JPH08186053A - Production of ceramic electronic device - Google Patents

Production of ceramic electronic device

Info

Publication number
JPH08186053A
JPH08186053A JP6339877A JP33987794A JPH08186053A JP H08186053 A JPH08186053 A JP H08186053A JP 6339877 A JP6339877 A JP 6339877A JP 33987794 A JP33987794 A JP 33987794A JP H08186053 A JPH08186053 A JP H08186053A
Authority
JP
Japan
Prior art keywords
ceramic element
firing
water
mol
reducing atmosphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6339877A
Other languages
Japanese (ja)
Other versions
JP3250400B2 (en
Inventor
Tokutaro Kimura
徳太郎 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP33987794A priority Critical patent/JP3250400B2/en
Publication of JPH08186053A publication Critical patent/JPH08186053A/en
Application granted granted Critical
Publication of JP3250400B2 publication Critical patent/JP3250400B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Capacitors (AREA)
  • Filters And Equalizers (AREA)

Abstract

PURPOSE: To obtain a method for producing a ceramic electronic device with high efficiency in which residual carbon in a ceramic element can be decreased quickly after degreasing without having any adverse effect on the sintering of the ceramic element in the sintering process. CONSTITUTION: After ending the degreasing process, sintering is carried out until a predetermine temperature is reached while supplying moisture, independently from the moisture for sustaining a wet reducing atmosphere, at a rate of 3 mole per minute or above for one mole of residual carbon in a ceramic element at the end of the degreasing process. Firing is then carried out according to a predetermined temperature profile while supplying only the moisture for sustaining the wet reducing atmosphere.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は電子部品の製造方法に関
し、詳しくは、セラミック素子を熱処理して、セラミッ
ク素子中に含まれるバインダーなどを分解、除去する脱
脂工程の終了後に、セラミック素子を湿潤還元雰囲気中
で熱処理して焼結させる焼成工程を含むセラミック電子
部品の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing an electronic component, and more specifically, it heats a ceramic element to decompose the binder and the like contained in the ceramic element to remove the degreasing step, and then wet the ceramic element. The present invention relates to a method for manufacturing a ceramic electronic component including a firing step of heat-treating and sintering in a reducing atmosphere.

【0002】[0002]

【従来の技術】例えば、卑金属材料を用いて内部電極を
形成した積層セラミックコンデンサ素子などのセラミッ
ク素子を焼成する方法の一つとして、窒素を主成分とす
る雰囲気中に水素や水を添加した湿潤還元雰囲気中で焼
成を行う方法がある。そして、この方法においては、雰
囲気中の酸素分圧を検出、管理することにより湿潤還元
雰囲気のコントロールを行っている。
2. Description of the Related Art For example, as one of the methods for firing a ceramic element such as a monolithic ceramic capacitor element in which internal electrodes are formed by using a base metal material, wetting by adding hydrogen or water to an atmosphere containing nitrogen as a main component. There is a method of firing in a reducing atmosphere. In this method, the wet reducing atmosphere is controlled by detecting and managing the oxygen partial pressure in the atmosphere.

【0003】[0003]

【発明が解決しようとする課題】しかし、酸素分圧のみ
を管理する方法には次のような問題点がある。
However, the method of controlling only the oxygen partial pressure has the following problems.

【0004】脱脂後のセラミック素子中の残留炭素を
除去する際には、 C+O → CO (1) C+O2 → CO2 (2) CO+1/2O2 → CO2 (3) などの反応以外にも、 C+H2O → CO+H2 (4) C+2H2O → CO2+2H2 (5) などのいわゆる水性ガス反応が生じる。しかし、式
(4),(5)のような水性ガス反応は、残留炭素と水(水蒸
気)の直接反応であるため、酸素分圧を検出、管理する
方法によっては、式(4),(5)のような水性ガス反応を検
出、管理することができず、脱脂工程での残留炭素を、
セラミック素子の焼結などに悪影響を与えることなく効
率よく除去することが困難であるのが実情である。
When removing the residual carbon in the ceramic element after degreasing, in addition to the reaction such as C + O → CO (1) C + O 2 → CO 2 (2) CO + 1 / 2O 2 → CO 2 (3), A so-called water gas reaction such as C + H 2 O → CO + H 2 (4) C + 2H 2 O → CO 2 + 2H 2 (5) occurs. But the formula
The water-gas reaction such as (4) and (5) is a direct reaction between residual carbon and water (water vapor). Therefore, depending on the method of detecting and controlling the oxygen partial pressure, It is impossible to detect and control such water-gas reaction, and to remove the residual carbon in the degreasing process,
The reality is that it is difficult to remove efficiently without adversely affecting the sintering of the ceramic element.

