JPH0818840B2 - Oxide superconductor - Google Patents

Oxide superconductor

Info

Publication number
JPH0818840B2
JPH0818840B2 JP2110067A JP11006790A JPH0818840B2 JP H0818840 B2 JPH0818840 B2 JP H0818840B2 JP 2110067 A JP2110067 A JP 2110067A JP 11006790 A JP11006790 A JP 11006790A JP H0818840 B2 JPH0818840 B2 JP H0818840B2
Authority
JP
Japan
Prior art keywords
phase
oxide
superconductor
oxide superconductor
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2110067A
Other languages
Japanese (ja)
Other versions
JPH0412023A (en
Inventor
恒行 金井
友一 加茂
臣平 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2110067A priority Critical patent/JPH0818840B2/en
Publication of JPH0412023A publication Critical patent/JPH0412023A/en
Publication of JPH0818840B2 publication Critical patent/JPH0818840B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、酸化物超電導体に係わり、特に高磁場中に
おいても臨界電流密度の大きい酸化物超電導体に関す
る。
TECHNICAL FIELD The present invention relates to an oxide superconductor, and more particularly to an oxide superconductor having a large critical current density even in a high magnetic field.

〔従来の技術〕[Conventional technology]

1988年に、酸化物超電導物質において、臨界温度(T
c)が105Kの高臨界温度相を有するBi−Sr−Ca−Cu−O
系が発見された。この超電導物質は化学的に安定で、Y
−Ba−Cu−O系で問題となつた水分による変質は少な
く、魅力的な物質である。しかしながら、この材料は、
ゼロ磁場における臨界電流密度は比較的大きく実用に近
いレベルにあるが、磁場の印加により臨界電流密度は、
極端に低下することが報告されている。例えば、Japane
se Journal of Applied Physics 28(1989),L82〜84に
よれば、Bi1.6Pb0.4Sr2Ca2Cu3Ox組成の粉末を750〜870
℃で8〜200時間大気中で焼成した後、銀チーブに入れ
圧延,プレス等の機械加工を施した後、800〜870℃で8
〜800時間焼成している。この銀テープ線材のゼロ磁場
における臨界電流密度は6,930A/cm2と比較的大きいが、
例えば磁場を1T印加した場合、最も良いものでも約500A
/cm2と、大きく低下する。このため、大電力用線材等へ
の応用上、この磁場印加による臨界電流密度の低下、が
大きな問題であることがわかつてきた。
In 1988, the critical temperature (T
c) Bi-Sr-Ca-Cu-O having a high critical temperature phase of 105K
The system was discovered. This superconducting material is chemically stable and
-Ba-Cu-O system is an attractive material with little deterioration due to water, which is a problem. However, this material
Although the critical current density in the zero magnetic field is relatively large and close to the level of practical use, the critical current density is
It has been reported to be extremely low. For example, Japane
According to se Journal of Applied Physics 28 (1989), L82-84, powder of Bi 1.6 Pb 0.4 Sr 2 Ca 2 Cu 3 O x composition is 750-870.
After firing in the air at ℃ for 8 to 200 hours, put it in a silver cheve and subject it to mechanical processing such as rolling and pressing, then at 800 to 870 ℃
It has been baked for ~ 800 hours. Although the critical current density of this silver tape wire at zero magnetic field is relatively large at 6,930 A / cm 2 ,
For example, when applying a magnetic field of 1T, the best one is about 500A
/ cm 2, which is a large decrease. Therefore, it has been understood that the reduction of the critical current density due to the application of the magnetic field is a serious problem in the application to high-power wires and the like.

さらに、従来のBi−Sr−Ca−Cu−O系では、均質な超
電導体を目ざし、超電導性を示す結晶の結晶粒界あるい
は粒内に、できるだけ不純物の析出しない組成あるいは
熱処理を施していた(特開平1−212226号及び特開平1
−234327号)。
Further, in the conventional Bi-Sr-Ca-Cu-O system, a composition or heat treatment was performed aiming at a homogeneous superconductor so that impurities are not precipitated as much as possible in the crystal grain boundaries or in the grains of superconducting crystals ( JP-A 1-212226 and JP-A 1-212226
-234327).

