JPH08188493A - Equipment for producing single crystal - Google Patents

Equipment for producing single crystal

Info

Publication number
JPH08188493A
JPH08188493A JP324595A JP324595A JPH08188493A JP H08188493 A JPH08188493 A JP H08188493A JP 324595 A JP324595 A JP 324595A JP 324595 A JP324595 A JP 324595A JP H08188493 A JPH08188493 A JP H08188493A
Authority
JP
Japan
Prior art keywords
single crystal
crystal growth
magnetic field
semiconductor
row
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP324595A
Other languages
Japanese (ja)
Inventor
Akihiko Ariyoshi
昭彦 有吉
Yasuyuki Tawara
恭幸 田原
Akinori Yamazaki
章則 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP324595A priority Critical patent/JPH08188493A/en
Publication of JPH08188493A publication Critical patent/JPH08188493A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE: To contrive miniaturization of the subject producing equipment and congraction of its setting area by placing plural signal crystal-growing troughs in a row at a prescribed interval and placing electromagnetic coils giving a magnetic field to molten semiconductor at a central part of the single crystal- growing groughs and between end part of the row and each trough. CONSTITUTION: Plural single crystal-growing troughs 10 each dipping a seed crystal in molten semiconductor in a crucible in a state filled with an inert gas, pulling up the seed crystal according to the crystal growth to grow the single crystal semiconductor are placed in a row at a prescribed interval. Electromagnetic coils 11a at both ends and electromagnetic coils 11 between the single crystal-growing troughs are placed along with the single crystal-growing troughs 10 and fitting to the height of the molten semiconductor in the center part. A magentic body 12 forming a return circuit detouring outside of the single crystal-growing troughs 10 is placed between both the two end part electromagnetic coils 11a placed on both ends. The arrangement of the single crystal- growing troughs 10 is a two-row arrangement or a round one.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、坩堝内の熔融半導体
に磁界を与えて、種結晶を引上げて単結晶半導体を製造
する単結晶製造装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a single crystal manufacturing apparatus for manufacturing a single crystal semiconductor by applying a magnetic field to a molten semiconductor in a crucible to pull up a seed crystal.

【0002】[0002]

【従来の技術】半導体素子などに使用される単結晶半導
体は高純度の均質なものが要求される。単結晶半導体の
製造は、高純度に精製されたシリコン等の半導体を坩堝
に入れて熔融し、種結晶を熔融半導体液に浸けて回転し
ながら単結晶の成長に合わせて引上げて製造される。単
結晶の製造過程において坩堝内の熔融半導体は周囲に配
置されたヒーターにより過熱されて所定の温度に保持さ
れているが、熔融半導体は中心部と坩堝内壁部との間で
熱対流が生じて、熔融半導体と石英坩堝とが反応して石
英の主成分である酸素及び石英ガラス中の不純物が半導
体溶液中に取り込まれる。この酸素及び不純物が単結晶
中に混入すると局部的に酸素を含む不純物層ができるこ
とがある。このような現象を避ける方法として、熔融半
導体が溜められている坩堝部分に強磁界を加えて対流防
止する製法が採られている。
2. Description of the Related Art A single crystal semiconductor used for a semiconductor device or the like is required to be highly pure and homogeneous. The single crystal semiconductor is manufactured by putting a semiconductor such as silicon, which is highly purified, into a crucible and melting it, and immersing a seed crystal in a molten semiconductor solution and rotating it to pull it up according to the growth of the single crystal. In the process of manufacturing a single crystal, the molten semiconductor in the crucible is overheated by a heater arranged around and kept at a predetermined temperature, but the molten semiconductor causes thermal convection between the center and the inner wall of the crucible. The molten semiconductor and the quartz crucible react with each other, and oxygen, which is the main component of quartz, and impurities in the quartz glass are taken into the semiconductor solution. If the oxygen and impurities are mixed in the single crystal, an impurity layer containing oxygen may be locally formed. As a method of avoiding such a phenomenon, a manufacturing method is adopted in which a strong magnetic field is applied to the crucible portion in which the molten semiconductor is stored to prevent convection.

【0003】例えば、半導体素子などに使用される単結
晶半導体は、図10、図11に示すような装置で製造さ
れる。図10は従来の単結晶製造装置の断面図、図11
は図10の全体構成の斜視図である。図10、図11に
おいて、10は単結晶成長槽であり、熔融半導体2を溜
める坩堝1と、熔融半導体2を過熱するヒーター3と、
単結晶シード4を先端に装着し結晶成長に従って引上げ
る引上チャック5を装備した引上機構6と、坩堝1を収
容し、内部に不活性ガスが封入され、上部容器7aと下
部容器7bに分割可能に構成され、上部容器7aには不
活性ガスの封入口7c、下部容器7bには排出口7dが
設けられた容器と、坩堝1を回転する坩堝回転機構8と
で構成されている。9は引き上げ機構6を支持する支持
柱で支持腕9aにより引上機構6及び上部容器7aが支
持されている。11は坩堝1内の熔融半導体2に磁界を
与える電磁コイル、12は磁界の帰路を形成する磁性
体、16は架台である。
For example, a single crystal semiconductor used for a semiconductor element or the like is manufactured by an apparatus as shown in FIGS. FIG. 10 is a sectional view of a conventional single crystal manufacturing apparatus, and FIG.
FIG. 11 is a perspective view of the entire configuration of FIG. 10. In FIG. 10 and FIG. 11, 10 is a single crystal growth tank, and a crucible 1 for storing the molten semiconductor 2, a heater 3 for overheating the molten semiconductor 2,
A pulling mechanism 6 equipped with a pulling chuck 5 that is equipped with a single crystal seed 4 at the tip and pulls up according to crystal growth, and a crucible 1 are housed, and an inert gas is sealed inside, and an upper container 7a and a lower container 7b are provided. The container is dividable, and the upper container 7a is provided with an inert gas inlet 7c, the lower container 7b is provided with a discharge port 7d, and a crucible rotating mechanism 8 for rotating the crucible 1. Reference numeral 9 denotes a support column that supports the lifting mechanism 6, and the lifting mechanism 6 and the upper container 7a are supported by the support arm 9a. Reference numeral 11 is an electromagnetic coil that applies a magnetic field to the molten semiconductor 2 in the crucible 1, 12 is a magnetic body that forms a return path of the magnetic field, and 16 is a pedestal.

【0004】次に動作について説明する このように構
成される単結晶製造装置は、坩堝1内に高純度に精製さ
れたシリコン等の精製半導体材料が投入されてヒーター
3により過熱されて熔融し、所定の温度に保持される。
熔融半導体2の液面に引上チャック5に支持された単結
晶シード4を浸け、回転させながら結晶成長にしたがっ
て引上げられて単結晶半導体が製造される。坩堝1内の
熔融半導体2には、容器外周に設けられた一対の電磁コ
イル11によって磁界が与えられる。熔融半導体2は導
電性であるから中心部と外周部に若干の温度差が生じた
としても、強力な磁界が加えられることにより対流が抑
制される。
Next, the operation will be described. In the single crystal manufacturing apparatus having the above-described structure, a purified semiconductor material such as highly purified silicon is put into the crucible 1 and heated by the heater 3 to melt it. It is maintained at a predetermined temperature.
The single crystal semiconductor 4 is manufactured by immersing the single crystal seed 4 supported by the pull-up chuck 5 in the liquid surface of the molten semiconductor 2 and pulling it up as the crystal grows while rotating. A magnetic field is applied to the molten semiconductor 2 in the crucible 1 by a pair of electromagnetic coils 11 provided on the outer circumference of the container. Since the molten semiconductor 2 is conductive, even if there is a slight temperature difference between the central portion and the outer peripheral portion, convection is suppressed by applying a strong magnetic field.

【0005】熔融半導体2に対流が生じなくなると熔融
半導体2内部の酸素濃度は低くなり単結晶の成長は安定
し、純度の高い単結晶半導体が得られる。
When convection does not occur in the molten semiconductor 2, the oxygen concentration inside the molten semiconductor 2 becomes low, the growth of the single crystal becomes stable, and a single crystal semiconductor of high purity can be obtained.

【0006】上記熔融半導体2に磁界を与える電磁コイ
ル11は常電導方式と超電導方式がある。常電導方式は
電磁コイル11を容器の両側に配置し、直流電流を通電
する構成であり、直流電流を供給する電源装置と、コイ
ルの温度上昇に対する冷却手段が必要である。常電導方
式は大電流を流すと温度上昇と冷却手段とのかねあいか
ら流し得る電流値には限度があり、あまり強い磁界を与
えることはできない。超電導方式の場合は一旦コイルに
電流が流れると永久的に流れるので電源装置としては最
初に励磁する電源があればよく、温度上昇もないので冷
却手段は必要でなく、強磁界用も容易に製作でき、強い
安定した磁界を与えることができる。
The electromagnetic coil 11 for applying a magnetic field to the molten semiconductor 2 has a normal conducting system and a superconducting system. The normal conducting system is a structure in which the electromagnetic coils 11 are arranged on both sides of the container and a direct current is passed through, and a power supply device for supplying a direct current and a cooling means for increasing the temperature of the coil are required. In the normal conduction system, when a large current is applied, the current value that can be applied is limited due to the balance between the temperature rise and the cooling means, and a very strong magnetic field cannot be applied. In the case of the superconducting method, once a current flows through the coil, it will flow permanently, so it is sufficient if there is a power source that excites first as a power supply device, and since there is no temperature rise, no cooling means is required and a strong magnetic field is easily manufactured. It is possible to give a strong and stable magnetic field.

【0007】従来の単結晶製造装置は、上記のように1
基の容器の両側に電磁コイルを配置した構成であり、製
造能力を増すには、上記構成のものの台数を多くするこ
とで対処することとなる。1基の容器で構成される単結
晶引上装置は、1基の容器の両側に電磁コイル11を配
置するので、その付帯設備を含めると相当に広い据付場
所が必要である。
The conventional single crystal manufacturing apparatus has the
This is a configuration in which electromagnetic coils are arranged on both sides of the base container. To increase the manufacturing capacity, it is necessary to increase the number of the above-mentioned configurations. In the single crystal pulling apparatus configured by one container, the electromagnetic coils 11 are arranged on both sides of one container, and therefore, including the incidental equipment, a considerably wide installation place is required.

【0008】[0008]

【発明が解決しようとする課題】単結晶半導体の生産量
を増すには、単結晶引上装置の台数を多くすることにな
るが、据付面積は広く必要であり、設備費用も高くなる
問題点があった。
In order to increase the production amount of single crystal semiconductors, the number of single crystal pulling apparatuses must be increased, but the installation area must be wide and the equipment cost is high. was there.

【0009】この発明は、上記問題点を解消するために
なされたものであり、複数の坩堝に磁界を与える電磁コ
イルの数を少なくし、据付面積が小さくなる単結晶製造
装置を提供することを目的とする。
The present invention has been made in order to solve the above problems, and it is an object of the present invention to provide a single crystal manufacturing apparatus in which the number of electromagnetic coils that apply a magnetic field to a plurality of crucibles is reduced and the installation area is reduced. To aim.

【0010】[0010]

【課題を解決するための手段】この発明の請求項1に係
る発明は、単結晶成長槽の複数槽を所定の間隔をおいて
一列に配置し、その列の端部と各単結晶成長槽の間に単
結晶成長槽の中心部の熔融半導体に磁界を与える電磁コ
イルを配置したものである。
According to a first aspect of the present invention, a plurality of single crystal growth tanks are arranged in a row at a predetermined interval, and the end of the row and each single crystal growth tank are arranged. An electromagnetic coil for applying a magnetic field to the molten semiconductor at the center of the single crystal growth tank is arranged between the two.

【0011】この発明の請求項2に係る発明は、請求項
1の左右両端の端部電磁コイルの相互間に磁界帰路を形
成したものである。
According to a second aspect of the present invention, a magnetic field return path is formed between the end electromagnetic coils at the left and right ends of the first aspect.