【0005】また、焼成炉内に挿入するタイプの酸素
センサーは、通常、残留炭素が主に除去される800℃
以下の温度では、センサー出力値の信頼性が乏しく精度
が低いため、酸素分圧を正確に検出すること自体が容易
ではないという問題点もある。
Further, an oxygen sensor of a type inserted in a firing furnace is usually 800 ° C. where residual carbon is mainly removed.
At the temperatures below, there is a problem that it is not easy to accurately detect the oxygen partial pressure because the reliability of the sensor output value is poor and the accuracy is low.

【0006】さらに、従来の湿潤還元雰囲気中で焼成
した場合、水性ガス反応の速度が遅く、焼成に長時間を
要するため生産効率が低いという問題点がある。
Further, when firing is performed in a conventional wet reducing atmosphere, there is a problem that the production rate is low because the rate of the water gas reaction is slow and the firing requires a long time.

【0007】本発明は、上記問題点を解決するものであ
り、焼成工程において、セラミック素子の焼結に悪影響
を与えたりすることなく、脱脂後のセラミック素子中の
残留炭素を速やかに減少させることが可能で、生産効率
の高いセラミック電子部品の製造方法を提供することを
目的とする。
The present invention solves the above-mentioned problems, and quickly reduces the residual carbon in the ceramic element after degreasing in the firing step without adversely affecting the sintering of the ceramic element. And a ceramic electronic component manufacturing method with high production efficiency.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、発明者は種々の実験、検討を行い、湿潤還元雰囲気
を保持するための水分とは別に、所定の割合で水分を供
給しつつ焼成を行った場合に、脱脂後のセラミック素子
中の残留炭素が速やかに減少することを知り、さらに実
験、検討を重ねて本発明を完成した。
In order to achieve the above object, the inventor has conducted various experiments and studies, and while supplying water at a predetermined ratio, in addition to water for maintaining a wet reducing atmosphere. When it was found that the residual carbon in the ceramic element after degreasing rapidly decreased when firing was performed, the present invention was completed through further experiments and studies.

【0009】すなわち、本発明のセラミック電子部品の
製造方法は、セラミック素子を所定の条件で熱処理して
セラミック素子中に含まれるバインダーなどの有機物質
を分解、除去する脱脂工程と、前記脱脂工程の終了後
に、セラミック素子を湿潤還元雰囲気中で熱処理して焼
結させる焼成工程であって、湿潤還元雰囲気を保持する
ための水分とは別に、脱脂工程終了時のセラミック素子
中の残留炭素1モルに対して、1分間に3モル以上の割
合で水分を供給しつつ所定の温度に達するまで焼成を行
った後、湿潤還元雰囲気保持用の水分のみを供給しつつ
所定の温度プロファイルで焼成を行う焼成工程とを含む
ことを特徴としている。
That is, the method for producing a ceramic electronic component of the present invention comprises a degreasing step of decomposing and removing an organic substance such as a binder contained in the ceramic element by heat-treating the ceramic element under predetermined conditions, and the degreasing step. After the completion, in a firing step of heat-treating and sintering the ceramic element in a wet reducing atmosphere, in addition to moisture for maintaining the wet reducing atmosphere, 1 mol of residual carbon in the ceramic element at the end of the degreasing step is added. On the other hand, firing is performed while supplying water at a rate of 3 mol or more per minute until reaching a predetermined temperature, and then firing with a predetermined temperature profile while supplying only water for maintaining a wet reducing atmosphere. It is characterized by including a process.

【0010】また、脱脂工程終了時のセラミック素子中
の残留炭素量1モルに対して、1分間に3モル以上の割
合で水分を供給しつつ焼成を行う際における雰囲気中の
水分濃度が10〜25vol%であることを特徴としてい
る。
Further, the moisture concentration in the atmosphere at the time of firing while supplying water at a rate of 3 mol or more per minute with respect to 1 mol of residual carbon in the ceramic element at the end of the degreasing step is from 10 to 10. It is characterized by being 25 vol%.

【0011】さらに、前記脱脂工程の終了後に、脱脂工
程終了時のセラミック素子中の残留炭素量1モルに対し
て、1分間に3モル以上の割合で水分を供給しながら少
なくとも800℃に達するまで焼成を行い、その後、湿
潤還元雰囲気保持用の水分のみを供給しつつ所定の温度
プロファイルで焼成を行うことを特徴としている。
Further, after the degreasing process is completed, at least 800 ° C. is reached while supplying water at a rate of 3 mol or more per minute with respect to 1 mol of residual carbon in the ceramic element at the end of the degreasing process. It is characterized in that firing is performed, and thereafter, firing is performed with a predetermined temperature profile while supplying only moisture for maintaining a wet reducing atmosphere.