しかし、このようなプロセス条件では、磁場の印加に
より臨界電流密度の極端な低下が生ずるという問題があ
つた。
However, under such process conditions, there is a problem that the critical current density is extremely lowered by applying a magnetic field.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

上記従来技術による酸化物超電導体は磁場の印加によ
り臨界電流導度の極端な低下が生ずるという問題があつ
た。
The above-mentioned conventional oxide superconductor has a problem that the critical current conductivity is extremely lowered by the application of a magnetic field.

本発明は、高磁場下においても臨界電流密度の大きい
超電導体を提供することを目的とする。
An object of the present invention is to provide a superconductor having a large critical current density even under a high magnetic field.

〔課題を解決するための手段〕[Means for solving the problem]

前記目的を達成するために、本発明の酸化物超電導体
では、超電導性を示す結晶の結晶粒内に微細な酸化物相
を形成する。
In order to achieve the above-mentioned object, in the oxide superconductor of the present invention, a fine oxide phase is formed in the crystal grains of the crystal exhibiting superconductivity.

本発明の酸化物超電導体は、Bia-Pbb-Src-Cad-Cue-Ox
系酸化物超電導体 ただし、 1.5≦a≦2.5 0≦b≦0.5 1.5≦c≦2.5 0.5≦d≦2.5 1.5≦e≦3.5 7≦x≦17 であつて、Ca2PbO4酸化物が該酸化物超電導体の結晶粒
内に分散している酸化物超電導体であり、Ar10%及びO2
90%雰囲気中にて835〜855℃で焼結して超電導特性を示
す高臨界温度相を合成する。
The oxide superconductor of the present invention is Bi a -Pb b -Sr c -Ca d -Cu e -O x.
System oxide superconductor However, 1.5 ≦ a ≦ 2.5 0 ≦ b ≦ 0.5 1.5 ≦ c ≦ 2.5 0.5 ≦ d ≦ 2.5 1.5 ≦ e ≦ 3.5 7 ≦ x ≦ 17, and Ca 2 PbO 4 oxide is the oxide. It is an oxide superconductor dispersed in the crystal grains of a superconductor, and contains 10% Ar and O 2
A high critical temperature phase exhibiting superconducting properties is synthesized by sintering at 835-855 ℃ in 90% atmosphere.

さらに、該高臨界温度相を熱処理してCa2PbO4酸化物
相と、より臨界温度の低い酸化物超電導相あるいは非超
電導体相とを生成する。
Further, the high critical temperature phase is heat-treated to generate a Ca 2 PbO 4 oxide phase and an oxide superconducting phase or a non-superconducting phase having a lower critical temperature.

〔作用〕[Action]

図面を使つて、本発明の作用を説明する。 The operation of the present invention will be described with reference to the drawings.

第1図は、Bia-Pbb-Src-Cad-Cue-Ox系酸化物超電導体 ただし、 1.5≦a≦2.5 0≦b≦0.5 1.5≦c≦2.5 0.5≦d≦2.5 1.5≦e≦3.5 7≦x≦17 であつて、Ca2PbO4酸化物が該酸化物超電導体の結晶粒
内に分散しているものであり、熱処理温度及び酸素分圧
を変えて200時間熱処理した試料のX線解析結果をもと
に高臨界温度相分離を表したものである。
FIG. 1 shows Bi a -Pb b -Sr c -Ca d -Cu e -O x -based oxide superconductor, where 1.5 ≦ a ≦ 2.5 0 ≦ b ≦ 0.5 1.5 ≦ c ≦ 2.5 0.5 ≦ d ≦ 2.5 1.5 ≦ e ≦ 3.5 7 ≦ x ≦ 17, Ca 2 PbO 4 oxide is dispersed in the crystal grains of the oxide superconductor, and heat treatment is performed for 200 hours by changing the heat treatment temperature and the oxygen partial pressure. It shows the high critical temperature phase separation based on the X-ray analysis result of the sample.

