provided between the combuster 4 and the gas turbine 6. Thereafter, steam generated by the exhaust heat recovery boiler 10 is supplied to the high pressure steam turbine and it is driven, and steam coming out of the high pressure steam turbine is introduced to the tubular steam superheater 5 and superheated and it is supplied to the low pressure steam turbine. Consequently, it is possible to highly efficiently generate electricity in comparison with conventional electric power generating efficiency.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は発電効率を向上させたガ
スタービンコンバインド・サイクル発電方法に関し、さ
らに詳しくは高温高圧の燃焼ガスの熱エネルギを有効利
用し、スチームタービンによる発電効率を向上させ、結
果的に廃棄される熱エネルギを低減させ、システム全体
の発電効率を上昇させたガスタービンコンバインド・サ
イクル発電方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas turbine combined cycle power generation method having improved power generation efficiency, and more specifically, it effectively utilizes thermal energy of high temperature and high pressure combustion gas to improve power generation efficiency by a steam turbine. The present invention relates to a gas turbine combined cycle power generation method in which the heat energy discarded as a result is reduced and the power generation efficiency of the entire system is increased.

【0002】[0002]

【従来の技術】燃焼によるエネルギを原動機を通じて電
気エネルギに変換する主な方法には、ガスタービンによ
る発電方法とスチームタービンにによる発電方法とがあ
る。ガスタービンを用いる場合は、圧縮した空気と燃料
の燃焼により得られる高温高圧ガスでガスタービンを回
転させ、回転するタービン軸から動力を取出している。
一方スチームタービンを用いる場合は、ボイラで発生さ
せた高温高圧のスチームでタービンを回転させ、回転す
るタービン軸から動力を取出すこととなる。両者の熱効
率を比較すると、ガスタービンの熱効率がスチームター
ビンのそれを上回るが、ガスタービンによる場合は50
0〜600℃の高温の排熱が排出される。そこで両者の
利点を組合せたガスタービンコンバインド・サイクル発
電方法が開発され、電力各社で導入されている。すなわ
ち、10万キロワット級のガスタービンを複数稼働させ
て効率よく発電すると共に、得られた排ガスでスチーム
を発生させスチームタービンを用いて発電し、燃焼ガス
の持つエネルギを二度利用することができる発電方法で
ある。
2. Description of the Related Art The main methods of converting energy from combustion into electric energy through a prime mover include a gas turbine power generation method and a steam turbine power generation method. When a gas turbine is used, the gas turbine is rotated by high-temperature high-pressure gas obtained by combustion of compressed air and fuel, and power is taken out from the rotating turbine shaft.
On the other hand, when the steam turbine is used, the turbine is rotated by the high-temperature and high-pressure steam generated in the boiler, and power is taken out from the rotating turbine shaft. Comparing the thermal efficiencies of the two, the thermal efficiency of the gas turbine exceeds that of the steam turbine.
Exhaust heat having a high temperature of 0 to 600 ° C. is discharged. Therefore, a gas turbine combined cycle power generation method that combines the advantages of both has been developed and introduced by electric power companies. That is, it is possible to operate a plurality of 100,000 kW-class gas turbines for efficient power generation, generate steam with the obtained exhaust gas and generate power using a steam turbine, and use the energy of combustion gas twice. It is a power generation method.

【0003】[0003]

【発明が解決しようとする課題】しかしガスタービンコ
ンバインド・サイクル発電は、従来の発電方法に比べ熱
効率が43〜47%(HHV:高位発熱量ベース)と高
いものの、未だ満足のいくものではない。特に、エネル
ギ需要の電力へのシフト傾向を示す電力化率が年々上昇
している現状では、発電効率の向上は発電原価の低減、
化石燃料の使用量減少、燃焼排ガスによる大気汚染の低
減にも関連する重要な問題である。電力に変換されなか
ったエネルギが温排水の原因ともなっている現状から、
燃焼エネルギから効率よく電力エネルギを回収し得る発
電システムの開発が熱望されている。
However, although the gas turbine combined cycle power generation has a high thermal efficiency of 43 to 47% (HHV: high heating value base) as compared with the conventional power generation method, it is still unsatisfactory. In particular, in the current situation where the electrification rate, which shows a tendency to shift energy demand to electricity, is increasing year by year, improving power generation efficiency means reducing power generation cost,
It is an important issue related to the reduction of fossil fuel usage and the reduction of air pollution due to combustion exhaust gas. From the current situation where energy that has not been converted to electric power is causing hot wastewater,
The development of a power generation system capable of efficiently recovering electric power energy from combustion energy has been earnestly desired.

【0004】本発明は上記技術水準に鑑みなされたもの
であって、従来の発電効率と比較して高い発電効率が得
られ、排気エネルギ量の少ないガスタービンコンバイン
ド・サイクル発電方法を提供することを目的とする。
The present invention has been made in view of the above-mentioned state of the art, and it is an object of the present invention to provide a gas turbine combined cycle power generation method in which a higher power generation efficiency is obtained as compared with the conventional power generation efficiency and the exhaust energy amount is small. To aim.

【0005】[0005]

【課題を解決するための手段】本発明者らは、前記の目
的を達成するため発電システムを詳細に検討した結果、
既存のガスタービンコンバインド発電設備にチューブ状
スチーム過熱器を配備することにより、スチームタービ
ンによる発電効率を上昇させ、結果的に廃棄エネルギ量
を低下させ、システム全体の発電効率を向上させ得るこ
とを見出し、本発明を完成させた。
Means for Solving the Problems As a result of detailed examination of a power generation system to achieve the above-mentioned object, the present inventors
It was discovered that by deploying a tubular steam superheater in the existing gas turbine combined power generation facility, the power generation efficiency of the steam turbine can be increased, resulting in a reduction in the amount of waste energy and an improvement in the power generation efficiency of the entire system. The present invention has been completed.

【0006】すなわち、本発明は (1)高温高圧の燃焼ガスでガスタービンを駆動して発
電すると共にガスタービンを駆動した燃焼ガスを廃熱回
収ボイラに導いてスチームを発生させ、該スチームによ
りスチームタービンを駆動して発電するガスタービンコ
ンバインド・サイクル発電において、燃焼器とガスター
ビンとの間に高温燃焼ガスを加熱源とするチューブ状ス
チーム過熱器を設け、廃熱回収ボイラで発生させたスチ
ームを導いて過熱し、得られた過熱スチームをスチーム
タービンに供給することを特徴とするガスタービンコン
バインド・サイクル発電方法及び (2)高温高圧の燃焼ガスでガスタービンを駆動して発
電すると共にガスタービンを駆動した燃焼ガスを廃熱回
収ボイラに導いてスチームを発生させ、該スチームによ
りスチームタービンを駆動して発電するガスタービンコ
ンバインド・サイクル発電において、燃焼器とガスター
ビンとの間に高温燃焼ガスを加熱源とするチューブ状ス
チーム過熱器を設けると共に高圧スチームタービンと低
圧スチームタービンを設け、廃熱回収ボイラで発生させ
たスチームを高圧スチームタービンに供給して該高圧ス
チームタービンを駆動し、該高圧スチームタービンを出
たスチームを前記チューブ状スチーム過熱器に導いて過
熱し、得られた過熱スチームを前記低圧スチームタービ
ンに供給することを特徴とするガスタービンコンバイン
ド・サイクル発電方法、である。
That is, the present invention is as follows: (1) The combustion gas of high temperature and high pressure is used to drive the gas turbine to generate electric power, and the combustion gas that has driven the gas turbine is guided to the waste heat recovery boiler to generate steam, and the steam is used. In gas turbine combined cycle power generation, which drives a turbine to generate power, a tubular steam superheater that uses high-temperature combustion gas as a heating source is installed between the combustor and the gas turbine, and steam generated in the waste heat recovery boiler is removed. A gas turbine combined cycle power generation method, characterized in that the superheated steam is supplied to the steam turbine and the resulting superheated steam is supplied to the steam turbine. The driven combustion gas is guided to the waste heat recovery boiler to generate steam, and the steam is generated by the steam. In a gas turbine combined cycle power generation for driving a turbine to generate power, a tubular steam superheater using a high temperature combustion gas as a heating source is provided between the combustor and the gas turbine, and a high pressure steam turbine and a low pressure steam turbine are provided. The steam generated in the waste heat recovery boiler is supplied to the high-pressure steam turbine to drive the high-pressure steam turbine, and the steam exiting the high-pressure steam turbine is introduced into the tubular steam superheater to be superheated, and the resulting superheat is obtained. A gas turbine combined cycle power generation method, characterized in that steam is supplied to the low-pressure steam turbine.

【0007】[0007]

【作用】本発明はガスタービンによる発電システムと、
スチームタービンによる発電システムとを有するガスタ
ービンコンバインド・サイクル発電に関するものであ
る。以下、本発明の発電方法について図面を用いて詳細
に説明する。なお、以下の説明において温度、圧力等の
数値はあくまでも例示であり、本発明の範囲を限定する
ものではない。図1は本発明によるチューブ状スチーム
過熱器5を組合せたガスタービンコンバインド・サイク
ル発電の発電システムの1例を示す説明図である。な
お、図1では主要設備のみを示し、付属設備は省略して
ある。
The present invention relates to a power generation system using a gas turbine,
The present invention relates to a gas turbine combined cycle power generation having a power generation system using a steam turbine. Hereinafter, the power generation method of the present invention will be described in detail with reference to the drawings. In the following description, numerical values such as temperature and pressure are merely examples, and do not limit the scope of the present invention. FIG. 1 is an explanatory diagram showing an example of a power generation system for gas turbine combined cycle power generation in which a tubular steam superheater 5 according to the present invention is combined. Note that FIG. 1 shows only the main equipment and omits the auxiliary equipment.

【0008】図1において、取り込まれた大気1はエア
コンプレッサ2で圧縮され、燃焼器4に送り込まれる。
燃焼器4には燃料3が供給されている。なお、燃料とし
ては天然ガスが好適であるが、重金属含有量などの品質
問題がなければ他の炭化水素含有燃料を用いてもよい。
燃焼器4で発生した高温高圧の燃焼ガス4′はおよそ1
300℃であり、これをチューブ状スチーム過熱器5に
導く。
In FIG. 1, the taken-in atmosphere 1 is compressed by an air compressor 2 and sent to a combustor 4.
Fuel 3 is supplied to the combustor 4. Although natural gas is preferable as the fuel, other hydrocarbon-containing fuel may be used as long as there is no quality problem such as heavy metal content.
The combustion gas 4'of high temperature and high pressure generated in the combustor 4 is about 1
It is 300 ° C. and is introduced into the tubular steam superheater 5.