【0012】[0012]

【作用】脱脂工程の終了後の焼成工程において、湿潤還
元雰囲気を保持するための水分とは別に、脱脂工程終了
時のセラミック素子中の残留炭素1モルに対して、1分
間に3モル以上の割合で水分を供給しつつ所定の温度に
達するまで焼成を行うことにより、セラミック素子の焼
結に悪影響を与えたりするようなことなく、前述の式
(4),(5)の水性ガス反応 C+H2O → CO+H2 (4) C+2H2O → CO2+2H2 (5) を速やかに進行させ、セラミック素子中に残留した炭素
を効率よく減少させることが可能になるとともに、その
後、湿潤還元雰囲気保持用の水分のみを供給しつつ所定
の温度プロファイルで焼成を行うことにより、セラミッ
ク素子の焼結を確実に行わせることができるようにな
り、全体として、焼成の効率を向上させることができる
ようになる。
In the firing step after completion of the degreasing step, in addition to the water content for maintaining the wet reducing atmosphere, at least 3 moles per minute of carbon remaining in the ceramic element at the end of the degreasing step is used. By supplying water in a ratio and performing firing until a predetermined temperature is reached, the above-mentioned formula is obtained without adversely affecting the sintering of the ceramic element.
Water gas reaction of (4) and (5) C + H 2 O → CO + H 2 (4) C + 2H 2 O → CO 2 + 2H 2 (5) Promptly progress to efficiently reduce the carbon remaining in the ceramic element. In addition to the above, it is possible to reliably perform the sintering of the ceramic element by performing the firing in a predetermined temperature profile while supplying only the moisture for maintaining the wet reducing atmosphere, as a whole. Thus, the efficiency of firing can be improved.

【0013】また、脱脂工程終了時のセラミック素子中
の残留炭素量1モルに対して、1分間に3モル以上の割
合で水分を供給しつつ焼成を行う際の雰囲気中の水分濃
度を10〜25vol%とすることにより、所定の湿潤還
元雰囲気を保ちつつ、セラミック素子中に残留した炭素
を効率よく減少させることが可能になり、本発明をより
実効あらしめることができる。
Further, the moisture concentration in the atmosphere at the time of firing while supplying water at a rate of 3 mol or more per minute with respect to 1 mol of residual carbon in the ceramic element at the end of the degreasing step is 10 to 10. By setting it as 25 vol%, it becomes possible to efficiently reduce the carbon remaining in the ceramic element while maintaining a predetermined wet reducing atmosphere, and the present invention can be more effectively realized.

【0014】さらに、脱脂工程の終了後に、脱脂工程終
了時のセラミック素子中の残留炭素量1モルに対して、
1分間に3モル以上の割合で水分を供給しながら少なく
とも800℃に達するまで焼成を行い、その後、湿潤還
元雰囲気保持用の水分のみを供給しつつ所定の温度プロ
ファイルで焼成を行うようにした場合には、前述の式
(4),(5)の水性ガス反応を速やかに進行させ、セラミッ
ク素子中に残留した炭素をより確実に、しかも効率よく
減少させることが可能になるとともに、その後の湿潤還
元雰囲気保持用の水分のみを供給しつつ焼成する工程
で、セラミック素子の焼結を確実に行わせることが可能
になり、本発明をさらに実効あらしめることができるよ
うになる。
Furthermore, after the degreasing process is completed, the residual carbon content in the ceramic element at the end of the degreasing process is 1 mol, and
When baking is performed while supplying water at a rate of 3 mol or more per minute until it reaches at least 800 ° C, and then baking is performed with a predetermined temperature profile while supplying only water for maintaining a wet reducing atmosphere. In the above formula
The water-gas reaction of (4) and (5) can be made to progress rapidly, and the carbon remaining in the ceramic element can be reduced more reliably and efficiently, and the moisture for maintaining the subsequent wet reducing atmosphere can be reduced. In the step of firing while supplying only the ceramic element, it becomes possible to surely perform the sintering of the ceramic element, and the present invention can be further effectively realized.

【0015】[0015]

【実施例】以下、本発明の実施例を示してその特徴とす
るところをさらに詳しく説明する。なお、この実施例で
は、積層セラミックコンデンサを製造する場合を例にと
って説明する。
EXAMPLES Examples of the present invention will be shown below to explain the features thereof in more detail. In this embodiment, a case of manufacturing a monolithic ceramic capacitor will be described as an example.

【0016】BaTiO3を主成分とする誘電体材料
(セラミック原料粉末)、バインダーであるPVB(ポ
リビニルブチラール)、トルエン/エタノ−ル混合溶
剤、及び各種添加材をボールミルを用いて攪拌、混合す
ることによりスラリーを作成した。
Stirring and mixing a dielectric material containing BaTiO 3 as a main component (ceramic raw material powder), PVB (polyvinyl butyral) as a binder, a toluene / ethanol mixed solvent, and various additives with a ball mill. To prepare a slurry.