第1図を用いて高臨界温度相の相分離について検討す
る。図中A,B,C,Dの領域はそれぞれ、高臨界温度相の安
定領域A,高臨界温度相が不安定となりCa2PbO4酸化物相
と臨界温度の低い酸化物超電導相あるいは非超電導体相
とに相分離する領域B,高臨界温度相の相分離が進行しな
い領域C、及び液相の領域Dを示す。第1図からわかる
ように、高臨界温度相を相分離させる温度は酸素分圧に
よつて異なり、相分離可能なB領域が好ましい。このよ
うにして得られた本発明の最終的な材料組織は、超電導
性を示す結晶内部に微細なCa2PbO4酸化物相と、より臨
界温度の低い酸化物超電導相あるいは非超電導体相と
が、微細に分散した組織となり、有効なピンニングとし
て作用する。
The phase separation of the high critical temperature phase will be examined with reference to FIG. In the figure, the regions A, B, C, and D are the stable region A of the high-critical temperature phase A, the high-critical temperature phase becomes unstable, and the Ca 2 PbO 4 oxide phase and the oxide superconducting phase or non-superconducting phase with a low critical temperature A region B in which the phase separation into the body phase, a region C in which the phase separation of the high critical temperature phase does not proceed, and a region D in the liquid phase are shown. As can be seen from FIG. 1, the temperature at which the high critical temperature phase is phase-separated differs depending on the oxygen partial pressure, and the phase-separable B region is preferable. The final material structure of the present invention thus obtained is a fine Ca 2 PbO 4 oxide phase inside the crystal exhibiting superconductivity and an oxide superconducting phase or a non-superconducting phase having a lower critical temperature. However, it becomes a finely dispersed structure and acts as effective pinning.

第2図(a)は従来法における材料の組織を示したも
のであり、超電導体である結晶粒内には、異相はない。
ただし、結晶粒界の三重点に異相が存在する場合もあ
る。これに対して、本発明の超電導体材料では、第2図
(b)のように、微細なPbとCaの複合酸化物相、及びよ
り臨界温度の低い酸化物超電相あるいは非超電導体相を
超電導体の結晶粒内に均一微細に分布した組織となる。
FIG. 2 (a) shows the structure of the material in the conventional method, and there is no different phase in the crystal grains that are the superconductor.
However, there is a case where a different phase exists at the triple point of the grain boundary. On the other hand, in the superconductor material of the present invention, as shown in FIG. 2 (b), a fine Pb and Ca composite oxide phase and an oxide superconductor phase or a non-superconductor phase having a lower critical temperature are used. Has a structure in which is uniformly and finely distributed in the crystal grains of the superconductor.

微細に分散した酸化物が、従来の粒界部に析出した酸
化物に比べて微細で均一なため、強いピニングとして作
用するのである。なお、結晶粒界に不純物相が生成する
場合もある。このように、超電導体の結晶粒内に導入さ
れたピニングセンターが磁束線を強くトラツプできるの
で、高磁場中でも臨界電流密度が大きな材料を得ること
ができる。
Since the finely dispersed oxides are finer and more uniform than the oxides deposited in the conventional grain boundary portions, they act as strong pinning. Note that an impurity phase may be generated at the crystal grain boundary. In this way, the pinning center introduced in the crystal grains of the superconductor can strongly trap the magnetic flux lines, so that a material having a large critical current density can be obtained even in a high magnetic field.

〔実施例〕 次に、本発明による酸化物超電導体について説明す
る。
Example Next, the oxide superconductor according to the present invention will be described.

(実施例1) Bi1.8Pb0.3Sr2Ca2Cu3Ox組成となるように、Bi2O3,Pb
O,SrCO3,CaCO3,CuOを秤量した。この粒末を混合,粉砕
してアルミナるつぼ中に入れ、600〜900℃の温度で10時
間程度保持して前駆体を作つた。この前駆体を粉砕した
後、金型ダイスを用いて、5,000kg/cm2の圧力でペレツ
ト成型した。この成型体を、Ar−10%O2雰囲気中、845
℃の温度で200時間焼成した後、再び、約5,000kg/cm2
圧力で再プレスした。更に、この超電導体をAr−10%O2
雰囲気中で種々の条件(720℃,70〜300時間)で熱処理
した。得られたペレツトの結晶内に存在するCa2PbO4
化物相の分散状態、及び77Kにおける臨界電流密度を第
1表に示す。なお、分散状態は走査電子顕微鏡により、
臨界電流導度は四端子法により測定した値である。第1
表から、Ca2PbO4酸化物相の大きさが0.01〜10μmでか
つ、この酸化物が酸化物超電導体全体に占める体積率
が、0.1vol%以上,10vol%以下である場合に、ゼロ磁
場,高磁場のいずれでも良好な臨界電流導度が得られ
た。
(Example 1) Bi 1.8 Pb 0.3 Sr 2 Ca 2 Cu 3 O x so that Bi 2 O 3 , Pb
O, SrCO 3 , Ca CO 3, CuO were weighed. The powdered particles were mixed and pulverized, put into an alumina crucible, and held at a temperature of 600 to 900 ° C. for about 10 hours to prepare a precursor. After crushing this precursor, it was pellet-molded at a pressure of 5,000 kg / cm 2 using a die. This molded body was placed in an Ar-10% O 2 atmosphere at 845
After firing at a temperature of ℃ for 200 hours, it was pressed again at a pressure of about 5,000 kg / cm 2 . Furthermore, this superconductor is Ar-10% O 2
Heat treatment was performed under various conditions (720 ° C, 70 to 300 hours) in the atmosphere. Table 1 shows the dispersion state of the Ca 2 PbO 4 oxide phase existing in the obtained pellet crystals and the critical current density at 77K. In addition, the dispersed state by a scanning electron microscope,
The critical current conductivity is a value measured by the four-terminal method. First
From the table, when the size of Ca 2 PbO 4 oxide phase is 0.01 to 10 μm and the volume ratio of this oxide to the whole oxide superconductor is 0.1 vol% or more and 10 vol% or less, the zero magnetic field is obtained. Good critical current conductivity was obtained in both high and low magnetic fields.