【0012】この発明の請求項3に係る発明は、単結晶
成長槽の複数槽を所定の間隔をおいて一列とした構成を
前後2列に配置し、前後列の左右両端部の端部電磁コイ
ルの前後列相互間に磁界帰路を形成したものである。
According to a third aspect of the present invention, a plurality of single crystal growth tanks are arranged in a row at a predetermined interval and are arranged in two rows in the front and rear, and end electromagnetic fields at both left and right ends of the front and rear rows are arranged. A magnetic field return path is formed between the front and rear rows of coils.

【0013】この発明の請求項4に係る発明は、単結晶
成長槽複数槽が円形に配置され、各単結晶成長槽のそれ
ぞれの間に、それぞれの単結晶成長槽の中心部の熔融半
導体に磁界を与える電磁コイルを配置したものである。
In the invention according to claim 4 of the present invention, a plurality of single crystal growth tanks are arranged in a circle, and the molten semiconductor in the central portion of each single crystal growth tank is provided between each single crystal growth tank. An electromagnetic coil that gives a magnetic field is arranged.

【0014】この発明の請求項5に係る発明は、請求項
4の単結晶製造装置の円形に配置された単結晶成長槽の
間に配置された電磁コイルの内径部に鉄心を装着し、そ
の鉄心の端面は単結晶成長槽を中心に平行に対向するよ
うに配置したものである。
According to a fifth aspect of the present invention, an iron core is attached to the inner diameter portion of the electromagnetic coil arranged between the single-crystal growth tanks arranged in a circle of the single-crystal manufacturing apparatus of the fourth aspect. The end faces of the iron core are arranged so as to face each other in parallel with the single crystal growth tank as the center.

【0015】この発明の請求項6に係る発明は、請求項
1乃至請求項5のいずれかに記載の単結晶製造装置の電
磁コイルを、超電導電磁コイルとしたものである。
According to a sixth aspect of the present invention, the electromagnetic coil of the single crystal manufacturing apparatus according to any one of the first to fifth aspects is a superconducting electromagnet coil.

【0016】この発明の請求項7に係る発明は、請求項
6に記載の単結晶製造装置の複数の超電導電磁コイルの
容器の相互間を極低温冷却媒体が流通可能な構成とした
ものである。
According to a seventh aspect of the present invention, a cryogenic cooling medium can flow between the plurality of superconducting electro-magnetic coil containers of the single crystal manufacturing apparatus according to the sixth aspect. .

【0017】[0017]

【作用】この発明の請求項1においては、単結晶成長槽
の複数槽を所定の間隔をおいて一列に配置し、その列の
端部と各単結晶成長槽の間に単結晶成長槽内の熔融半導
体に磁界を与える電磁コイルを配置したので、単結晶成
長槽1基相当の据付面積を小さくできる。
According to the first aspect of the present invention, a plurality of single crystal growth tanks are arranged in a row at a predetermined interval, and the single crystal growth tank is provided between the end of the row and each single crystal growth tank. Since the electromagnetic coil for applying a magnetic field to the molten semiconductor is arranged, the installation area corresponding to one single crystal growth tank can be reduced.

【0018】この発明の請求項2においては、請求項1
の左右両端の端部電磁コイルの相互間に磁界帰路を設け
たので、外部漏洩磁界が少なくなる。
According to claim 2 of the present invention, claim 1
Since the magnetic field return path is provided between the end electromagnetic coils at the left and right ends of the magnetic field, the external leakage magnetic field is reduced.

【0019】この発明の請求項3においては、単結晶成
長槽の複数槽を所定の間隔をおいて一列に配置し、その
列の端部と各単結晶成長槽の間に電磁コイルを配置した
構成を前後2列に配置したことにより、単結晶成長槽1
基相当の据付面積を小さくできる。さらに磁界帰路を左
右両端の端部電磁コイルの前後列相互間にもうけたので
短い磁界帰路で外部漏洩磁界が少なくなる。
In a third aspect of the present invention, a plurality of single crystal growth tanks are arranged in a row at a predetermined interval, and an electromagnetic coil is arranged between the end of the row and each single crystal growth tank. By arranging the structure in two rows, the single crystal growth tank 1
The installation area corresponding to the base can be reduced. Further, since the magnetic field return path is provided between the front and rear rows of the end electromagnetic coils at the left and right ends, the external leakage magnetic field is reduced by the short magnetic field return path.

【0020】この発明の請求項4においては、単結晶成
長槽の複数槽を所定の間隔をおいて円形に配置し、各単
結晶成長槽の間に、電磁コイルを配置したので、電磁コ
イルは単結晶成長槽と同数でよく、装置1基当たりの据
付スペースが大幅に小さくできるとともに、磁界帰路を
設けることなく外部漏洩磁界を殆ど無くすることができ
る。
According to the fourth aspect of the present invention, the plurality of single crystal growth tanks are arranged in a circle at a predetermined interval, and the electromagnetic coil is arranged between the single crystal growth tanks. The number of single crystal growth tanks is the same as the number of single crystal growth tanks, and the installation space per device can be significantly reduced, and external leakage magnetic fields can be almost eliminated without providing a magnetic field return path.

【0021】この発明の請求項5においては、請求項4
の単結晶製造装置の円形に配置された単結晶成長槽の間
に配置された電磁コイルの内径部に鉄心を装着し、鉄心
の端面は単結晶成長槽を中心に平行に対向するように配
置したので、単結晶成長槽内部の磁界を均一することが
でき、外部磁界も殆ど無くすることができる。
According to claim 5 of the present invention, claim 4
The iron core is attached to the inner diameter part of the electromagnetic coil arranged between the single crystal growth tanks arranged in a circle in the single crystal manufacturing apparatus of, and the end faces of the iron core are arranged so as to face each other in parallel with the single crystal growth tank as the center. Therefore, the magnetic field inside the single crystal growth tank can be made uniform, and the external magnetic field can be almost eliminated.

【0022】この発明の請求項6においては、請求項1
乃至請求項5のいずれかに記載の単結晶製造装置の電磁
コイルを、超電導電磁コイルとしたので、一旦励磁した
後は一定の安定した磁界が得られ、励磁用電源が不要で
ある。
According to claim 6 of the present invention, claim 1
Since the electromagnetic coil of the single crystal manufacturing apparatus according to any one of claims 5 to 6 is a superconducting electro-magnetic coil, a constant and stable magnetic field can be obtained after once excited, and an excitation power source is unnecessary.

【0023】この発明の請求項7においては、請求項6
に記載の単結晶製造装置の複数の超電導電磁コイルの容
器の相互間を極低温冷却媒体が流通可能な構成としたの
で、冷却媒体の充填、初期励磁用電源リードを挿通する
サービスポートの数を少なくすることができる。
According to claim 7 of the present invention, claim 6
Since the cryogenic cooling medium can be circulated between the plurality of superconducting electro-magnetic coil containers of the single crystal manufacturing apparatus described in (1), the number of service ports for filling the cooling medium and inserting the power supply lead for initial excitation can be set. Can be reduced.

【0024】[0024]

【実施例】以下、この発明の実施例について説明する。 実施例1.図1はこの発明による単結晶製造装置の単結
晶成長槽2基を一体に構成した場合の一実施例の構成図
である。図において、10は単結晶成長槽であり、図1
0の従来例と同様に容器内に熔融半導体2が入れられる
坩堝1が配置され、坩堝1を過熱するヒーター3、坩堝
1を回転する回転機構8、単結晶を引上げる引上機構6
を備えたものである。11は複数の単結晶成長槽10の
間に配置された電磁コイル、11aは1列に配置された
単結晶成長槽10の端部に配置された端部電磁コイルで
あり、単結晶成長槽10に添わせ、中心部の熔融半導体
の高さに合わせて配置されている。12は左右両端に配
置された端部電磁コイルの11a相互間に単結晶成長槽
10の外部を迂回して磁界帰路を形成する磁性体であ
る。
Embodiments of the present invention will be described below. Example 1. FIG. 1 is a configuration diagram of an embodiment in which two single crystal growth tanks of a single crystal manufacturing apparatus according to the present invention are integrally configured. In the figure, 10 is a single crystal growth tank, and FIG.
As in the conventional example of No. 0, the crucible 1 in which the molten semiconductor 2 is put is placed in the container, the heater 3 for overheating the crucible 1, the rotating mechanism 8 for rotating the crucible 1, and the pulling mechanism 6 for pulling up the single crystal.
It is provided with. Reference numeral 11 denotes an electromagnetic coil arranged between a plurality of single crystal growth tanks 10, 11a denotes an end electromagnetic coil arranged at an end of the single crystal growth tanks 10 arranged in a row, And is arranged according to the height of the molten semiconductor at the center. Reference numeral 12 is a magnetic body that forms a magnetic field return path by bypassing the outside of the single crystal growth tank 10 between the end electromagnetic coils 11a arranged at the left and right ends.

【0025】このように構成すると、単結晶成長槽10
が2基に対して電磁コイル11、11aは3個でよく、
単結晶成長槽10を単独で構成する場合の2基に比較し
て、電磁コイル11は1個少なく3個でよくなり、磁界
帰路を構成する磁性体12の磁路長さは長くなるが1個
でよく、単独構成2基の場合に比較して磁性体材料は少
なくなり、1基当たりの据付面積が小さくなる利点があ
る。
With this structure, the single crystal growth tank 10
However, the number of electromagnetic coils 11 and 11a may be three with respect to two,
Compared with the case where the single crystal growth tank 10 is composed of two units, the number of the electromagnetic coils 11 is reduced by one to three, and the magnetic body 12 constituting the magnetic field return path has a longer magnetic path length. The number of magnetic materials is smaller than that in the case of two units having a single structure, and there is an advantage that the installation area per unit is small.

【0026】図2は単結晶成長槽10を3基を一体に構
成した場合の単結晶製造装置の構成図である。この場合
は単結晶成長槽10の3基を一体に構成したものであ
る。このように構成すると、各単結晶成長槽10間の電
磁コイル11は2個、端部の電磁コイル11a2個とな
り、単独構成の場合に比較して2個少なくなる。磁界帰
路を形成する磁性体12aは単結晶成長槽10の1基分
長くなるのみである。複数の単結晶成長槽10を一体に
構成すると、電磁コイル11、11aの個数は、(単結
晶成長槽10の台数×2−1)個でよくなり、多数の単
結晶製造装置が必要な場合に、据付面積を小さく設備費
用を低く押さえることができる。
FIG. 2 is a block diagram of a single crystal manufacturing apparatus in the case where three single crystal growth tanks 10 are integrally formed. In this case, three single crystal growth tanks 10 are integrally formed. With this configuration, the number of the electromagnetic coils 11 between the single crystal growth tanks 10 is two and the number of the electromagnetic coils 11a at the end is two, which is two less than that of the single configuration. The magnetic body 12a forming the magnetic field return path is only lengthened by one unit of the single crystal growth tank 10. When a plurality of single crystal growth tanks 10 are integrally configured, the number of electromagnetic coils 11 and 11a can be (the number of single crystal growth tanks x 2-1), and when a large number of single crystal manufacturing apparatuses are required. In addition, the installation area can be made small and the equipment cost can be kept low.

【0027】実施例2.図3は単結晶成長槽10の2基
を1列に並べ、単結晶成長槽10の間に電磁コイル11
及び端部に端部電磁コイル11aを配置し、この構成を
前後2列に配置したものである。この構成では、1列に
対して電磁コイル11は1個、装置としては単結晶成長
槽10を4基単独で構成したものに比較して2個少ない
構成となる。磁界帰路は左右端部の前後の端部電磁コイ
ル11aの相互間に配置することができるので、磁性体
13の軽量化がはかれ、実施例1の場合に比較して1基
相当の据付面積はさらに小さく、設備費用もさらに低く
押さえることができる。
Example 2. In FIG. 3, two single crystal growth tanks 10 are arranged in a row, and an electromagnetic coil 11 is provided between the single crystal growth tanks 10.
And the end electromagnetic coils 11a are arranged at the ends, and this configuration is arranged in two rows in the front and rear. In this configuration, the number of electromagnetic coils 11 is one for one row, and the number of devices is two less than that of the apparatus in which four single crystal growth tanks 10 are solely configured. Since the magnetic field return path can be arranged between the front and rear end electromagnetic coils 11a at the left and right ends, the weight of the magnetic body 13 can be reduced, and the installation area corresponding to one unit can be compared with the case of the first embodiment. Is smaller and the equipment cost can be kept lower.

【0028】図4は単結晶成長槽103基を1列に並
べ、各単結晶成長槽10の間に電磁コイル11及び列の
端部に端部電磁コイル11aを配置し、これを前後2列
に配置したものである。この場合は、図3の2基2列の
構成よりも、1基相当の据付面積はさらに小さく、設備
費用もさらに低く押さえることができる。
In FIG. 4, 103 single crystal growth tanks are arranged in a row, and an electromagnetic coil 11 and an end electromagnetic coil 11a at the end of the row are arranged between each single crystal growth tank 10. It was placed in. In this case, the installation area corresponding to one unit is further smaller than that of the structure of two units and two rows in FIG. 3, and the equipment cost can be further reduced.

【0029】実施例3.図5は単結晶成長槽10の6基
を、円形に配置し、各単結晶成長槽10の間に電磁コイ
ル11を配置したものである。このように構成すると、
単結晶成長槽10と電磁コイル11の個数は同数でよく
なり、上記実施例1、及び実施例2の場合よりもさらに
電磁コイル11の個数を少なくすることができる。
Example 3. In FIG. 5, six single crystal growth tanks 10 are arranged in a circle, and an electromagnetic coil 11 is arranged between the single crystal growth tanks 10. With this configuration,
The number of single crystal growth tanks 10 and the number of electromagnetic coils 11 may be the same, and the number of electromagnetic coils 11 can be further reduced as compared with the case of the first and second embodiments.

【0030】複数の単結晶成長槽を円形に配置すると各
単結晶成長槽10の内部の磁界は円弧状の湾曲した磁界
となるが、単結晶成長槽10内部の熔融シリコンの対流
防止作用は十分に得られる。
When a plurality of single crystal growth tanks are arranged in a circle, the magnetic field inside each single crystal growth tank 10 becomes an arcuate curved magnetic field, but the convection prevention function of the molten silicon inside the single crystal growth tank 10 is sufficient. Can be obtained.

【0031】このように、単結晶成長槽を円形に配置す
ると、単結晶成長槽の引き上げ機構6を支持する支持柱
9を、6基共通に使用可能に設けることができる。ま
た、作業場所となる外周部分を回転式にすると単結晶の
取出しを簡単に行えるように構成することも容易であ
る。
By thus arranging the single crystal growth tanks in a circular shape, the support columns 9 for supporting the pulling mechanism 6 of the single crystal growth tanks can be provided commonly to six groups. Further, if the outer peripheral portion, which is a work place, is a rotary type, the single crystal can be easily taken out easily.

【0032】実施例4.図6は実施例3の複数の単結晶
成長槽10を円形に配置した場合に、各単結晶成長槽1
0の内部磁界が円弧状の湾曲した磁界となる点を改良し
たものであり、各単結晶成長槽10の間の各電磁コイル
11の内径部に、その端部形状を単結晶成長槽10の内
部磁界が平行となる形状とした鉄心15を挿通したもの
である。この鉄心15を挿通したことにより、単結晶成
長槽10を円形配置したにもかかわらず単結晶成長槽1
0の内部磁界を平行磁界にすることができるものであ
る。
Example 4. FIG. 6 shows the case where the single crystal growth tanks 10 of Example 3 are arranged in a circle, and each single crystal growth tank 1
This is an improvement in that the internal magnetic field of 0 becomes a curved magnetic field having an arc shape. The end shape of the electromagnetic coil 11 between the single crystal growth tanks 10 is changed to that of the single crystal growth tank 10. An iron core 15 having a shape in which the internal magnetic fields are parallel to each other is inserted. By inserting the iron core 15, the single crystal growth tank 1 is arranged in a circular shape even though the single crystal growth tank 10 is arranged in a circular shape.
The internal magnetic field of 0 can be converted into a parallel magnetic field.

【0033】実施例5.上記実施例1〜4は、電磁コイ
ルの構造を特定しないで説明したが、実施例5は、実施
例1〜4の電磁コイルを超電導体を巻回し、密閉容器に
極低温冷却媒体を充填して収納した構成の超電導電磁コ
イルとしたものである。このように超電導電磁コイルで
構成すると、運転当初に励磁するのみで永久的に一定の
磁界を与えることができるので、安定した単結晶半導体
が効率よく製造できる。
Example 5. Although the above Examples 1 to 4 have been described without specifying the structure of the electromagnetic coil, in Example 5, the electromagnetic coil of Examples 1 to 4 is wound with a superconductor, and the sealed container is filled with a cryogenic cooling medium. It is a superconducting electro-magnetic coil that is housed as a housing. When the superconducting electromagnet coil is used in this manner, a constant magnetic field can be permanently given only by exciting at the beginning of operation, so that a stable single crystal semiconductor can be efficiently manufactured.

【0034】実施例6.実施例6は、複数の超電導電磁
コイルの容器の間を極低温冷却媒体が流通可能に構成し
たものである。その構成を図7に示す。図7において、
20は超電導線を巻回した超電導電磁コイル、21は超
電導電磁コイル20を収納し極低温冷却媒体22が充填
された極低温容器、23は超電導電磁コイル20に励磁
電流を供給するリードの引き出し、及び極低温冷却媒体
の補充などを行うサービスポート、24は極低温容器を
収容し真空に保持された真空容器、25は極低温容器2
1と真空容器24間にあって極低温容器21と真空容器
24間を熱遮蔽する熱シールドである。二つの超電導電
磁コイルの容器の間は、上下のルートでそれぞれ内側か
ら極低温接続管20a、熱シールド接続管25a、真空
接続管24aを多層にした連通接続管26で連通されて
いる。図8に実施例2の2基2列配置の場合、及び図9
に3基2列の場合について、前後列の超電導電磁コイル
の間を連通接続管26で連結した構成を示す。
Embodiment 6 FIG. The sixth embodiment is configured such that the cryogenic cooling medium can flow between the containers of the plurality of superconducting magnetic coils. The structure is shown in FIG. In FIG.
Reference numeral 20 is a superconducting magnetic coil around which a superconducting wire is wound, 21 is a cryogenic container containing the superconducting magnetic coil 20 and filled with a cryogenic cooling medium 22, and 23 is a lead for supplying an exciting current to the superconducting magnetic coil 20. And a service port for replenishing the cryogenic cooling medium, 24 is a vacuum container accommodating the cryogenic container and kept in vacuum, and 25 is the cryogenic container 2
1 and the vacuum container 24, which is a heat shield for thermally shielding the cryogenic container 21 and the vacuum container 24. The two superconducting electro-magnetic coil containers are connected from the inside by upper and lower routes by a connecting connecting pipe 26 in which a cryogenic connecting pipe 20a, a heat shield connecting pipe 25a, and a vacuum connecting pipe 24a are multilayered. FIG. 8 shows the case of the two-unit two-row arrangement of the second embodiment, and FIG.
2 shows a configuration in which the superconducting electromagnet coils in the front and rear rows are connected by the communication connecting pipe 26 in the case of three groups and two rows.

【0035】近接して配置された二つの超電導電磁コイ
ルをこのように構成するとサービスポート23は一方の
みに設けることで簡単な構造となり、取扱が容易とな
る。装置としての設置条件によってはさらに多数の超電
導電磁コイルの間を連通させてもよく、さらに取扱が容
易な装置となる。
If two superconducting electro-magnetic coils arranged close to each other are constructed in this way, the service port 23 is provided on only one side, so that the structure becomes simple and handling becomes easy. Depending on the installation conditions of the device, a larger number of superconducting electro-magnetic coils may be connected to each other, and the device becomes easier to handle.

【0036】[0036]

【発明の効果】この発明の請求項1に係る発明は、単結
晶成長槽の複数槽を一列に配置し、その列の端部と各単
結晶成長槽の間に電磁コイルを配置したので、単結晶成
長槽1基相当の据付面積を小さくできるという効果を奏
する。
In the invention according to claim 1 of the present invention, a plurality of single crystal growth tanks are arranged in a row, and the electromagnetic coil is arranged between the end of the row and each single crystal growth tank. This has the effect of reducing the installation area equivalent to one single crystal growth tank.

【0037】この発明の請求項2に係る発明は、請求項
1の左右両端の端部電磁コイルの相互間に磁界帰路を形
成したので、外部漏洩磁界が少なくなるという効果を奏
する。
The invention according to claim 2 of the present invention has the effect of reducing the external leakage magnetic field because the magnetic field return path is formed between the end electromagnetic coils at the left and right ends of claim 1.

【0038】この発明の請求項3に係る発明は、単結晶
成長槽の複数槽を所定の間隔をおいて一列とした構成を
前後2列に配置し、前後列の左右両端部の端部電磁コイ
ルの前後列相互間に磁界帰路を形成したので、単結晶成
長槽1基相当の据付面積を小さくでき、さらに、短い磁
界帰路で外部漏洩磁界が少なくなるという効果を奏す
る。
In the invention according to claim 3 of the present invention, a plurality of single crystal growth tanks are arranged in a row at a predetermined interval and are arranged in two rows in the front and rear, and end electromagnetic fields at both left and right ends of the front and rear rows are arranged. Since the magnetic field return path is formed between the front and rear rows of the coils, the installation area corresponding to one single crystal growth tank can be reduced, and the short magnetic field return path has the effect of reducing the external leakage magnetic field.

【0039】この発明の請求項4に係る発明は、単結晶
成長槽の複数槽が円形に配置し、各単結晶成長槽のそれ
ぞれの間に、それぞれの単結晶成長槽の中心部の熔融半
導体に磁界を与える電磁コイルを配置したので、電磁コ
イルは単結晶成長槽と同数となり、装置1基当たりの据
付スペースが大幅に小さくできるとともに、磁界帰路を
設けることなく外部漏洩磁界を殆ど無くすることができ
るという効果を奏する。
In the invention according to claim 4 of the present invention, a plurality of single crystal growth tanks are arranged in a circle, and the molten semiconductor in the central portion of each single crystal growth tank is provided between each single crystal growth tank. The number of electromagnetic coils is the same as that of the single crystal growth tank because the electromagnetic coils that provide a magnetic field are arranged in the device, and the installation space per unit can be significantly reduced, and the external leakage magnetic field can be almost eliminated without providing a magnetic field return path. There is an effect that can be.

【0040】この発明の請求項5に係る発明は、円形に
配置された単結晶成長槽の間の電磁コイルの内径部に鉄
心を装着し、その鉄心の端面は単結晶成長槽を中心に平
行に対向するように配置したので、単結晶成長槽内部の
磁界を均一することができ、外部磁界も殆ど無くするこ
とができるという効果を奏する。
In the invention according to claim 5 of the present invention, an iron core is attached to the inner diameter portion of the electromagnetic coil between the single crystal growth tanks arranged in a circle, and the end faces of the iron core are parallel to the single crystal growth tank. The magnetic field inside the single crystal growth tank can be made uniform and the external magnetic field can be almost eliminated.

【0041】この発明の請求項6に係る発明は、単結晶
製造装置の電磁コイルを、超電導電磁コイルとしたの
で、一旦励磁した後は一定の安定した磁界が得られ、装
置としての励磁用電源が不要でありコンパクトな装置と
なるという効果を奏する。
In the invention according to claim 6 of the present invention, since the electromagnetic coil of the single crystal manufacturing apparatus is a superconducting electro-magnetic coil, a constant and stable magnetic field can be obtained after once excited, and an exciting power source as an apparatus is provided. The effect that it becomes unnecessary and a compact device is obtained.

【0042】この発明の請求項7に係る発明は、単結晶
製造装置の複数の超電導電磁コイルの容器の相互間を極
低温冷却媒体が流通可能な構成としたので、冷却媒体の
充填、初期励磁用電源リードを挿通するサービスポート
の数を少なくすることができるという効果を奏する。
In the invention according to claim 7 of the present invention, since the cryogenic cooling medium can flow between the containers of the plurality of superconducting magnetic coils of the single crystal manufacturing apparatus, the cooling medium is filled and the initial excitation is performed. It is possible to reduce the number of service ports through which the power supply leads for use are reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】 この発明による単結晶製造装置の単結晶成長
槽2基を一体とした一実施例の構成図である。
FIG. 1 is a configuration diagram of an embodiment in which two single crystal growth tanks of a single crystal manufacturing apparatus according to the present invention are integrated.

【図2】 この発明による単結晶製造装置の単結晶成長
槽3基を一体とした一実施例の構成図である。
FIG. 2 is a configuration diagram of an embodiment in which three single crystal growth tanks of the single crystal manufacturing apparatus according to the present invention are integrated.

【図3】 この発明による単結晶製造装置の単結晶成長
槽2基を2列として一体とした一実施例の構成図であ
る。
FIG. 3 is a configuration diagram of an embodiment in which two single crystal growth tanks of the single crystal manufacturing apparatus according to the present invention are integrated into two rows.

【図4】 この発明による単結晶製造装置の単結晶成長
槽3基を2列として一体とした一実施例の構成図であ
る。
FIG. 4 is a configuration diagram of an embodiment in which three single crystal growth tanks of the single crystal manufacturing apparatus according to the present invention are integrated into two rows.

【図5】 この発明による単結晶製造装置の単結晶成長
槽6基を円形に配列して一体とした一実施例の構成図で
ある。
FIG. 5 is a configuration diagram of an embodiment in which six single crystal growth tanks of the single crystal manufacturing apparatus according to the present invention are circularly arranged and integrated.

【図6】 この発明による単結晶製造装置の単結晶成長
槽6基を円形に配列し、コイルに鉄心挿通して磁界の均
一性を改善した一実施例の構成図である。
FIG. 6 is a configuration diagram of an embodiment in which six single crystal growth tanks of a single crystal manufacturing apparatus according to the present invention are arranged in a circle and an iron core is inserted into a coil to improve the uniformity of a magnetic field.

【図7】 この発明による単結晶製造装置の超電導電磁
コイル2個を連結した構成を示す構成図である。
FIG. 7 is a configuration diagram showing a configuration in which two superconducting electromagnet coils are connected in the single crystal manufacturing apparatus according to the present invention.

【図8】 図3の構成の電磁コイルを超電導電磁コイル
とし、2個毎に連結した場合の構成図である。
FIG. 8 is a configuration diagram in the case where the electromagnetic coils having the configuration of FIG. 3 are superconducting electromagnet coils and are connected in pairs.

【図9】 図4の構成の電磁コイルを超電導電磁コイル
とし、2個毎に連結した場合の構成図である。
FIG. 9 is a configuration diagram in the case where the electromagnetic coils having the configuration of FIG. 4 are superconducting electromagnet coils and are connected every two coils.

【図10】 従来の単結晶製造装置の構成を示す断面図
である。
FIG. 10 is a cross-sectional view showing a configuration of a conventional single crystal manufacturing apparatus.

【図11】 従来の単結晶製造装置の構成を示す斜視図
である。
FIG. 11 is a perspective view showing a configuration of a conventional single crystal manufacturing apparatus.

【符号の説明】[Explanation of symbols]

10 単結晶成長槽 11 電磁コイ
ル 12 磁性体 13 磁性体 20 超電導コイル 21 極低温容
器 22 極低温冷却媒体 23 サービス
ポート 24 真空容器 25 熱シール
ド 26 連通接続管
10 Single Crystal Growth Tank 11 Electromagnetic Coil 12 Magnetic Material 13 Magnetic Material 20 Superconducting Coil 21 Cryogenic Cylinder 22 Cryogenic Cooling Medium 23 Service Port 24 Vacuum Vessel 25 Heat Shield 26 Communication Connection Pipe

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 不活性ガスが充満された状態で、坩堝内
の熔融半導体に種結晶を浸し、結晶の成長にしたがって
引上げて単結晶半導体を成長させる単結晶成長槽の複数
基が所定の間隔をおいて一列に配置され、その列の両端
部と各単結晶成長槽の間とに、それぞれの単結晶成長槽
内の熔融半導体に磁界を与える電磁コイルを配置したこ
とを特徴とする単結晶製造装置。
1. A plurality of single crystal growth tanks for immersing a seed crystal in a molten semiconductor in a crucible in a state filled with an inert gas and pulling it up as the crystal grows to grow a single crystal semiconductor at predetermined intervals. Arranged in a single row, and between each end of the row and each single crystal growth tank, a single crystal characterized by placing an electromagnetic coil for applying a magnetic field to the molten semiconductor in each single crystal growth tank Manufacturing equipment.
【請求項2】 両端部に配置された電磁コイルの相互間
に、単結晶成長槽の外部を迂回する磁界帰路を形成する
磁性体を設けたことを特徴とする請求項1に記載の単結
晶製造装置。
2. The single crystal according to claim 1, wherein a magnetic body that forms a magnetic field return path that bypasses the outside of the single crystal growth tank is provided between the electromagnetic coils arranged at both ends. Manufacturing equipment.
【請求項3】 不活性ガスが充満された状態で、坩堝内
の熔融半導体に種結晶を浸し、結晶の成長にしたがって
引上げて単結晶半導体を成長させる単結晶成長槽の複数
基が所定の間隔をおいて一列に配置され、その列の両端
部と各単結晶成長槽の間とに、それぞれの単結晶成長槽
内の熔融半導体に磁界を与える電磁コイルを配置した構
成を前後2列に配置し、左右それぞれに、端部に配置さ
れた電磁コイルの前後列相互間に磁界帰路を形成する磁
性体を設けたことを特徴とする単結晶製造装置。
3. A plurality of single crystal growth tanks for immersing a seed crystal in a molten semiconductor in a crucible and pulling it up as the crystal grows to grow a single crystal semiconductor at a predetermined interval while being filled with an inert gas. And the electromagnetic coils for applying a magnetic field to the molten semiconductor in each single crystal growth tank are arranged in front and rear two rows between both ends of the row and each single crystal growth tank. The single crystal manufacturing apparatus is characterized in that a magnetic body that forms a magnetic field return path is provided between the front and rear rows of the electromagnetic coils arranged at the ends on each of the left and right sides.
【請求項4】 不活性ガスが充満された状態で、坩堝内
の熔融半導体に種結晶を浸し、結晶の成長にしたがって
引上げて単結晶半導体を成長させる単結晶成長槽の複数
基が円形に配置され、各単結晶成長槽の間に、それぞれ
の単結晶成長槽内の熔融半導体に磁界を与える電磁コイ
ルを配置したことを特徴とする単結晶製造装置。
4. A plurality of single crystal growth tanks in which a seed crystal is immersed in a molten semiconductor in a crucible in a state of being filled with an inert gas and pulled up as the crystal grows to grow a single crystal semiconductor are arranged in a circle. A single crystal manufacturing apparatus is characterized in that an electromagnetic coil for applying a magnetic field to the molten semiconductor in each single crystal growth tank is arranged between each single crystal growth tank.
【請求項5】 単結晶成長槽の間に配置されたそれぞれ
の電磁コイルの内径部に鉄心が装着され、その鉄心の相
互に対向する端面は単結晶成長槽を中心に平行に対向し
ていることを特徴とする請求項4に記載の単結晶製造装
置。
5. An iron core is attached to an inner diameter portion of each electromagnetic coil arranged between the single crystal growth tanks, and end faces of the iron cores facing each other are parallel to each other with the single crystal growth tank as a center. The single crystal manufacturing apparatus according to claim 4, wherein
【請求項6】 電磁コイルは超電導電磁コイルとしたこ
とを特徴とする請求項1乃至請求項5のいずれかに記載
の単結晶製造装置。
6. The single crystal production apparatus according to claim 1, wherein the electromagnetic coil is a superconducting electromagnet coil.
【請求項7】 複数の超電導電磁コイルの容器の相互間
を極低温冷却媒体が流通する構成としたことを特徴とす
る請求項6に記載の単結晶製造装置。
7. The single crystal production apparatus according to claim 6, wherein a cryogenic cooling medium is circulated between the containers of the plurality of superconducting magnetic coils.
JP324595A 1995-01-12 1995-01-12 Equipment for producing single crystal Pending JPH08188493A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP324595A JPH08188493A (en) 1995-01-12 1995-01-12 Equipment for producing single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP324595A JPH08188493A (en) 1995-01-12 1995-01-12 Equipment for producing single crystal

Publications (1)

Publication Number Publication Date
JPH08188493A true JPH08188493A (en) 1996-07-23

Family

ID=11552080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP324595A Pending JPH08188493A (en) 1995-01-12 1995-01-12 Equipment for producing single crystal

Country Status (1)

Country Link
JP (1) JPH08188493A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0843028A1 (en) * 1996-11-14 1998-05-20 Kabushiki Kaisha Toshiba Magnetic-field applied czochralski crystal growth system
JP2003002777A (en) * 2001-06-13 2003-01-08 Komatsu Machinery Corp Semiconductor single crystal pulling device and its line configuration

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0843028A1 (en) * 1996-11-14 1998-05-20 Kabushiki Kaisha Toshiba Magnetic-field applied czochralski crystal growth system
JP2003002777A (en) * 2001-06-13 2003-01-08 Komatsu Machinery Corp Semiconductor single crystal pulling device and its line configuration

Similar Documents

Publication Publication Date Title
KR100562260B1 (en) Single crystal pulling device, single crystal pulling method and superconductivity magnet
US9127377B2 (en) Generating a homogeneous magnetic field while pulling a single crystal from molten semiconductor material
JP7029733B2 (en) A magnetic material used to raise the magnetic field application of a single crystal, and a method of raising the magnetic field application of a single crystal.
JP3592467B2 (en) Superconducting magnet for single crystal pulling device
KR20110094025A (en) Upper heater for manufacturing single crystal, single crystal manufacturing apparatus and single crystal manufacturing method
JP2561072B2 (en) Single crystal growth method and apparatus
JPH08188493A (en) Equipment for producing single crystal
JP2556966B2 (en) Single crystal growing equipment
JP7230781B2 (en) Single crystal pulling apparatus and single crystal pulling method
TWI751726B (en) A semiconductor crystal growth apparatus
EP1348047B1 (en) Magnetic field furnace and a method of using the same to manufacture dendritic web crystals
JP2004091240A (en) Method for pulling silicon single crystal under magnetic field application
JP2556967B2 (en) Single crystal growing equipment
AU2002246865A1 (en) Magnetic field furnace and a method of using the same to manufacture semiconductor substrates
JPS59195595A (en) Apparatus for crystal growth
JPH0142916B2 (en)
JPH11322486A (en) Equipment for magnetic field-applied single crystal production
JPS6016891A (en) Preparation of crystal by application of magnetic field and its device
TW202336295A (en) Magnet for single crystal manufacturing apparatus, single crystal manufacturing apparatus and single crystal manufacturing method
JPS6051691A (en) Growing apparatus of single crystal semiconductor
KR20090039248A (en) Horizontal magnetic field magnet for magnetic field applied czochralski crystal growth device
JPS6051692A (en) Growing apparatus of single crystal semiconductor
JPS63166793A (en) Pulling up device for silicon single crystal
RO104220B1 (en) Method and installation for monocrystals obtaining from smelting