【0017】そして、このスラリーを焼成後の厚みが1
2μmとなるようなシートに成形し、乾燥させた後、パ
ターン印刷によりニッケル電極(ペースト)を塗布し
た。
The thickness of this slurry after firing is 1
After being formed into a sheet having a thickness of 2 μm and dried, a nickel electrode (paste) was applied by pattern printing.

【0018】それから、このシートを80〜90層積層
するとともに、その上下両面側にニッケル電極を塗布し
ていないダミーシートを積層し、圧着した後、カットし
て、焼成後の寸法が2.6mm(幅)×2.0mm(長さ)
×1.25mm(厚み)の個々のセラミック素子(グリー
ンチップ)を得た。
Then, 80 to 90 layers of this sheet are laminated, and dummy sheets not coated with nickel electrodes are laminated on the upper and lower sides thereof, and after pressure bonding and cutting, the dimension after firing is 2.6 mm. (Width) x 2.0 mm (length)
Individual ceramic elements (green chips) of × 1.25 mm (thickness) were obtained.

【0019】そして、このセラミック素子を、空気中、
240℃で熱処理し、セラミック素子中のバインダーな
どの有機物を分解、除去(脱脂)した。なお、この脱脂
工程後のセラミック素子中の残留炭素は、約1.0重量
%であった。
Then, the ceramic element is
Heat treatment was performed at 240 ° C. to decompose and remove (degrease) organic substances such as a binder in the ceramic element. The residual carbon in the ceramic element after this degreasing step was about 1.0% by weight.

【0020】このセラミック素子100g(含有炭素量
=1g)を、小型バッチ炉を用い、昇温速度100℃/
hで800℃まで昇温した後、昇温速度200℃/hで
800℃から1250℃まで範囲昇温し、その後125
0℃で2h保持してセラミック素子を焼結させた後、自
然冷却した。
100 g of this ceramic element (content of carbon = 1 g) was heated in a small batch furnace at a heating rate of 100 ° C. /
After raising the temperature to 800 ° C. at h, the temperature is raised from 800 ° C. to 1250 ° C. at a heating rate of 200 ° C./h, and then 125 ° C.
After holding at 0 ° C. for 2 hours to sinter the ceramic element, it was naturally cooled.

【0021】なお、この焼成工程においては、窒素ガ
ス、水素ガス及び水蒸気を所定の割合で供給することに
より基本的な湿潤還元雰囲気を保持し、さらに、800
℃に達するまでは、湿潤還元雰囲気を保持するための水
(具体的には3.6g/min)とは別に、セラミック素
子中の残留炭素1モルに対して、1分間に3モル(具体
的には4.5g/min)の割合で水を供給しつつ昇温し
た。なお、このときの雰囲気中の水蒸気濃度は、約10
vol%であった。
In this firing step, nitrogen gas, hydrogen gas and water vapor are supplied at a predetermined ratio to maintain a basic wet reducing atmosphere, and further 800
Up to ℃, apart from water (specifically 3.6 g / min) for maintaining a wet reducing atmosphere, 3 mol / min (specifically, 1 mol / mol residual carbon in the ceramic element) The temperature was raised while supplying water at a rate of 4.5 g / min. The water vapor concentration in the atmosphere at this time is about 10
It was vol%.

【0022】また、焼成工程の最高温度(1250℃)
での酸素分圧は10-12〜10-11MPaとした。
The maximum temperature of the firing process (1250 ° C.)
The oxygen partial pressure in the above was set to 10 −12 to 10 −11 MPa.

【0023】なお、比較のため、焼成工程の全工程(8
00℃に達するまでの範囲も含む)で、湿潤還元雰囲気
を保持するための水(具体的には3.6g/min)のみ
を供給して焼成を行った。
For comparison, all the firing steps (8
Firing was performed by supplying only water (specifically, 3.6 g / min) for maintaining the wet reducing atmosphere within the range up to reaching 00 ° C.

【0024】上記実施例及び比較例の各条件で焼成を行
った場合の、焼成温度が800℃に達するまでの、焼成
温度と雰囲気中のCO及びCO2濃度の関係を図1(実
施例)及び図2(比較例)に示す。
FIG. 1 (Example) shows the relationship between the firing temperature and the CO and CO 2 concentrations in the atmosphere until the firing temperature reaches 800 ° C. when firing is performed under the conditions of the above-mentioned Examples and Comparative Examples. And it shows in FIG. 2 (comparative example).