(実施例2) 実施例1と同じ方法で、Bi1.8Pb0.3Sr2Ca2Cu3Ox組成
となるように、粉末を秤量,混合し前駆体を合成した。
この前駆体を再び実施例1と同様に金型ダイスで成型,
焼成後、再プレスし焼成温度850℃,酸素分圧10.0atm雰
囲気中で200時間熱処理した。この試料の77Kにおける超
電導特性を評価した結果、ゼロ磁場では52,000A/cm2, 10Tの磁場中では51,000A/cm2であつた。
(Example 2) In the same manner as in Example 1, the powder was weighed and mixed so that the composition was Bi 1.8 Pb 0.3 Sr 2 Ca 2 Cu 3 O x , and a precursor was synthesized.
This precursor is molded again with a mold die in the same manner as in Example 1,
After firing, it was re-pressed and heat treated for 200 hours in an atmosphere with a firing temperature of 850 ° C. and an oxygen partial pressure of 10.0 atm. The result of evaluating the superconducting properties at 77K samples, Atsuta at 51,000A / cm 2 in a magnetic field of 52,000A / cm 2, 10T-zero magnetic field.

(実施例3) Bi2O3,PbO,SrCO3,CuO原料粉末を用いて、第2表に示す
種々の組成のBia-Pbb-Src-Cad-Cue-Ox系酸化物となるよ
うに、これら原料粉末をひょう量した。この粉末を混
合、粉砕してアルミナるつぼ中に入れ、600−900℃の温
度で10時間保持して前駆体を作成した。実施例1と同様
に、前駆体を粉砕した後、金型ダイスを用いてペレツト
成形した。この成形体を、Ar−10%O2雰囲気中、845℃
の温度で200時間の焼成を行つた。得られたペレツトの7
7Kにおけるゼロ磁場における臨界電流密度を4端子法に
より測定した結果を第2表に示す。いずれの組成の場合
でも、77Kにおいて超電導特性を示すことがわかる。
(Example 3) Bi 2 O 3, PbO , using SrCO 3, CuO raw material powder, Bi a -Pb b -Sr c -Ca d -Cu e -O x based oxide having various compositions shown in Table 2 These raw material powders were weighed so that they would be obtained. This powder was mixed and pulverized, put into an alumina crucible, and kept at a temperature of 600 to 900 ° C. for 10 hours to prepare a precursor. After crushing the precursor in the same manner as in Example 1, pellet molding was performed using a die. This molded body was heated at 845 ° C in an Ar-10% O 2 atmosphere.
The firing was performed at the temperature of 200 hours. 7 of the obtained pellets
Table 2 shows the results of measuring the critical current density at zero magnetic field at 7K by the four-terminal method. It can be seen that any composition has superconducting properties at 77K.

〔発明の効果〕 本発明によれば、高磁場中においても、臨界電流密度
の大きな材料が合成できるので、Bi系超電導材料の工業
化に際して大きな効果がある。
[Effects of the Invention] According to the present invention, a material having a large critical current density can be synthesized even in a high magnetic field, so that there is a great effect in industrializing Bi-based superconducting materials.

