JPH08189311A - Electric power generating method by regenerative type gas turbine - Google Patents

Electric power generating method by regenerative type gas turbine

Info

Publication number
JPH08189311A
JPH08189311A JP281195A JP281195A JPH08189311A JP H08189311 A JPH08189311 A JP H08189311A JP 281195 A JP281195 A JP 281195A JP 281195 A JP281195 A JP 281195A JP H08189311 A JPH08189311 A JP H08189311A
Authority
JP
Japan
Prior art keywords
gas turbine
electric power
power generation
steam
compressed air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP281195A
Other languages
Japanese (ja)
Inventor
Masaki Iijima
正樹 飯島
Isamu Osada
勇 長田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP281195A priority Critical patent/JPH08189311A/en
Publication of JPH08189311A publication Critical patent/JPH08189311A/en
Pending legal-status Critical Current

Links

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE: To realize a regenerative type gas turbine electric power generating method improving electric power generating efficiency. CONSTITUTION: Electric power is generated by driving a gas turbine 9 by high temperature high pressure combustion gas, and steam is generated by an exhaust heat boiler 10 using combustion exhaust gas as its heating source in the case of using combustion exhaust gas as a source of heating compressed air to supply to a combustor 4 of the gas turbine 9 by way of introducing it to the exhaust heat recovery boiler 10 furnished with a heat exchanger. Thereafter, after mixing this steam with compressed air before heating, it is heated by the heat exchanger provided on the upstream side in the exhaust heat recovery boiler 10 and supplied to the combustor 4. Consequently, it is possible to remarkably improve electric power generating efficiency only by improving a part of a system of an electric power generating device by a regenerative type gas turbine.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は著しく発電効率を向上さ
せた改良再生式ガスタービンによる発電方法に関する。
さらに詳しくは高温高圧の燃焼ガスの熱エネルギを有効
利用し、廃棄される熱エネルギを低減させ、ガスタービ
ンの発電効率を著しく向上させた改良再生式ガスタービ
ンによる発電方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power generation method using an improved regenerative gas turbine which has significantly improved power generation efficiency.
More specifically, the present invention relates to a power generation method using an improved regenerative gas turbine in which the heat energy of high-temperature and high-pressure combustion gas is effectively used to reduce the waste heat energy and significantly improve the power generation efficiency of the gas turbine.

【0002】[0002]

【従来の技術】燃焼によるエネルギを原動機を通じて電
気エネルギに変換する主な方法には、ガスタービンによ
る発電方法とスチームタービンにによる発電方法とがあ
る。ガスタービンを用いる場合は、通常、圧縮した空気
と燃料の燃焼により得られる高温高圧ガスでガスタービ
ンを回転させ、回転するタービン軸から動力を取出して
いる。一方スチームタービンを用いる場合は、ボイラで
発生させた高温高圧のスチームでタービンを回転させ、
回転するタービン軸から動力を取出す。両者の熱効率を
比較すると、ガスタービンの熱効率がスチームタービン
のそれを上回るが、ガスタービンによる場合は500〜
600℃の高温の排ガスが排出される。そこで両者の利
点を組合せたガスタービンコンバインド・サイクル発電
方法が開発され、実用化されている。すなわち、10万
キロワット級のガスタービンを複数稼働させて効率よく
発電すると共に、得られた排ガスの廃熱でスチームを発
生させスチームタービンを用いて発電し、燃焼ガスの持
つ熱エネルギを二度にわたって回収して発電する方法で
ある。
2. Description of the Related Art The main methods of converting energy from combustion into electric energy through a prime mover include a gas turbine power generation method and a steam turbine power generation method. When a gas turbine is used, the gas turbine is usually rotated by high-temperature high-pressure gas obtained by combustion of compressed air and fuel, and power is taken out from the rotating turbine shaft. On the other hand, when using a steam turbine, the turbine is rotated by the high-temperature and high-pressure steam generated in the boiler,
Power is taken from the rotating turbine shaft. Comparing the thermal efficiencies of the two, the thermal efficiency of the gas turbine exceeds that of the steam turbine.
Exhaust gas having a high temperature of 600 ° C. is discharged. Therefore, a gas turbine combined cycle power generation method that combines the advantages of both has been developed and put to practical use. That is, a plurality of 100,000 kW-class gas turbines are operated to efficiently generate electricity, and steam is generated using the exhaust heat of the resulting exhaust gas to generate electricity using a steam turbine, and the thermal energy of the combustion gas is generated twice. It is a method of collecting and generating electricity.