【0025】図2より、湿潤還元雰囲気を保持するため
の水のみを供給して焼成を行った比較例の場合には、8
00℃に達した時点でまだ雰囲気中のCO及びCO2
度が高く、残留炭素が十分に除去されていないことがわ
かる。
From FIG. 2, in the case of the comparative example in which only the water for maintaining the wet reducing atmosphere was supplied for firing, 8
It can be seen that the concentration of CO and CO 2 in the atmosphere was still high when the temperature reached 00 ° C., and the residual carbon was not sufficiently removed.

【0026】これに対して、湿潤還元雰囲気を保持する
ための水とは別に、セラミック素子中の残留炭素1モル
に対して、1分間に3モルの割合で水を供給しつつ焼成
を行った実施例の場合、図1に示すように、800℃に
達した時点で、雰囲気中にCO及びCO2がほとんど認
められなくなっており(CO及びCO2はいずれも10p
pm以下)、残留炭素が十分に除去されていることがわか
る。
On the other hand, in addition to water for maintaining a wet reducing atmosphere, firing was performed while supplying water at a rate of 3 moles per minute with respect to 1 mole of residual carbon in the ceramic element. In the case of the example, as shown in FIG. 1, when the temperature reached 800 ° C., almost no CO or CO 2 was found in the atmosphere (both CO and CO 2 were 10 p
It can be seen that residual carbon is sufficiently removed.

【0027】また、焼成後のセラミック素子(積層セラ
ミックコンデンサ素子)に端子電極を形成することによ
り得られた積層セラミックコンデンサについて、容量の
ばらつき、容量低下・容量不形成の発生の有無、絶縁抵
抗(logIR)、等価直列抵抗などの諸特性を測定し
た。その結果を表1に示す。
Further, regarding a laminated ceramic capacitor obtained by forming a terminal electrode on a ceramic element after firing (multilayer ceramic capacitor element), there is a variation in capacitance, the presence or absence of capacitance reduction / non-formation, and insulation resistance ( Various characteristics such as logIR) and equivalent series resistance were measured. Table 1 shows the results.

【0028】[0028]

【表1】 [Table 1]

【0029】表1に示すように、実施例にかかる積層セ
ラミックコンデンサは、比較例のそれに比べて、容量の
ばらつきが小さく、高い絶縁性を有し、かつ等価直列抵
抗が小さいという良好な結果が得られており、また、容
量低下・容量不形成の発生も認められなかった。
As shown in Table 1, the monolithic ceramic capacitors according to the examples have good results that the variation in capacitance is small, the insulating properties are high, and the equivalent series resistance is small as compared with that of the comparative example. It was obtained, and neither the capacity decrease nor the capacity non-formation was observed.

【0030】このように、上記実施例で示したような条
件で焼成を行うことにより、内部電極切れによる容量低
下・容量不形成などが発生せず、しかも等価直列抵抗が
低く、高絶縁抵抗を有する被焼成物を得ることが可能に
なる。
As described above, by performing the firing under the conditions as shown in the above-mentioned embodiment, the capacity reduction and the capacity non-formation due to the breakage of the internal electrode does not occur, the equivalent series resistance is low, and the high insulation resistance is high. It becomes possible to obtain the object to be fired.

【0031】なお、上記実施例では、湿潤還元雰囲気を
保持するための水分とは別に、脱脂工程終了時のセラミ
ック素子中の残留炭素量1モルに対して、1分間に3モ
ルの割合で水分を供給しながら800℃に達するまで焼
成を行った場合について説明したが、湿潤還元雰囲気を
保持するための水分とは別に供給する水分の割合は脱脂
工程終了時のセラミック素子中の残留炭素量1モルに対
して、1分間に3モル以上という条件を範囲において種
々に変化させることが可能である。但し、水分の供給割
合は、通常、脱脂工程終了時のセラミック素子中の残留
炭素量1モルに対して、1分間に3モル〜15モルの範
囲が好ましい。
In the above embodiment, in addition to the water content for maintaining the wet reducing atmosphere, the water content is 3 mol / min for 1 mol of carbon residue in the ceramic element at the end of the degreasing process. While the case where the firing was performed until the temperature reached 800 ° C. while supplying the water, the ratio of the water supplied separately from the water for maintaining the wet reducing atmosphere is 1% of the residual carbon amount in the ceramic element at the end of the degreasing step. It is possible to change variously in the range of 3 mol or more per minute with respect to the mol. However, the water supply rate is usually preferably in the range of 3 to 15 mol per minute with respect to 1 mol of residual carbon in the ceramic element at the end of the degreasing step.

【0032】ただし、湿潤還元雰囲気を保持するための
水分とは別に供給する水分の量は、雰囲気中の水蒸気濃
度とも関係することから、通常は、雰囲気中の水蒸気の
濃度を10〜25vol%の範囲に保持することが望まし
い。これは、水蒸気濃度が上記範囲を逸脱すると、場合
によっては、水性ガス反応の進行速度が低くなったり、
セラミック素子の焼結に悪影響を与えたりするためであ
る。
However, since the amount of water supplied separately from the water for maintaining the wet reducing atmosphere is also related to the water vapor concentration in the atmosphere, the water vapor concentration in the atmosphere is usually 10 to 25 vol%. It is desirable to keep the range. This is because when the water vapor concentration deviates from the above range, the progress rate of the water gas reaction becomes low in some cases,
This is because it has an adverse effect on the sintering of the ceramic element.

【0033】また、上記実施例では、湿潤還元雰囲気を
保持するための水分とは別に、脱脂工程終了時のセラミ
ック素子中の残留炭素量1モルに対して、1分間に3モ
ルの割合で水分を供給しながら800℃に達するまで焼
成を行った場合について説明したが、湿潤還元雰囲気を
保持するための水分とは別に、本発明の所定の割合で水
分を供給しながら1000℃付近まで焼成し、その後湿
潤還元雰囲気を保持するための水分のみを供給しつつ焼
成することにより、さらに確実に残留炭素を除去し、良
好な焼成を行うことが可能になる場合もある。
Further, in the above-mentioned embodiment, in addition to the water content for maintaining the wet reducing atmosphere, the water content is 3 mol / min for 1 mol of the residual carbon amount in the ceramic element at the end of the degreasing step. In the above description, the firing was carried out until the temperature reached 800 ° C. while supplying the water. In addition to the water for maintaining the wet reducing atmosphere, the water was fed at a predetermined ratio of the present invention to a temperature of around 1000 ° C. In some cases, it may be possible to further reliably remove residual carbon and perform good firing by firing while supplying only water for maintaining a wet reducing atmosphere.

【0034】また、上記実施例では、BaTiO3系の
セラミックを用いたセラミック素子を焼成する場合を例
にとって説明したが、他の種類のセラミックを用いたセ
ラミック素子を焼成する場合(すなわち、他の種類のセ
ラミックを用いたセラミック電子部品を製造する場合)
にも本発明を適用することが可能であり、その場合にも
同様の効果を得ることが可能である。
In the above embodiment, the case of firing a ceramic element using BaTiO 3 -based ceramic has been described as an example, but the case of firing a ceramic element using another type of ceramic (that is, other types of ceramics). When manufacturing ceramic electronic parts using different types of ceramics)
The present invention can also be applied to, and in that case, the same effect can be obtained.

【0035】また、上記実施例では、積層セラミックコ
ンデンサを製造する場合を例にとって説明したが、本発
明は、積層セラミックコンデンサの製造方法に限定され
るものではなく、セラミックフィルタやセラミック多層
基板などの種々のセラミック電子部品を製造する場合に
適用することが可能である。
In the above embodiments, the case of manufacturing a monolithic ceramic capacitor has been described as an example, but the present invention is not limited to the method of manufacturing a monolithic ceramic capacitor, and a ceramic filter, a ceramic multi-layer substrate or the like may be used. It can be applied when manufacturing various ceramic electronic components.

【0036】本発明は、さらにその他の点においても上
記実施例に限定されるものではなく、セラミック素子の
具体的な構造、内部電極のパターン、脱脂工程の温度条
件、焼成工程の温度プロファイルなどに関し、発明の要
旨の範囲内において種々の応用、変形を加えることが可
能である。
The present invention is not limited to the above-mentioned embodiments in other points as well, and relates to the specific structure of the ceramic element, the pattern of the internal electrodes, the temperature conditions of the degreasing step, the temperature profile of the firing step, and the like. Various applications and modifications can be made within the scope of the invention.

【0037】[0037]

【発明の効果】上述のように、本発明のセラミック電子
部品の製造方法は、脱脂工程が終了した後の焼成工程に
おいて、湿潤還元雰囲気を保持するための水分とは別
に、脱脂工程終了時のセラミック素子中の残留炭素1モ
ルに対して、1分間に3モル以上の割合で水分を供給し
つつ所定の温度に達するまで焼成を行った後、湿潤還元
雰囲気保持用の水分のみを供給しつつ所定の温度プロフ
ァイルで焼成を行うようにしているので、セラミック素
子の焼結に悪影響を与えたりするようなことなく、セラ
ミック素子中に残留した炭素を効率よく減少させること
が可能になるとともに、セラミック素子の焼結を確実に
行わせることができるようになり、全体として、焼成の
効率を大幅に向上させることができるようになる。
As described above, according to the method for manufacturing a ceramic electronic component of the present invention, in the firing step after the degreasing step is completed, in addition to the moisture for maintaining the wet reducing atmosphere, the degreasing step is completed. While supplying water at a rate of 3 mol or more per minute with respect to 1 mol of residual carbon in the ceramic element, firing is performed until a predetermined temperature is reached, and then only water for maintaining a wet reducing atmosphere is supplied. Since firing is performed with a predetermined temperature profile, it is possible to efficiently reduce the carbon remaining in the ceramic element without adversely affecting the sintering of the ceramic element, and The element can be reliably sintered, and the firing efficiency can be significantly improved as a whole.

【0038】また、脱脂工程終了時のセラミック素子中
の残留炭素量1モルに対して、1分間に3モル以上の割
合で水分を供給しつつ焼成を行う際の雰囲気中の水分濃
度を10〜25vol%とすることにより、所定の湿潤還
元雰囲気を保ちつつ、セラミック素子中に残留した炭素
を効率よく減少させることが可能になり、本発明をより
実効あらしめることができる。
Further, the moisture concentration in the atmosphere during firing is 10 to 10 moles of residual carbon in the ceramic element at the end of the degreasing step while supplying moisture at a rate of 3 moles or more per minute. By setting it as 25 vol%, it becomes possible to efficiently reduce the carbon remaining in the ceramic element while maintaining a predetermined wet reducing atmosphere, and the present invention can be more effectively realized.

【0039】さらに、脱脂工程の終了後に、脱脂工程終
了時のセラミック素子中の残留炭素量1モルに対して、
1分間に3モル以上の割合で水分を供給しながら少なく
とも800℃に達するまで焼成を行い、その後、湿潤還
元雰囲気保持用の水分のみを供給しつつ所定の温度プロ
ファイルで焼成を行うことにより、セラミック素子中に
残留した炭素をより確実に、しかも効率よく減少させる
ことが可能になるとともに、その後の湿潤還元雰囲気保
持用の水分のみを供給しつつ焼成する工程で、セラミッ
ク素子の焼結を確実に行わせることが可能になり、本発
明をさらに実効あらしめることができる。
Further, after the degreasing process is completed, the residual carbon content in the ceramic element at the end of the degreasing process is 1 mol,
By firing at a temperature of at least 800 ° C. while supplying water at a rate of 3 mol or more per minute, and then firing at a predetermined temperature profile while supplying only water for maintaining a wet reducing atmosphere, a ceramic is obtained. It is possible to reduce the carbon remaining in the element more reliably and efficiently, and to ensure the sintering of the ceramic element in the subsequent step of firing while supplying only the water for maintaining the wet reducing atmosphere. Therefore, the present invention can be further effectively realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例にかかるセラミック電子部品
の製造方法の焼成工程における、焼成温度と雰囲気中の
CO及びCO2濃度の関係を示す線図である。
FIG. 1 is a diagram showing a relationship between a firing temperature and CO and CO 2 concentrations in an atmosphere in a firing step of a method for manufacturing a ceramic electronic component according to an example of the present invention.

【図2】比較例の焼成工程における、焼成温度と雰囲気
中のCO及びCO2濃度の関係を示す線図である。
FIG. 2 is a diagram showing the relationship between the firing temperature and the CO and CO 2 concentrations in the atmosphere in the firing process of the comparative example.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 セラミック素子を所定の条件で熱処理し
てセラミック素子中に含まれるバインダーなどの有機物
質を分解、除去する脱脂工程と、 前記脱脂工程の終了後に、セラミック素子を湿潤還元雰
囲気中で熱処理して焼結させる焼成工程であって、湿潤
還元雰囲気を保持するための水分とは別に、脱脂工程終
了時のセラミック素子中の残留炭素1モルに対して、1
分間に3モル以上の割合で水分を供給しつつ所定の温度
に達するまで焼成を行った後、湿潤還元雰囲気保持用の
水分のみを供給しつつ所定の温度プロファイルで焼成を
行う焼成工程とを含むことを特徴とするセラミック電子
部品の製造方法。
1. A degreasing step of decomposing and removing an organic substance such as a binder contained in the ceramic element by heat-treating the ceramic element under predetermined conditions, and after the degreasing step is completed, the ceramic element is placed in a wet reducing atmosphere. In the firing step of heat-treating and sintering, in addition to the water content for maintaining the wet reducing atmosphere, 1 mol of carbon remains in the ceramic element at the end of the degreasing step.
A baking step of supplying water at a rate of 3 mol or more per minute and performing baking until a predetermined temperature is reached, and then performing baking at a predetermined temperature profile while supplying only water for maintaining a wet reducing atmosphere. A method of manufacturing a ceramic electronic component, comprising:
【請求項2】 脱脂工程終了時のセラミック素子中の残
留炭素量1モルに対して、1分間に3モル以上の割合で
水分を供給しつつ焼成を行う際における雰囲気中の水分
濃度が10〜25vol%であることを特徴とする請求項
1記載のセラミック電子部品の製造方法。
2. The moisture concentration in the atmosphere when firing is performed while supplying moisture at a rate of 3 mol or more per minute with respect to 1 mol of residual carbon in the ceramic element at the end of the degreasing step. It is 25 vol%, The manufacturing method of the ceramic electronic component of Claim 1 characterized by the above-mentioned.
【請求項3】 前記脱脂工程の終了後に、脱脂工程終了
時のセラミック素子中の残留炭素量1モルに対して、1
分間に3モル以上の割合で水分を供給しながら少なくと
も800℃に達するまで焼成を行い、その後、湿潤還元
雰囲気保持用の水分のみを供給しつつ所定の温度プロフ
ァイルで焼成を行うことを特徴とする請求項1又は2記
載のセラミック電子部品の製造方法。
3. After the completion of the degreasing step, the amount of residual carbon in the ceramic element at the end of the degreasing step is 1 mol with respect to 1 mole.
It is characterized in that it is baked at a temperature of at least 800 ° C. while supplying water at a rate of 3 mol or more per minute, and then is baked at a predetermined temperature profile while supplying only water for maintaining a wet reducing atmosphere. A method of manufacturing a ceramic electronic component according to claim 1.
JP33987794A 1994-12-30 1994-12-30 Manufacturing method of ceramic electronic components Expired - Lifetime JP3250400B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33987794A JP3250400B2 (en) 1994-12-30 1994-12-30 Manufacturing method of ceramic electronic components

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33987794A JP3250400B2 (en) 1994-12-30 1994-12-30 Manufacturing method of ceramic electronic components

Publications (2)

Publication Number Publication Date
JPH08186053A true JPH08186053A (en) 1996-07-16
JP3250400B2 JP3250400B2 (en) 2002-01-28

Family

ID=18331670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33987794A Expired - Lifetime JP3250400B2 (en) 1994-12-30 1994-12-30 Manufacturing method of ceramic electronic components

Country Status (1)

Country Link
JP (1) JP3250400B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7276130B2 (en) 2001-04-12 2007-10-02 Tdk Corporation Production method of multilayer ceramic electronic device

Also Published As

Publication number Publication date
JP3250400B2 (en) 2002-01-28

Similar Documents

Publication Publication Date Title
KR100782238B1 (en) Method of production of multilayer ceramic electronic device
WO2005117041A1 (en) Electronic part, layered ceramic capacitor, and manufacturing method thereof
CN105826073A (en) Laminated ceramic electronic component
JP2007266289A (en) Laminated ceramic electronic component, and its manufacturing method
JP3685656B2 (en) Manufacturing method of multilayer ceramic electronic component
JPH08186053A (en) Production of ceramic electronic device
JP5151039B2 (en) Dielectric ceramic, manufacturing method thereof, and multilayer ceramic capacitor
JP2007039755A (en) Composite metal powder, manufacturing method therefor, electroconductive paste, method for manufacturing electronic parts, and electronic parts
JP3150479B2 (en) Method of manufacturing multilayer wiring ceramic substrate
JPH08167536A (en) Manufacture of copper-inside electrode laminated ceramic capacitor
JP3520075B2 (en) Manufacturing method of multilayer ceramic electronic component
JP2000290077A (en) Production of multilayer ceramic electronic component
JP2970781B2 (en) Manufacturing method of multilayer capacitor
JP2001076963A (en) Manufacture of laminated ceramic electronic component
KR100296865B1 (en) a method prepaparing a layered ceramic condenser
JP2003124054A (en) Method of manufacturing laminated ceramic electronic part
JP3239718B2 (en) Manufacturing method of multilayer ceramic electronic component
JP2004221304A (en) Method for manufacturing electronic parts having internal electrode
CN113488335B (en) Method for manufacturing multilayer ceramic capacitor
JPH02270313A (en) Dielectric porcelain composition, laminated ceramic capacitor using the composition and manufacture thereof
JP2019067827A (en) Laminate electronic component
JP3240048B2 (en) Manufacturing method of multilayer ceramic capacitor
JP3586258B2 (en) Manufacturing method of multilayer ceramic electronic component
JPWO2010101114A1 (en) DIELECTRIC CERAMIC COMPOSITION, DIELECTRIC, CERAMIC SUBSTRATE AND ELECTRONIC COMPONENT, AND METHOD FOR PRODUCING DIELECTRIC
JP2006041134A (en) Method and apparatus of degreasing using centrifugal field

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20011016

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071116

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081116

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091116

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101116

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101116

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111116

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111116

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121116

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121116

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131116

Year of fee payment: 12

EXPY Cancellation because of completion of term