【0009】ここにいうチューブ状スチーム過熱器5と
は、一種の熱交換器である。チューブ状スチーム過熱器
5内に配置された多数の細管内に低温スチームを導入
し、装置の内部であって、かつ前記細管の外側に高温・
高圧の燃焼ガスを導入し、その高温・高圧の燃焼ガス
4′と低温のスチーム9との間で熱交換を行わせ、細管
出口から過熱された高温・高圧のスチームを取出すもの
である。一方、チューブ状スチーム過熱器5内の細管の
外側で、熱交換により熱を奪われた燃焼ガスは、過熱器
の他端から燃焼ガス7として排出される。細管は熱交換
器内で温度約1300℃、圧力15〜20ataと高負
荷を受けているが、容器内の細管に導入されるスチーム
が約300℃と比較的低温であり、細管表面で熱交換が
行われるため、前記高温ガスによる細管の破損等を発生
させることなく熱交換による過熱が可能となる。
The tubular steam superheater 5 mentioned here is a kind of heat exchanger. A low temperature steam is introduced into a large number of thin tubes arranged in the tubular steam superheater 5, and a high temperature is introduced inside the apparatus and outside the thin tubes.
A high-pressure combustion gas is introduced, heat is exchanged between the high-temperature / high-pressure combustion gas 4'and the low-temperature steam 9, and the superheated high-temperature / high-pressure steam is taken out from the capillary outlet. On the other hand, the combustion gas that has been deprived of heat by heat exchange outside the thin tube inside the tubular steam superheater 5 is discharged as combustion gas 7 from the other end of the superheater. The thin tube receives a high load of about 1300 ° C in the heat exchanger and a pressure of 15 to 20 ata, but the steam introduced into the thin tube in the container is about 300 ° C, which is a relatively low temperature, and heat is exchanged on the surface of the thin tube. Therefore, overheating by heat exchange is possible without causing damage to the thin tube due to the high temperature gas.

【0010】本発明の特徴は燃焼器4とガスタービン6
との間にチューブ状スチーム過熱器5を設置したことに
ある。具体的には廃熱回収ボイラ10により加熱された
温度約300℃と低温のスチーム9と温度1300℃の
燃焼ガス4′との熱交換が行われる。この結果、チュー
ブ状スチーム過熱器5から温度約1200℃の燃焼ガス
7と温度約700℃の過熱スチーム11とが排出される
こととなる。
The features of the present invention are the combustor 4 and the gas turbine 6.
The tube-shaped steam superheater 5 is installed between and. Specifically, heat exchange is performed between the steam 9 having a temperature of about 300 ° C. and the combustion gas 4 ′ having a temperature of 1300 ° C., which is heated by the waste heat recovery boiler 10. As a result, the combustion gas 7 having a temperature of about 1200 ° C. and the superheated steam 11 having a temperature of about 700 ° C. are discharged from the tubular steam superheater 5.

【0011】熱交換後の燃焼ガス7は温度約1200
℃、圧力15〜20ataの高圧高温エネルギを有して
おり、ガスタービン6を駆動させ、タービン軸の回転動
力が発電に使用される。なお、ガスタービン6から排出
される動力を取り出した後の高温排ガス8は廃熱回収ボ
イラ10に導かれ、復水器13を経過したスチーム発生
用の復水を加熱して冷却され煙突20から放出される。
一方、チューブ状スチーム過熱器5から排出された過熱
スチーム11はスチームタービン12を駆動させ、ター
ビン軸の回転動力が発電に使用される。スチームタービ
ン12を駆動した後の低圧、低温のスチームは復水器1
3で冷却され、負圧を発生させることによりスチームタ
ービンの回転を増加させ、その後、スチーム発生のため
廃熱回収ボイラ10に戻り、再利用される。
After the heat exchange, the combustion gas 7 has a temperature of about 1200.
It has high pressure and high temperature energy of 15 ° C and a pressure of 15 to 20 and drives the gas turbine 6, and the rotational power of the turbine shaft is used for power generation. In addition, the high temperature exhaust gas 8 after taking out the power discharged from the gas turbine 6 is guided to the waste heat recovery boiler 10, and is heated and cooled by the steam generating condensate that has passed through the condenser 13, and is then cooled from the chimney 20. Is released.
On the other hand, the superheated steam 11 discharged from the tubular steam superheater 5 drives the steam turbine 12, and the rotational power of the turbine shaft is used for power generation. After driving the steam turbine 12, low-pressure, low-temperature steam is the condenser 1
The steam turbine is cooled in step 3, and the rotation of the steam turbine is increased by generating a negative pressure. After that, the steam is returned to the waste heat recovery boiler 10 for steam generation and reused.

【0012】従来のコンバインド・サイクル発電では図
3に示すように、燃焼器4から排出される高温の燃焼ガ
ス7は、直接ガスタービン6に送られていたが、燃焼ガ
スの温度が高いとガスタービン6の寿命を短くするた
め、エアコンプレッサ2からの圧縮空気量を増加し、お
よそ1350℃以下に調整する必要があった。すなわ
ち、エアコンップレッサ2により圧縮空気量を増加し温
度を下げた燃焼ガス7をガスタービン6に送り動力を取
出す一方、動力の一部をエアコンプレッサ2の空気圧縮
に使用し、残りの動力を発電に使用していた。一方、ス
チーム9は温度約540℃の低温のままスチームタービ
ンに送られていたため、スチームタービン17の回転に
よる発電量の増加が望めなかった。しかし、本発明にお
いてはチューブ状スチーム過熱器を導入することによ
り、ガスタービンで発電するための燃焼ガス7の温度を
低下させることができると共に、スチームタービンで発
電するためのスチーム温度を上昇させることができる。
In the conventional combined cycle power generation, as shown in FIG. 3, the high temperature combustion gas 7 discharged from the combustor 4 was directly sent to the gas turbine 6, but if the temperature of the combustion gas is high, the gas is discharged. In order to shorten the life of the turbine 6, it was necessary to increase the amount of compressed air from the air compressor 2 and adjust it to about 1350 ° C or lower. That is, while the combustion gas 7 whose amount of compressed air has been increased by the air conditioner 2 and whose temperature has been lowered is sent to the gas turbine 6 to take out power, a part of the power is used for air compression of the air compressor 2 and the remaining power It was used for power generation. On the other hand, since the steam 9 was sent to the steam turbine at a low temperature of about 540 ° C., it was not possible to expect an increase in the amount of power generation due to the rotation of the steam turbine 17. However, in the present invention, by introducing the tubular steam superheater, it is possible to lower the temperature of the combustion gas 7 for power generation by the gas turbine and increase the steam temperature for power generation by the steam turbine. You can

【0013】図2は本発明の他の1例である高圧スチー
ムタービン15と低圧スチームタービン16を使用した
発電プロセスの例である。このプロセスでは廃熱回収ボ
イラ10からのスチーム14で高圧スチームタービン1
5を駆動させた後の低温のスチーム9をチューブ状スチ
ーム過熱器5に送って燃焼ガス4′により過熱し、該過
熱器から排出される温度約600℃の過熱スチーム11
を低圧スチームタービン16に送り、該タービンを駆動
するようにしている。
FIG. 2 shows an example of a power generation process using a high pressure steam turbine 15 and a low pressure steam turbine 16 which are another example of the present invention. In this process, steam 14 from waste heat recovery boiler 10 is used for high pressure steam turbine 1
The low temperature steam 9 after driving 5 is sent to the tubular steam superheater 5 and superheated by the combustion gas 4 ', and the superheated steam 11 discharged from the superheater has a temperature of about 600 ° C.
Is sent to the low-pressure steam turbine 16 to drive the turbine.

【0014】表1に、図1〜3のプロセスにおいて、特
定の条件のもとに計算した燃料(天然ガス)単位量当た
りのエネルギ収支をまとめて示した。表1から本発明の
方法による図1及び図2のプロセスでは、図3の従来方
式によるプロセスに比較して燃料単位量当たりの総合発
電効率が高いことがわかる。
Table 1 shows a summary of the energy balance per unit amount of fuel (natural gas) calculated under specific conditions in the processes of FIGS. It can be seen from Table 1 that the processes of FIGS. 1 and 2 according to the method of the present invention have a higher total power generation efficiency per unit amount of fuel as compared with the process according to the conventional method of FIG.

【0015】[0015]

【表1】 [Table 1]

【0016】[0016]

【発明の効果】本発明においては、従来のコンバインド
・サイクル発電の発電装置のシステムの一部を変更する
のみで、従来の発電効率と比較して高効率に発電するこ
とができる。高効率化は、スチームタービンによる発電
量の増加と、廃棄エネルギの低減によるものであり、発
電量の増加による燃焼排ガスの減少、廃棄エネルギの低
減による温排水等による環境汚染の低減も可能となっ
た。
According to the present invention, it is possible to generate electricity with high efficiency as compared with the conventional power generation efficiency by only changing a part of the system of the conventional combined cycle power generation system. The high efficiency is due to the increase in the amount of power generation by the steam turbine and the reduction of waste energy.It is also possible to reduce the combustion exhaust gas due to the increase in the amount of power generation and the environmental pollution due to the hot wastewater by reducing the waste energy. It was

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の方法によるガスタービンコンバインド
・サイクル発電プロセスの1例を示す説明図。
FIG. 1 is an explanatory diagram showing an example of a gas turbine combined cycle power generation process according to the method of the present invention.

【図2】本発明の方法による高圧スチームタービンと低
圧スチームタービンとを併用したガスタービンコンバイ
ンド・サイクル発電プロセスの1例を示す説明図。
FIG. 2 is an explanatory diagram showing an example of a gas turbine combined cycle power generation process using a high pressure steam turbine and a low pressure steam turbine in combination according to the method of the present invention.

【図3】従来の方式によるガスタービンコンバインド・
サイクル発電プロセスの1例を示す説明図。
[Fig. 3] Conventional gas turbine combined
Explanatory drawing which shows an example of a cycle power generation process.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 高温高圧の燃焼ガスでガスタービンを駆
動して発電すると共にガスタービンを駆動した燃焼ガス
を廃熱回収ボイラに導いてスチームを発生させ、該スチ
ームによりスチームタービンを駆動して発電するガスタ
ービンコンバインド・サイクル発電において、燃焼器と
ガスタービンとの間に高温燃焼ガスを加熱源とするチュ
ーブ状スチーム過熱器を設け、廃熱回収ボイラで発生さ
せたスチームを導いて過熱し、得られた過熱スチームを
スチームタービンに供給することを特徴とするガスター
ビンコンバインド・サイクル発電方法。
1. A high temperature and high pressure combustion gas drives a gas turbine to generate electric power, and the combustion gas that drives the gas turbine is guided to a waste heat recovery boiler to generate steam, and the steam drives a steam turbine to generate electric power. In gas turbine combined cycle power generation, a tubular steam superheater that uses high-temperature combustion gas as a heating source is installed between the combustor and the gas turbine, and the steam generated in the waste heat recovery boiler is introduced to superheat it. A gas turbine combined cycle power generation method comprising supplying the generated superheated steam to a steam turbine.
【請求項2】 高温高圧の燃焼ガスでガスタービンを駆
動して発電すると共にガスタービンを駆動した燃焼ガス
を廃熱回収ボイラに導いてスチームを発生させ、該スチ
ームによりスチームタービンを駆動して発電するガスタ
ービンコンバインド・サイクル発電において、燃焼器と
ガスタービンとの間に高温燃焼ガスを加熱源とするチュ
ーブ状スチーム過熱器を設けると共に高圧スチームター
ビンと低圧スチームタービンを設け、廃熱回収ボイラで
発生させたスチームを高圧スチームタービンに供給して
該高圧スチームタービンを駆動し、該高圧スチームター
ビンを出たスチームを前記チューブ状スチーム過熱器に
導いて過熱し、得られた過熱スチームを前記低圧スチー
ムタービンに供給することを特徴とするガスタービンコ
ンバインド・サイクル発電方法。
2. A high temperature and high pressure combustion gas drives a gas turbine to generate electric power, and the combustion gas that drives the gas turbine is guided to a waste heat recovery boiler to generate steam, and the steam drives a steam turbine to generate electric power. In a gas turbine combined cycle power generation system, a tubular steam superheater that uses high-temperature combustion gas as a heating source is installed between the combustor and the gas turbine, and a high-pressure steam turbine and a low-pressure steam turbine are also installed to generate in the waste heat recovery boiler. The generated steam is supplied to a high-pressure steam turbine to drive the high-pressure steam turbine, and the steam discharged from the high-pressure steam turbine is introduced into the tubular steam superheater to be superheated, and the obtained superheated steam is supplied to the low-pressure steam turbine. Gas turbine combined cycle characterized by being supplied to Le power generation method.
JP00280995A 1995-01-11 1995-01-11 Gas turbine combined cycle power generation method Expired - Lifetime JP3524608B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00280995A JP3524608B2 (en) 1995-01-11 1995-01-11 Gas turbine combined cycle power generation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00280995A JP3524608B2 (en) 1995-01-11 1995-01-11 Gas turbine combined cycle power generation method

Publications (2)

Publication Number Publication Date
JPH08189309A true JPH08189309A (en) 1996-07-23
JP3524608B2 JP3524608B2 (en) 2004-05-10

Family

ID=11539724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00280995A Expired - Lifetime JP3524608B2 (en) 1995-01-11 1995-01-11 Gas turbine combined cycle power generation method

Country Status (1)

Country Link
JP (1) JP3524608B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011150676A1 (en) * 2010-06-01 2011-12-08 Jin Beibiao Low-entropy mixed combustion ultra-supercritical thermal power system
CN104314629A (en) * 2014-10-13 2015-01-28 中信重工机械股份有限公司 Waste heat power generation system with serially connected back pressure turbine and ORC (organic Rankine cycle) screw expander

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011150676A1 (en) * 2010-06-01 2011-12-08 Jin Beibiao Low-entropy mixed combustion ultra-supercritical thermal power system
CN104314629A (en) * 2014-10-13 2015-01-28 中信重工机械股份有限公司 Waste heat power generation system with serially connected back pressure turbine and ORC (organic Rankine cycle) screw expander

Also Published As

Publication number Publication date
JP3524608B2 (en) 2004-05-10

Similar Documents

Publication Publication Date Title
JP3681434B2 (en) Cogeneration system and combined cycle power generation system
CN113153473B (en) Peak regulation system integrating compressed air and fuel gas steam circulation and operation method thereof
EP2294298A1 (en) Combined cycle power plant
JPH03151505A (en) Gas/steam electric power generating facility
JP2014199004A (en) Steam processing equipment and steam processing method
CN114207257B (en) Method for driving a machine in a steam generation circuit of an ethylene plant and integrated ethylene and power plant system
JPS62502209A (en) Combined steam-gas turbine system
JPH0365044A (en) Combined generating method and device employing close cycle mhd generating unit
CA1284586C (en) Air turbine cycle
JP3524608B2 (en) Gas turbine combined cycle power generation method
CN109139147B (en) Split-flow recompression supercritical carbon dioxide cogeneration system and operation method
KR101935637B1 (en) Combined cycle power generation system
KR20190069994A (en) Power plant sysyem combined with gas turbine
JP2019190359A (en) Plant and combustion exhaust gas treatment method
JP3530243B2 (en) Regenerative gas turbine combined cycle power generation method
JPH11280412A (en) Combined cycle power generation plant
JPH08218894A (en) Intermediate cooling device for fuel gas compressor
CN217400982U (en) Thermodynamic system for improving heat consumption rate of secondary reheating unit
CN216518290U (en) Waste heat recovery device of gas turbine
KR20170141515A (en) Supercritical CO2 power generation system of direct fired type
JP2000199685A (en) Gas waste heat recovery system
JP2004150356A (en) Power generation plant
JPH08189311A (en) Electric power generating method by regenerative type gas turbine
SU886540A1 (en) Method for producing peak energy in steam and gas unit
JP2000291411A (en) Coal gasification combined cycle power generation plant

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040213

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090220

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100220

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100220

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110220

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110220

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140220

Year of fee payment: 10

EXPY Cancellation because of completion of term