【0003】また最近、ガスタービンによる発電の改良
型として、ガスタービンを駆動した後の高温排ガスとガ
スタービンの燃焼器に供給する圧縮空気を熱交換器で熱
交換させて圧縮空気を加熱し、ガスタービンの燃料を低
減して結果的にガスタービンの熱効率(発電効率)を向
上させる再生式サイクル発電(再生式ガスタービンによ
る発電)が知られるようになってきた。そして、特開平
5−332164号公報には、ガスタービンの出力をさ
らに向上させる目的で、低い温度レベルまでガスタービ
ンの排気エネルギを回収するため、圧縮空気中に水を噴
霧するなどの冷却手段を設ける技術が提案されている。
また、特開平6−212909号公報には、ガスタービ
ンの排ガスを燃焼用空気としてボイラに投入する複合発
電プラントにおいて、ボイラの排ガス熱でガスタービン
の燃焼器に投入される空気又は燃料を加熱する技術が提
案されている。
Recently, as an improved type of power generation by a gas turbine, the high temperature exhaust gas after driving the gas turbine and the compressed air supplied to the combustor of the gas turbine are heat-exchanged by a heat exchanger to heat the compressed air, Regenerative cycle power generation (power generation by a regenerative gas turbine) that reduces fuel in the gas turbine and consequently improves thermal efficiency (power generation efficiency) of the gas turbine has become known. In order to further improve the output of the gas turbine, JP-A-5-332164 discloses a cooling means such as spraying water into compressed air in order to recover the exhaust energy of the gas turbine to a low temperature level. The technology to provide is proposed.
Further, in Japanese Unexamined Patent Publication No. 6-212909, in a combined power generation plant in which exhaust gas of a gas turbine is injected into a boiler as combustion air, the exhaust gas heat of the boiler heats air or fuel injected into a combustor of the gas turbine. Technology is proposed.

【0004】[0004]

【発明が解決しようとする課題】ガスタービンコンバイ
ンド・サイクル発電は、従来の発電方法に比べ熱効率が
43〜47%(HHVベース、HHV:高位発熱量)と
高いものの、未だ十分に満足のいくものではない。特
に、エネルギ需要の電力へのシフト傾向を示す電力化率
が年々上昇している現状では、発電効率の向上は発電原
価の低減、化石燃料の使用量減少、燃焼排ガスによる大
気汚染の低減にも関連する重要な問題である。電力に変
換されなかったエネルギが温排水の原因ともなっている
現状から、燃焼エネルギから効率よく電力エネルギを回
収し得る発電システムの開発が熱望されている。また、
前記のように、ガスタービン自体の熱効率を上げるため
の再生式ガスタービンも知られているが、再生式ガスタ
ービン全体の熱効率を一層向上させることが求められて
いる。この観点から前記特開平5−33216号公報に
記載された再生式ガスタービンに関する技術は熱効率の
向上に役立つものであるが、ガスタービンからの燃焼排
ガスの有する熱エネルギのうち、水を噴霧して冷却され
た圧縮空気の温度より低い温度領域の熱エネルギは回収
されないこととなる。
Although the gas turbine combined cycle power generation has a high thermal efficiency of 43 to 47% (HHV base, HHV: high heating value) as compared with the conventional power generation method, it is still sufficiently satisfactory. is not. In particular, in the current situation where the electrification rate, which shows a tendency to shift energy demand to electricity, is increasing year by year, the improvement of power generation efficiency can reduce power generation cost, reduce fossil fuel usage, and reduce air pollution due to combustion exhaust gas. It is a relevant and important issue. Given the current situation in which energy that has not been converted into electric power also causes hot drainage, there is a strong demand for the development of a power generation system that can efficiently recover electric power energy from combustion energy. Also,
As described above, a regenerative gas turbine for increasing the thermal efficiency of the gas turbine itself is also known, but it is required to further improve the thermal efficiency of the entire regenerative gas turbine. From this point of view, the technique relating to the regenerative gas turbine described in JP-A-5-33216 is useful for improving the thermal efficiency, but water is sprayed out of the thermal energy of the combustion exhaust gas from the gas turbine. The thermal energy in the temperature range lower than the temperature of the cooled compressed air will not be recovered.

【0005】本発明は上記技術水準に鑑みなされたもの
であって、従来の再生式ガスタービンに比較し、さらに
発電効率の高い改良された再生式ガスタービン発電方法
を提供することを目的とする。
The present invention has been made in view of the above-mentioned state of the art, and an object of the present invention is to provide an improved regenerative gas turbine power generation method having higher power generation efficiency as compared with the conventional regenerative gas turbine. .

【0006】[0006]

【課題を解決するための手段】本発明者らは、前記の目
的を達成するため再生式ガスタービン発電システムを詳
細に検討した結果、圧縮空気を加熱した後の排ガスでス
チームを発生させ、そのスチームを圧縮空気と共に加熱
して燃焼器に供給することにより、再生式ガスタービン
の熱効率を一層上昇させ、結果的に廃棄エネルギ量を低
下させ、システム全体としての発電効率を飛躍的に向上
させ得ることを見出し、本発明を完成させるに至った。
DISCLOSURE OF THE INVENTION The inventors of the present invention have studied in detail a regenerative gas turbine power generation system to achieve the above-mentioned object, and as a result, generated steam in exhaust gas after heating compressed air, By heating the steam with compressed air and supplying it to the combustor, the thermal efficiency of the regenerative gas turbine can be further increased, resulting in a reduction in the amount of waste energy and a dramatic improvement in the power generation efficiency of the entire system. This has led to the completion of the present invention.

【0007】すなわち、本発明は圧縮空気と燃料を燃焼
器に供給して得られる高温高圧の燃焼ガスでガスタービ
ンを駆動して発電すると共に、ガスタービンを駆動した
燃焼排ガスを熱交換器を備えた廃熱回収ボイラに導いて
前記ガスタービンの燃焼器に供給する圧縮空気の加熱源
とする再生式ガスタービンによる発電方法において、前
記燃焼排ガスを熱源とする廃熱ボイラにおいてスチーム
を発生させ、このスチームを加熱前の圧縮空気と混合し
たのち、廃熱回収ボイラ内の上流側に設けられた熱交換
器で加熱して前記燃焼器に供給することを特徴とする再
生式ガスタービンによる発電方法である。
That is, according to the present invention, a high temperature and high pressure combustion gas obtained by supplying compressed air and fuel to a combustor drives a gas turbine to generate electric power, and the combustion exhaust gas driving the gas turbine is equipped with a heat exchanger. In a power generation method by a regenerative gas turbine that is a heating source of compressed air supplied to a combustor of the gas turbine by guiding to a waste heat recovery boiler, steam is generated in the waste heat boiler that uses the combustion exhaust gas as a heat source, and After the steam is mixed with compressed air before heating, it is heated by a heat exchanger provided upstream in the waste heat recovery boiler and supplied to the combustor by a power generation method using a regenerative gas turbine. is there.

【0008】[0008]

【作用】本発明によれば、再生式ガスタービンによる発
電において、燃焼排ガスを熱源として、先ず廃熱回収ボ
イラ内の上流側に設けられた熱交換器で、スチームを供
給して冷却されたスチーム混合圧縮空気を加熱し、さら
にその後の余熱を前記スチームの発生に用いることによ
り燃焼排ガスの有する熱エネルギを最大限に回収し、回
収された熱エネルギをガスタービンの発電に最大限に生
かすことができ、システム全体として飛躍的に熱効率を
向上させることができる。
According to the present invention, in the power generation by the regenerative gas turbine, the flue gas is used as the heat source, and the steam is first supplied and cooled by the heat exchanger provided upstream in the waste heat recovery boiler. By heating the mixed compressed air and using the residual heat after that to generate the steam, the heat energy of the combustion exhaust gas can be maximally recovered, and the recovered heat energy can be maximally utilized in the power generation of the gas turbine. This makes it possible to dramatically improve the thermal efficiency of the entire system.

【0009】以下、本発明の発電方法について図面を用
いて詳細に説明する。図1は本発明の再生式ガスタービ
ン発電方法による発電システムの1例を示す説明図であ
る。なお、図1では主要設備のみを示し、付属設備は省
略してある。
The power generation method of the present invention will be described in detail below with reference to the drawings. FIG. 1 is an explanatory diagram showing an example of a power generation system according to the regenerative gas turbine power generation method of the present invention. Note that FIG. 1 shows only the main equipment and omits the auxiliary equipment.

【0010】図1において、取り込まれた大気1はエア
コンプレッサ2で圧縮されて圧縮空気5となり、廃熱ボ
イラ10の加熱器(熱交換器)11に導かれ、後記のよ
うにスチーム14と共に加熱された加熱スチーム混合圧
縮空気6として燃焼器4に送り込まれる。燃焼器4には
燃料3が供給されている。なお、燃料としては天然ガス
が好ましいが、重金属含有量などの品質問題がなければ
他の炭化水素含有燃料を用いてもよい。燃焼器4で発生
した高温高圧の燃焼ガス7はおよそ1350℃、圧力2
0ataであり、これを用いてガスタービン9を駆動さ
せ、タービン軸の回転動力が発電に使用される。
In FIG. 1, the taken-in atmosphere 1 is compressed by an air compressor 2 into compressed air 5, which is guided to a heater (heat exchanger) 11 of a waste heat boiler 10 and heated together with a steam 14 as described later. The heated heated steam mixed compressed air 6 is sent to the combustor 4. Fuel 3 is supplied to the combustor 4. Although natural gas is preferable as the fuel, other hydrocarbon-containing fuel may be used as long as there is no quality problem such as heavy metal content. The combustion gas 7 of high temperature and high pressure generated in the combustor 4 has a pressure of about 1350 ° C and a pressure of 2
0ta, which is used to drive the gas turbine 9 and the rotational power of the turbine shaft is used for power generation.

【0011】本発明の発電方法においては、再生式ガス
タービンシステムの構成を採用するので、ガスタービン
9から排出される動力を取出した後の約600℃の高温
排ガス8を廃熱回収ボイラ10に導き、前記のようにエ
アコンプレッサ2により圧縮された圧縮空気5とスチー
ム14を混合した温度約410℃のスチーム混合圧縮空
気15を加熱器11で加熱する。本発明の特徴は燃焼排
ガス8を用いて加熱器11を加熱した後、さらにスチー
ム発生用の加熱器13を加熱し、供給される水12から
スチーム14を発生させ、それを圧縮空気5に混合して
スチーム混合圧縮空気15とし、これを加熱器11で加
熱して加熱スチーム混合圧縮空気6として燃焼器4に供
給することにある。スチーム14を発生させた後の燃焼
排ガスは約160℃と比較的低温であり、煙突20から
放出される。
In the power generation method of the present invention, since the constitution of the regenerative gas turbine system is adopted, the high temperature exhaust gas 8 of about 600 ° C. after the power discharged from the gas turbine 9 is taken out to the waste heat recovery boiler 10. The steam mixing compressed air 15 having a temperature of about 410 ° C., which is obtained by mixing the compressed air 5 compressed by the air compressor 2 and the steam 14 as described above, is heated by the heater 11. The feature of the present invention is that after heating the heater 11 using the combustion exhaust gas 8, the heater 13 for generating steam is further heated to generate steam 14 from the supplied water 12, and the steam 14 is mixed with the compressed air 5. Then, the steam mixed compressed air 15 is heated by the heater 11 and supplied to the combustor 4 as the heated steam mixed compressed air 6. The combustion exhaust gas after the steam 14 is generated has a relatively low temperature of about 160 ° C. and is emitted from the chimney 20.

【0012】上記の例で説明したように、本発明の発電
方法によれば、燃焼排ガス8の有する高温熱エネルギを
温度約160℃になるまで回収でき、それをガスタービ
ン9による発電に最大限生かすことができ、発電効率が
著しく向上する。さらに本発明の発電方法によれば、水
12として、通常、ボイラ水を使用し、圧縮空気5に供
給するのであるから、特開平5−332164号公報記
載のガスタービン発電における水の噴霧による配管内の
スケールの蓄積の問題もほとんど解消される。
As described in the above example, according to the power generation method of the present invention, the high-temperature heat energy of the combustion exhaust gas 8 can be recovered until the temperature reaches about 160 ° C., which can be maximized for power generation by the gas turbine 9. It can be used effectively, and the power generation efficiency is significantly improved. Further, according to the power generation method of the present invention, boiler water is usually used as the water 12 and is supplied to the compressed air 5. Therefore, piping for spraying water in the gas turbine power generation described in JP-A-5-332164. The problem of internal scale accumulation is almost eliminated.

【0013】さらに図1からも明らかなように、スチー
ム14を圧縮空気5に供給してスチーム混合圧縮空気1
5とし、これを加熱するだけでよいので、使用装置も比
較的簡単であり、その設置コストの観点からも非常に有
利である。
Further, as is apparent from FIG. 1, the steam 14 is supplied to the compressed air 5 to mix the steam mixed compressed air 1
Since it is set to 5 and only needs to be heated, the apparatus used is relatively simple, and it is very advantageous from the viewpoint of installation cost.

【0014】図1のシステムにおいて、特定の条件のも
とに計算した燃料(天然ガス)単位量当たりのエネルギ
収支をまとめた結果を表1に示す。表1から本発明の方
法による図1のシステムでは、高い燃料単位量当たりの
総合発電効率が得られることがわかる。
Table 1 shows the results of the energy balance per unit amount of fuel (natural gas) calculated under specific conditions in the system of FIG. It can be seen from Table 1 that the system of FIG. 1 according to the method of the present invention can obtain high total power generation efficiency per unit fuel quantity.

【0015】[0015]

【表1】 [Table 1]

【0016】[0016]

【発明の効果】本発明においては、再生式ガスタービン
による発電装置のシステムの一部を改善するのみで、発
電効率を著しく向上させることができる。高効率化は、
廃棄エネルギの低減によるものであり、単位燃料当たり
の発電量の増加による燃焼排ガスの減少、廃棄エネルギ
の低減による温排水等による環境汚染の低減にも大いに
寄与するものである。
According to the present invention, the power generation efficiency can be remarkably improved only by improving a part of the system of the power generator using the regenerative gas turbine. High efficiency is
This is due to reduction of waste energy, which greatly contributes to reduction of combustion exhaust gas due to increase in power generation amount per unit fuel, and reduction of environmental pollution due to hot wastewater due to reduction of waste energy.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の方法による再生式ガスタービン発電シ
ステムの1例を示す説明図。
FIG. 1 is an explanatory diagram showing an example of a regenerative gas turbine power generation system according to the method of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 圧縮空気と燃料を燃焼器に供給して得ら
れる高温高圧の燃焼ガスでガスタービンを駆動して発電
すると共に、ガスタービンを駆動した燃焼排ガスを熱交
換器を備えた廃熱回収ボイラに導いて前記ガスタービン
の燃焼器に供給する圧縮空気の加熱源とする再生式ガス
タービンによる発電方法において、前記燃焼排ガスを熱
源とする廃熱ボイラにおいてスチームを発生させ、この
スチームを加熱前の圧縮空気と混合したのち、廃熱回収
ボイラ内の上流側に設けられた熱交換器で加熱して前記
燃焼器に供給することを特徴とする再生式ガスタービン
による発電方法。
1. A waste gas provided with a heat exchanger, which drives a gas turbine with a high-temperature and high-pressure combustion gas obtained by supplying compressed air and fuel to a combustor to generate electric power, and with which a combustion exhaust gas that drives the gas turbine is provided with a heat exchanger. In a power generation method by a regenerative gas turbine that uses a compressed air as a heating source that is guided to a recovery boiler and is supplied to a combustor of the gas turbine, steam is generated in a waste heat boiler that uses the combustion exhaust gas as a heat source, and this steam is heated. A method of power generation by a regenerative gas turbine, characterized in that, after being mixed with the previous compressed air, it is heated by a heat exchanger provided upstream in a waste heat recovery boiler and supplied to the combustor.
JP281195A 1995-01-11 1995-01-11 Electric power generating method by regenerative type gas turbine Pending JPH08189311A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP281195A JPH08189311A (en) 1995-01-11 1995-01-11 Electric power generating method by regenerative type gas turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP281195A JPH08189311A (en) 1995-01-11 1995-01-11 Electric power generating method by regenerative type gas turbine

Publications (1)

Publication Number Publication Date
JPH08189311A true JPH08189311A (en) 1996-07-23

Family

ID=11539784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP281195A Pending JPH08189311A (en) 1995-01-11 1995-01-11 Electric power generating method by regenerative type gas turbine

Country Status (1)

Country Link
JP (1) JPH08189311A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003533624A (en) * 2000-05-12 2003-11-11 ゼネラル・エレクトリック・カンパニイ Gas turbine plant and method for increasing the power of the plant

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003533624A (en) * 2000-05-12 2003-11-11 ゼネラル・エレクトリック・カンパニイ Gas turbine plant and method for increasing the power of the plant

Similar Documents

Publication Publication Date Title
JP3973772B2 (en) Coal gasification combined cycle power plant
US6715294B2 (en) Combined open cycle system for thermal energy conversion
US5678401A (en) Energy supply system utilizing gas and steam turbines
JP3646834B2 (en) Gas turbine power generator
JPS6211166B2 (en)
JPH03151505A (en) Gas/steam electric power generating facility
JPS61155493A (en) Synthetic composite cycle system
GB2152592A (en) Process for the realization of cogenerative supply of electricity and heat (cogeneration) particularly in industrial power plants
JPH0365044A (en) Combined generating method and device employing close cycle mhd generating unit
CN1151574C (en) Combined electric generator system integrating fuel battery of carbonate with turbine
JP2003501583A (en) Improved fuel gas turboexpander for oxygen-blown gasifier and related methods
JP3587630B2 (en) Power generation equipment and power equipment
JPH08189311A (en) Electric power generating method by regenerative type gas turbine
KR20190069994A (en) Power plant sysyem combined with gas turbine
JP3530243B2 (en) Regenerative gas turbine combined cycle power generation method
JP3524608B2 (en) Gas turbine combined cycle power generation method
WO1999035702A1 (en) Power generation system utilizing turbine gas generator and fuel cell
JPH06212909A (en) Compound electric power plant
JP2806338B2 (en) Gas turbine generator
RU2377427C1 (en) Method to recover gas-compressor plant turbine drive heat and device to this end
JPH10325336A (en) Gas turbine power generating system
CN218717136U (en) Combined heat and power system utilizing plants
CN109519240B (en) Circulating power generation device adopting steam turbine
RU2259485C1 (en) Main electric and heating line with closed thermal system
JP2000199685A (en) Gas waste heat recovery system

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040518