【図面の簡単な説明】[Brief description of drawings]

第1図はBi系酸化物超電導体の高臨界温度相の相分離を
示す図、第2図(a)は従来方法により得られる材料組
成の模式図、第2図(b)は本発明の方法により得られ
る材料組織の模式図である。
FIG. 1 is a diagram showing phase separation of a high critical temperature phase of a Bi-based oxide superconductor, FIG. 2 (a) is a schematic diagram of a material composition obtained by a conventional method, and FIG. 2 (b) is a diagram of the present invention. It is a schematic diagram of the material structure | tissue obtained by a method.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】Bia-Pbb-Src-Cad-Cue-Ox系酸化物超電導体 ただし、 1.5≦a≦2.5 0≦b≦0.5 1.5≦c≦2.5 0.5≦d≦2.5 1.5≦e≦3.5 7≦x≦17 であつて、Ca2PbO4酸化物の大きさが0.01−10μm、該
酸化物が酸化物超電導体全体に占める体積率が、0.1vol
%以上、10vol%以下であることを特徴とする酸化物超
電導体。
1. Bi a -Pb b -Sr c -Ca d -Cu e -O x -based oxide superconductor, where 1.5≤a≤2.5 0≤b≤0.5 1.5≤c≤2.5 0.5≤d≤2.5 1.5 ≦ e ≦ 3.5 7 ≦ x ≦ 17, the size of Ca 2 PbO 4 oxide is 0.01 to 10 μm, and the volume ratio of the oxide to the entire oxide superconductor is 0.1 vol.
% Or more and 10 vol% or less, an oxide superconductor.
JP2110067A 1990-04-27 1990-04-27 Oxide superconductor Expired - Fee Related JPH0818840B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2110067A JPH0818840B2 (en) 1990-04-27 1990-04-27 Oxide superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2110067A JPH0818840B2 (en) 1990-04-27 1990-04-27 Oxide superconductor

Publications (2)

Publication Number Publication Date
JPH0412023A JPH0412023A (en) 1992-01-16
JPH0818840B2 true JPH0818840B2 (en) 1996-02-28

Family

ID=14526222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2110067A Expired - Fee Related JPH0818840B2 (en) 1990-04-27 1990-04-27 Oxide superconductor

Country Status (1)

Country Link
JP (1) JPH0818840B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4696811B2 (en) * 2005-09-22 2011-06-08 住友電気工業株式会社 Manufacturing method of Bi-based superconductor

Also Published As

Publication number Publication date
JPH0412023A (en) 1992-01-16

Similar Documents

Publication Publication Date Title
EP0449161B1 (en) Method of preparing bismuth oxide superconductor
JP3008453B2 (en) Method for manufacturing bismuth-based superconductor
CA2059453C (en) Method of preparing bismuth oxide superconducting wire
EP0356722B1 (en) Oxide superconductor and method of producing the same
EP0493007A1 (en) Rare earth oxide superconducting material and process for producing the same
US5334578A (en) Method of manufacturing superconductor
JP2995796B2 (en) Manufacturing method of oxide superconductor
JPH0818840B2 (en) Oxide superconductor
WO1993002460A1 (en) Method for manufacturing superconductive wire material of bismuth based oxide
Tanaka et al. Improved J/sub c/property of Bi2223 tapes made using AgCu alloy-sheath doped with Ti, Zr, Hf or Au
EP0296893A2 (en) Superconducting material and a process for preparing the same
JP3102010B2 (en) Thallium oxide superconducting wire
JP2966442B2 (en) Bi-based oxide superconductor and method for producing wire thereof
JP3160900B2 (en) Manufacturing method of superconducting material
JP2971504B2 (en) Method for producing Bi-based oxide superconductor
JP3282688B2 (en) Manufacturing method of oxide superconductor
JP2821568B2 (en) Method for producing superconducting whisker composite
JPH04292812A (en) Manufacture of bismuth-based oxide superconductive wire
Xu et al. Study on Bi (Pb, Sb) SrCaCuO superconductors prepared by the oxalate co-precipitation technique
JPH05816A (en) Oxide superconductor production and superconducting wire
JP3283909B2 (en) Metal oxide material and method for producing the same
Majewski et al. Fundamental material aspects underlying the preparation of high-temperature superconducting (Bi, Pb){sub 2+ x} Sr {sub 2} Ca {sub 2} Cu {sub 3} O {sub 10+ d} ceramics
JPH05139739A (en) Oxide superconducting material
JPH11322340A (en) Oxide superconductor and its production
JPH09255332A (en) Production of oxide superconductor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees