JPH08185900A - Temperature differential secondary battery - Google Patents

Temperature differential secondary battery

Info

Publication number
JPH08185900A
JPH08185900A JP34030394A JP34030394A JPH08185900A JP H08185900 A JPH08185900 A JP H08185900A JP 34030394 A JP34030394 A JP 34030394A JP 34030394 A JP34030394 A JP 34030394A JP H08185900 A JPH08185900 A JP H08185900A
Authority
JP
Japan
Prior art keywords
temperature
battery
electrodes
temperature difference
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34030394A
Other languages
Japanese (ja)
Inventor
Toshiro Hirai
敏郎 平井
Kazuhiko Shindo
一彦 新藤
Tsutomu Ogata
努 尾形
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP34030394A priority Critical patent/JPH08185900A/en
Publication of JPH08185900A publication Critical patent/JPH08185900A/en
Pending legal-status Critical Current

Links

Landscapes

  • Hybrid Cells (AREA)

Abstract

PURPOSE: To provide a temperature differential secondary battery, allowing an easy operation and saving space. CONSTITUTION: An ion exchange membrane 3 is laid in the electrolyte for a temperature differential cell capable of generating an electro motive force, with one side of an electrode 2 set at high temperature and another side of an electrode 1 at low temperature to cause a temperature difference to appear across the electrodes 2 and 1. The concentration of electrolytes 6 and 7 separated from each other via the membrane 3 and existing at both sides thereof is thereby kept in a controllable state, depending on electrochemical reaction for providing a secondary system. In addition, auxiliary electrodes 8 and 9 are laid at both sides of the membrane 3 as a pair for use even during a charging process via the main electrodes 2 and 1. Also, the cell is made connectable in a cassette form. As a result, a battery set easy to operate as well as having a stable and sturdy structure can be provided, and heat is stably supplied. In addition, space can also be saved, and the battery set made of time differential secondary batteries can be provided, so as to give high energy density and have inexpensive constitution.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の技術分野】本発明は、充放電可能で、温度差解
消の際にも大きな容量を取得できる温度差二次電池に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a temperature difference secondary battery which can be charged and discharged and can obtain a large capacity even when the temperature difference is eliminated.

【0002】[0002]

【従来技術】近年、エネルギーの有効利用が強調され、
各種のリサイクルが盛んとなっている。エネルギーにお
いても、その有効利用が、コスト面のみならず、地球環
境の観点からも重要視されてきている。各種熱機関にお
いては、そのエネルギーの半分以上は廃熱として無駄に
廃棄されており、このエネルギーのリサイクルは研究開
発者の焦眉の課題であった。
2. Description of the Related Art In recent years, effective use of energy has been emphasized,
Various types of recycling are popular. Effective use of energy has been emphasized not only in terms of cost but also from the viewpoint of global environment. In various heat engines, more than half of the energy is wasted as waste heat, and the recycling of this energy has been an urgent issue for research and development.

【0003】従来、熱エネルギーを電気エネルギーに変
換する熱電変換機器の一つとして、電気化学的な温度差
電池が知られている。電気化学的温度差電池(以下、温
度差電池)は、一方の電極側を高温にし、他方の電極側
を低温にすることによって、電極間に温度差を与え、こ
の温度差によって電極電位に差が生ずることを利用して
電圧を生じさせたものである。さらに、エネルギー利用
の利便を図るために、温度差電池にもう一対の電極を設
け、二次化を図ると共に、常時電池を使用可能とした提
案がなされた(特願平4−28328号)。
Conventionally, an electrochemical temperature difference battery has been known as one of thermoelectric conversion devices for converting heat energy into electric energy. An electrochemical temperature difference battery (hereinafter referred to as a temperature difference battery) provides a temperature difference between electrodes by raising the temperature of one electrode side and lowering the temperature of the other electrode side, and this temperature difference causes a difference in electrode potential. The voltage is generated by utilizing the phenomenon. Furthermore, in order to make the use of energy convenient, a proposal has been made that another pair of electrodes is provided on the temperature difference battery to make it secondary, and that the battery can always be used (Japanese Patent Application No. 4-28328).

【0004】図1に提案された温度差二次電池の構成概
念の一例を示す。図1において、1は低温側電極、2は
高温側電極、3はイオン交換膜である。4は低温環境を
醸成するための冷温媒体、5は高温環境を醸成するため
の高温媒体であり、6は低温側の電解液、7は高温側の
電解液である。高温媒体4はヒーターであっても構わな
い。冷温媒体4と高温媒体5の媒体によって電極1、2
間の温度差が生じると前記電極1、2間に電圧が生じて
くる。これを外部導体によって回路10を形成すると、
電子の流れが生じ(図1の場合は低温側が酸化され、高
温側が還元される、すなわち、高温側が正極、低温側が
負極となっている)、それに応じて電解液6、7間に濃
度差が生じてくる。イオン交換膜は、生じた濃度差の対
イオンを調節する機能を果たしている。この電池に、補
助電極8、9をイオン交換膜の両側に設置し、外部回路
11を形成すると電流取得が可能となる。すなわち、補
助電極8、9は温度差設定下での電極1、2によって生
じた電解液6、7の濃度差を解消させることによって有
効電流を生じるわけである。もし、この外部回路を開回
路にすれば、温度差設定の電極1、2によって電解液
6、7間の濃度差は拡大し、これが一般の二次電池にお
ける充電に相当することになる。本明細書(特許請求の
範囲を含む)において、温度差設定下における上記温度
差二次電池の主電極による電解液間の濃度差の拡大を充
電と呼称することにする。
FIG. 1 shows an example of the configuration concept of the proposed temperature difference secondary battery. In FIG. 1, 1 is a low temperature side electrode, 2 is a high temperature side electrode, and 3 is an ion exchange membrane. Reference numeral 4 is a cold / warm medium for fostering a low temperature environment, 5 is a high temperature medium for fostering a high temperature environment, 6 is an electrolytic solution on the low temperature side, and 7 is an electrolytic solution on the high temperature side. The high temperature medium 4 may be a heater. Depending on the medium of the cold medium 4 and the medium of the high temperature 5, the electrodes 1, 2
When a temperature difference occurs between them, a voltage is generated between the electrodes 1 and 2. When the circuit 10 is formed by an external conductor,
A flow of electrons occurs (in the case of FIG. 1, the low temperature side is oxidized and the high temperature side is reduced, that is, the high temperature side is the positive electrode and the low temperature side is the negative electrode), and accordingly, the concentration difference between the electrolytic solutions 6 and 7 occurs. Will occur. The ion exchange membrane has a function of controlling the counter ion of the generated concentration difference. If the auxiliary electrodes 8 and 9 are installed on both sides of the ion exchange membrane and the external circuit 11 is formed in this battery, current can be obtained. That is, the auxiliary electrodes 8 and 9 generate an effective current by eliminating the concentration difference between the electrolytes 6 and 7 caused by the electrodes 1 and 2 under the temperature difference setting. If this external circuit is opened, the concentration difference between the electrolytic solutions 6 and 7 is enlarged by the temperature difference setting electrodes 1 and 2, and this corresponds to charging in a general secondary battery. In the present specification (including the claims), the expansion of the concentration difference between the electrolytic solutions due to the main electrode of the temperature difference secondary battery under the temperature difference setting will be referred to as charging.

【0005】補助電極8、9を設置した該温度差二次電
池は、主電極1、2間を繋ぐ充電用外部回路を閉じるこ
とによって充電を行いながら、補助電極8、9によって
電気エネルギーを使用すれば、その充電、放電の電流バ
ランスを保つことによって、理想的には温度差設定が続
行される限り、連続、かつ永久に該温度差電池の電気エ
ネルギーが使用可能となる。
The temperature difference secondary battery provided with the auxiliary electrodes 8 and 9 uses electric energy by the auxiliary electrodes 8 and 9 while performing charging by closing an external charging circuit that connects the main electrodes 1 and 2. Then, by maintaining the current balance of charging and discharging, ideally, the electric energy of the temperature difference battery can be continuously and permanently used as long as the temperature difference setting is continued.

【0006】図1の一概念によって示したように、温度
差二次電池は、特別な充電器を必要とせず電気エネルギ
ーを電池内に蓄積でき、さらに補助電極の存在によって
主電極における充電中でも電池作動が可能となった。し
かも二対の電極の電流バランスを適当に保つことによっ
て永久に連続的に電気エネルギーを取得できるという大
きな特徴が強調された。
As shown by the concept of FIG. 1, the temperature difference secondary battery can store electric energy in the battery without the need for a special charger, and the presence of the auxiliary electrode allows the battery to be charged even during charging in the main electrode. It is possible to operate. Moreover, the great feature was emphasized that the electric energy can be continuously acquired forever by appropriately maintaining the current balance between the two pairs of electrodes.

【0007】該温度差二次電池は、利用範囲の限定され
た熱エネルギーをより利用範囲の広い電気エネルギーに
変換するものであって、例えば、現在、エネルギー有効
利用の観点から注目されているコージェネレーションシ
ステムに組み込んで使用されることが考えられる。この
場合、一次電気エネルギーの発生源は、燐酸型燃料電池
(PAFC)や溶融塩型燃料電池(MCFC)、あるい
は新規の高分子交換膜型燃料電池(PMFC)や固体電
解質型燃料電池(SOFC)であり、あるいはジェット
タービンエンジンなどである。
The temperature-difference secondary battery converts thermal energy with a limited utilization range into electric energy with a wider utilization range. For example, the temperature-difference secondary battery currently attracts attention from the viewpoint of effective energy utilization. It may be used by incorporating it into a generation system. In this case, the source of primary electric energy is a phosphoric acid fuel cell (PAFC) or a molten salt fuel cell (MCFC), or a new polymer exchange membrane fuel cell (PMFC) or solid oxide fuel cell (SOFC). Or a jet turbine engine or the like.

【0008】コージェネレーションシステムは常時運転
を前提としており、システム全体のエネルギーバランス
は厳密に保たれて運転されている。しかし、突発的な運
転停止が生じた場合、その停止期間、それらエネルギー
バランスを大きく崩壊させないように個々の維持装置を
補助し、かつ、その電気エネルギーを代替するのは、従
来通り鉛蓄電池や、別のジェットタービンエンジンであ
り、これらの施設を付設すると余計な床面積を専有され
るという欠点を有していた。もし、この代替を該温度差
二次電池によって行われるならば、該電池は循環温水の
管周囲などに取付けられているため余分の床面積専有が
小さくて済み、かつ通常は電気エネルギーを供給してい
るため、その有効価値は大幅に高まる。
The cogeneration system is premised on constant operation, and the energy balance of the entire system is strictly maintained for operation. However, in the event of a sudden shutdown, assisting individual maintenance devices so as not to significantly disrupt their energy balance during that shutdown period, and replacing that electrical energy, lead acid batteries and conventional It was another jet turbine engine, and when these facilities were attached, it had the drawback of occupying an extra floor space. If this alternative is performed by the temperature difference secondary battery, the battery is mounted around the pipe of circulating hot water, so that the occupation of the extra floor area is small and normally the electric energy is supplied. Therefore, its effective value is significantly increased.

【0009】[0009]

【発明が解決すべき問題点】しかしながら、この温度差
二次電池の欠点を指摘すると、温度差によって生じる電
池の起電力は、あらゆる可能な電池反応活物質を考慮し
ても5mV/℃を越えることはなく、一般の電池に比し
て極めて小さいことであり、例えばフェロシアン化カリ
ウム/フェリシアン化カリウムのレドックス系において
は温度差100℃において理論値にしてもせいぜい14
0mV程度と低電圧に止まった。
However, pointing out the drawback of this temperature difference secondary battery, the electromotive force of the battery caused by the temperature difference exceeds 5 mV / ° C. even if all possible battery reaction active materials are taken into consideration. This is extremely small compared to general batteries. For example, in the case of a redox system of potassium ferrocyanide / potassium ferricyanide, the theoretical value is at most 14 at a temperature difference of 100 ° C.
The voltage remained low at about 0 mV.

【0010】また、該温度差電池に上記コージェネレー
ションシステムなどへの用途を要求するとなると、電池
作動のために必要な電解液循環装置などの補助装置をで
きるだけ排除して省スペースを徹底し、しかも組み立て
が少部品点数で済み簡単に行え、コストが安くあがるな
どの条件が必要となってくる。
Further, when the temperature differential battery is required to be used in the above-mentioned cogeneration system or the like, auxiliary devices such as an electrolytic solution circulating device necessary for operating the battery are eliminated as much as possible, and space saving is thoroughly implemented. Assembling requires only a small number of parts, is easy to perform, and costs are low.

【0011】しかしながら現状は、温度差電池の二次化
を狙ってイオン交換膜と補助電極とを加えたために、交
換膜のシール化部品、補助電極の設置部品と配線など、
かえってその電池構造が極めて複雑化することとなっ
た。このために、一次電池の場合に比べて、電池の容積
が大きくならざるを得ず、コスト高となった。さらに、
補助電極設置に伴う複雑な配線の必要性を満たすとなる
と、電池容積の肥大化だけに止まらず、シール性の劣化
も懸念され、現状のままで単電池を組み合わせ組電池を
形成することは極めて技術的に困難な課題であった。
However, at present, since the ion exchange membrane and the auxiliary electrode are added for the purpose of making the temperature difference battery secondary, parts for sealing the exchange membrane, parts for installing the auxiliary electrode and wiring, etc.
On the contrary, the battery structure became extremely complicated. For this reason, the volume of the battery is inevitably larger than that in the case of the primary battery, and the cost is increased. further,
When the need for complicated wiring accompanying the installation of auxiliary electrodes is satisfied, not only is the battery volume increased, but there is concern that the sealing performance will deteriorate, and it is extremely difficult to form an assembled battery by combining cells as is. It was a technically difficult task.

【0012】[0012]

【発明の目的】本発明の目的は、上記現状を改良するた
め、簡便で省スペース化を実現する温度差二次電池を提
供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a temperature difference secondary battery which is simple and saves space in order to improve the above-mentioned current situation.

【0013】[0013]

【発明の構成】かかる目的を達成するために、本発明に
よる温度差二次電池は、電極の一方を高温に設定し、電
極の他方を低温に設定し、電極間に温度差を設けて起電
力を生じせしめる温度差電池の電解液中にイオン交換膜
を導入して、イオン交換膜で隔てられた両側の電解液の
濃度を電気化学反応に応じてコントロールされるように
して二次化した上、さらにこのイオン交換膜の両側に補
助電極一対を設けて主電極による充電中でも使用可能と
した温度差二次電池の単電池をカセット式に接続可能に
したことを特徴とする。
In order to achieve such an object, the temperature difference secondary battery according to the present invention is started by setting one of the electrodes at a high temperature and the other of the electrodes at a low temperature and providing a temperature difference between the electrodes. Ion-exchange membrane was introduced into the electrolyte of the temperature difference battery that generates electric power, and the concentration of the electrolyte on both sides separated by the ion-exchange membrane was converted to secondary according to the electrochemical reaction. Further, the present invention is characterized in that a pair of auxiliary electrodes are provided on both sides of the ion exchange membrane so that a single battery of a temperature difference secondary battery that can be used even during charging by the main electrode can be connected in a cassette type.

【0014】本発明では、単電池をカセット式に簡便に
接続配列できるように温度差二次電池の単電池を構成す
ることを提案するものである。
The present invention proposes to construct a unit cell of a temperature difference secondary battery so that the unit cells can be simply connected and arranged in a cassette type.

【0015】すなわち、該温度差二次電池の単電池の形
状を単電池の一方の側面に凹部を、他方の側面に凸部を
設けるようにし、かつ、主電極、副電極のプラス端子を
一方の側面に、マイナス端子を他方の側面に、それぞれ
の電極について一定の高さになるように配置してなるよ
うにする。
That is, the shape of the unit cell of the temperature difference secondary battery is such that a concave portion is provided on one side surface of the unit cell and a convex portion is provided on the other side surface thereof, and the positive terminals of the main electrode and the sub electrode are provided on one side. The negative terminal is arranged on the other side surface so that each electrode has a constant height.

【0016】本発明を図を用いてさらに詳しく説明す
る。
The present invention will be described in more detail with reference to the drawings.

【0017】図2は、本発明における新しい温度差二次
電池の組電池構成法を満たすための単電池の一基本構造
概念における上部俯瞰断面図である。図2において、イ
オン交換膜3の両側に、両側の電解液6、7の混合を遮
断するため、真ん中をくり抜いたプラスティックシート
12、13を配置する。この両シートの外側に補助電極
8と9を配し、それぞれ集電体14と15とを接して配
置する。集電体14、15と主電極1、2との間の、電
解液を満たす空間6、7は、スペーサ16、17を設置
して確保している。集電体14、15にはそれぞれ、左
右別方向に向けて同じ高さとなる位置にリード板を持っ
ている。
FIG. 2 is an overhead view cross-sectional view showing one basic structural concept of the unit cell for satisfying the new battery construction method for the temperature difference secondary battery according to the present invention. In FIG. 2, plastic sheets 12 and 13 having hollow parts are arranged on both sides of the ion exchange membrane 3 in order to block the mixing of the electrolytic solutions 6 and 7 on both sides. Auxiliary electrodes 8 and 9 are arranged on the outer sides of both sheets, and current collectors 14 and 15 are arranged in contact with each other. Spaces 6 and 7 between the current collectors 14 and 15 and the main electrodes 1 and 2 that fill the electrolytic solution are secured by installing spacers 16 and 17. Each of the current collectors 14 and 15 has a lead plate at the same height in left and right directions.

【0018】これらの電池構成要素は、熱伝導盤18と
これから延びるリード板20を有する電池ケース22
と、同じく熱伝導盤19とこれから延びるリード板21
を有する電池ケース23とではさみ、この両電池ケース
22と23との接合面を接着剤を用いて合体させる。
These battery components include a battery case 22 having a heat conduction plate 18 and a lead plate 20 extending therefrom.
Similarly, a heat conduction plate 19 and a lead plate 21 extending from this
It is sandwiched between the battery case 23 and the battery case 23, and the joint surfaces of the battery cases 22 and 23 are joined together with an adhesive.

【0019】図3は、このように構成される単電池の構
成ブロックをわかりやすく図示したものである。
FIG. 3 is a diagram showing the constituent blocks of the unit cell having such a structure in an easy-to-understand manner.

【0020】電池ケース22と23との上部には細管2
5と26とが取り付けられており、この細管から図2の
電解液スペース6、7にそれぞれ電解液は充填される。
A thin tube 2 is provided above the battery cases 22 and 23.
5 and 26 are attached, and the electrolyte spaces 6 and 7 in FIG. 2 are filled with the electrolyte from the capillaries.

【0021】図4は完成された温度差単電池の外観を示
している。電池ケースの両サイドには楔状の突起Aとこ
れに噛み合う対応形状の凹みBとを設け、これを利用し
て各単電池を直列に組み合わせる。
FIG. 4 shows the appearance of the completed temperature difference cell. On both sides of the battery case, wedge-shaped protrusions A and recesses B having a corresponding shape that mesh with the wedge-shaped protrusions A are provided, and by utilizing this, the unit cells are combined in series.

【0022】突起Aあるいは凹みBには補助電極集電体
14、15のプラス、マイナス、リード端子が折り曲げ
られて存在しており、また突起Aあるいは凹みB以外の
ケースサイド表面には同じ高さになるように主電極用の
リード板20、あるいは21が存在している。したがっ
て、二以上の前記単電池をそれぞれの前記突起Aとそれ
ぞれの凹みBを噛み合わせて嵌合せしめることにより、
補助電極、主電極のそれぞれが電気的に接続するように
なっている。
The protrusions A and the recesses B are formed by bending the plus, minus, and lead terminals of the auxiliary electrode current collectors 14 and 15, and the case side surfaces other than the protrusions A and the recesses B have the same height. The lead plate 20 or 21 for the main electrode is present so that Therefore, by engaging two or more of the unit cells with the protrusions A and the recesses B engaged with each other,
Each of the auxiliary electrode and the main electrode is electrically connected.

【0023】電池ケース22と23とに取り付けられて
いた細管24と25とは、電解液を必要量充填した後
は、引き抜き、その後の穴を接着剤などで埋める。構造
上細管の引き抜きが不適当と認められる場合は、この細
管を残したまま、熱融着やピンチングなどで細管を閉塞
することもできる。
The thin tubes 24 and 25 attached to the battery cases 22 and 23 are withdrawn after the necessary amount of electrolyte has been filled, and then the holes are filled with an adhesive or the like. When it is recognized that the drawing of the thin tube is inappropriate due to its structure, the thin tube can be closed by heat fusion or pinching while leaving the thin tube.

【0024】図5はこうした単電池を直列に配列した場
合の概念図を示したものである。単電池を両サイドの突
起Aと凹みBを利用して直列に連結することができ、連
結された両端の単電池からは主電極と補助電極のプラ
ス、マイナス端子となるリード板14、15、20、2
1が存在する。必要ならば、この両端には、リード端子
26、28と窪み30を持つ端子ブロック31と、同じ
くリード端子27、29と突起32とを持つ端子ブロッ
ク33とを、この直列に連結した電池の両端に連結して
端子を取りやすくすることができる。
FIG. 5 shows a conceptual diagram when such cells are arranged in series. The cells can be connected in series using the protrusions A and the recesses B on both sides, and the lead cells 14 and 15 serving as the positive and negative terminals of the main electrode and the auxiliary electrode can be connected from the connected cells at both ends. 20, 2
There is one. If necessary, a terminal block 31 having lead terminals 26 and 28 and a recess 30 and a terminal block 33 having lead terminals 27 and 29 and a protrusion 32 are provided at both ends of the battery. The terminal can be easily connected by connecting to.

【0025】これら、本発明における温度差二次電池を
構成する材料は、従来用いられている材料を使用するこ
とができる。一例を挙げると以下のようになる。
As the materials constituting the temperature difference secondary battery in the present invention, conventionally used materials can be used. An example is as follows.

【0026】すなわち、主電極1、2は、白金板、炭素
とプラスティックバインダーとからなるプラスティック
カーボン、炭素繊維、およびその織布、グラファイト板
などから選ぶことができ、補助電極8、9は、電解液中
のイオンの移動を妨げないような白金網、炭素繊維織布
などから選ぶことができる。
That is, the main electrodes 1 and 2 can be selected from a platinum plate, plastic carbon composed of carbon and a plastic binder, carbon fiber and its woven cloth, graphite plate, etc., and the auxiliary electrodes 8 and 9 are electrolyzed. It can be selected from platinum mesh, carbon fiber woven cloth, etc. that do not prevent the movement of ions in the liquid.

【0027】イオン交換膜3はスチレン・ジビニルベン
ゼン共重合系、スチレン・ブタジエン・スチレン・トリ
ブロック共重合系の高分子電解質膜、ナフィオンを用い
た高分子電解質膜などから、ブロックすべきイオン種と
透過させるべきイオン種とを考慮して選択することがで
きる。
The ion exchange membrane 3 is a styrene / divinylbenzene copolymer type polymer electrolyte, a styrene / butadiene / styrene / triblock copolymer type polymer electrolyte membrane, a polymer electrolyte membrane using Nafion, and the like. It can be selected in consideration of the ion species to be transmitted.

【0028】イオン交換膜を両サイドから挟むプラステ
ィックシート12、13は、イオン交換膜3両側の電解
液の混合を遮蔽するのに優れた遮蔽性を満たす高分子シ
ートであり、シリコンゴムや、ポリエチレン、ポリプロ
ピレン、ポリ塩化ビニル、ポリ塩化ビニリデンなどから
選ぶことができる。スペーサー16、17は、電解液の
スペース確保の信頼性に優れた堅牢性を満たし、かつ不
導体である材料で、ポリプロピレン、ポリエチレン、テ
フロン、ポリ塩化ビニルなどから選ぶことができる。
The plastic sheets 12 and 13 sandwiching the ion exchange membrane from both sides are polymer sheets satisfying excellent shielding property for shielding the mixture of the electrolytic solution on both sides of the ion exchange membrane 3, such as silicone rubber or polyethylene. , Polypropylene, polyvinyl chloride, polyvinylidene chloride, etc. The spacers 16 and 17 are non-conductive materials that satisfy the reliability of securing a space for the electrolytic solution and are non-conductive, and can be selected from polypropylene, polyethylene, Teflon, polyvinyl chloride and the like.

【0029】また、集電体14、15は電解液と化学
的、電気化学的に反応しない導電性物質なら何でもよ
く、具体的にはニッケル板、チタン板、銅板などがそれ
ぞれの反応系に応じて選択できる。熱伝導盤18、1
9、リード板20、21も同様な観点から選択できる。
The current collectors 14 and 15 may be made of any conductive material that does not chemically or electrochemically react with the electrolytic solution. Specifically, a nickel plate, a titanium plate, a copper plate or the like may be used depending on the reaction system. Can be selected. Heat conduction board 18, 1
9 and the lead plates 20 and 21 can be selected from the same viewpoint.

【0030】この具体例に使用される熱伝導盤18、1
9は、外部の低温、高温の熱媒体に接触させて用いるこ
とを想定した平板であるが、必要、かつ使用条件に応じ
て種々形状を変更することもできる。
The heat conduction plates 18 and 1 used in this example.
Reference numeral 9 is a flat plate that is supposed to be used in contact with an external low-temperature or high-temperature heat medium, but various shapes can be changed according to the necessity and use conditions.

【0031】電池ケース22、23の材料は、断熱性に
比較的優れていて、該温度差二次電池の適用温度領域で
変形しないことなどの条件であるが、電解液に水溶液系
を用いる場合、ポリプロピレン、ポリエチレン、テフロ
ンなどが使用できる。
The materials of the battery cases 22 and 23 are relatively excellent in heat insulating property so that they are not deformed in the application temperature range of the temperature difference secondary battery. , Polypropylene, polyethylene, Teflon, etc. can be used.

【0032】電解液は、温度差電池の反応系を決定付け
るものであり、フェロシアン化カリウム/フェリシアン
化カリウムなどが考えられる。
The electrolytic solution determines the reaction system of the temperature difference battery, and may be potassium ferrocyanide / potassium ferricyanide or the like.

【0033】電池ケース22と23とを合体させる接着
剤は、該温度差電池の適用温度領域を配慮して選ぶこと
ができるが、通常は市販のエポキシ系接着剤などから選
ぶことができる。
The adhesive for uniting the battery cases 22 and 23 can be selected in consideration of the application temperature range of the temperature difference battery, but it is usually selected from commercially available epoxy adhesives and the like.

【0034】これらに図示した温度差二次電池の構成
は、一列に直列連結する場合であるが、適用条件を勘案
して、単電池の両サイドにある突起A、あるいは凹みB
の何れかを、下部、または上部に配置する電池ケースを
別に作製し、補助電極の集電体14または15の端子リ
ード板の何れかをそれに応じて、下部、または上部に配
置するように変更して作製し、さらに熱伝導盤18また
は19から延びるリード板20、または21の何れかを
上部または下部に位置変更して作製して適用することも
できる。
The structure of the temperature difference secondary batteries shown in these figures is a case where they are connected in series in a row, but in consideration of the application conditions, the projections A or the recesses B on both sides of the unit cell are taken into consideration.
A battery case for arranging either one of them in the lower part or the upper part is separately prepared, and either of the terminal lead plates of the collectors 14 or 15 of the auxiliary electrodes is arranged in the lower part or the upper part accordingly. Alternatively, the lead plate 20 or 21 extending from the heat conduction plate 18 or 19 may be manufactured by changing the position of the upper part or the lower part.

【0035】このような電池構成にすることによって、
イオン交換膜と補助電極とを導入して二次化した場合に
も、本発明における構成法に従えば、複雑な補助電極の
回路を簡便化し、簡潔にして信頼性高い組電池を構成で
きることが可能となる。
By using such a battery structure,
Even when the ion-exchange membrane and the auxiliary electrode are introduced to make them secondary, according to the configuration method of the present invention, a complicated auxiliary electrode circuit can be simplified and a simple and reliable assembled battery can be constructed. It will be possible.

【0036】以下に、本発明の実施例において詳述する
が、本発明は何らこれら実施例に限定されることはな
い。
Examples of the present invention will be described in detail below, but the present invention is not limited to these examples.

【0037】[0037]

【実施例】フェリシアン化カリウム0.4M、フェロシ
アン化カリウム0.4M混合水溶液を電解液に用い、炭
素繊維織布を所定の形状に切り出して主電極、補助電極
とした。陽イオン交換膜にはスチレン、ジビニルベンゼ
ン系のネオセプターCM−1(徳山曹達製)を用いて温
度差二次電池を作製した。
EXAMPLE A 0.4 M potassium ferricyanide / 0.4 M potassium ferrocyanide mixed aqueous solution was used as an electrolytic solution, and a carbon fiber woven cloth was cut into a predetermined shape to form a main electrode and an auxiliary electrode. A styrene / divinylbenzene-based Neoceptor CM-1 (manufactured by Tokuyama Soda) was used for the cation exchange membrane to prepare a temperature difference secondary battery.

【0038】本実施例における試験単電池を図2、3、
4に示す構造で作製した。図2の陽イオン交換膜CM−
1の両側に配置するシート12、13にはシリコンゴム
シートを用いた。集電体14、15はチタンネットを切
り出して用いた。スペーサー16、17はテフロンを用
いた。18、19の熱伝導盤はSUS板を用い、これに
スポット溶接でニッケル製の20、21を接続した。単
電池ケース22、23はポリプロピレン製で、これの上
部にあらかじめマイクロシリンジの針を接着剤で設置し
て電解液の充填用に用いた。テフロン製の単電池ケース
はエポキシで接着した。単電池のサイズは幅5cm、奥
行き2cmであった。(突起は5mm)電極は3cm×
3cmであった。このように作製した単電池を3個直列
に接続して組電池とした。組電池のトータルの長さは1
4cm、高さは単電池と変わらず5cm、奥行きも単電
池と同じ2cmであり、直方体とした総外容積は140
ccとなった。
The test cell in this example is shown in FIGS.
The structure shown in FIG. Cation exchange membrane CM- in Figure 2
Silicon rubber sheets were used for the sheets 12 and 13 arranged on both sides of the sheet 1. As the current collectors 14 and 15, titanium nets were cut out and used. Teflon was used for the spacers 16 and 17. A SUS plate was used for the heat conduction plates 18 and 19, and nickel-made 20 and 21 were connected thereto by spot welding. The unit cell cases 22 and 23 were made of polypropylene, and the needle of the microsyringe was previously installed on the upper part of the case with an adhesive and used for filling the electrolytic solution. The Teflon cell case was glued with epoxy. The size of the unit cell was 5 cm in width and 2 cm in depth. (Protrusion is 5 mm) Electrode is 3 cm x
It was 3 cm. Three unit cells thus produced were connected in series to form an assembled battery. The total length of the battery pack is 1
The height is 4 cm, the height is 5 cm, which is the same as that of the unit cell, and the depth is 2 cm, which is the same as the unit cell.
It became cc.

【0039】比較のため、単電池上部に主電極、補助電
極のプラス、マイナス両端子がでている、本発明におけ
る実施例の電池と同一サイズの単電池を3個作製し、端
子を鰐口クリップで接続して連結し、組電池とした。こ
の場合、組電池トータルの長さは15cm、高さは、配
線のスペース2cmを含め7cm、奥行きは単電池と同
じ2cmであり、同じく直方体として計算される総外容
積は210ccと、同一サイズの単電池ながら本発明に
おける構成法に比べて1.5倍の占有容積となり、占有
スペースのムダが大きくなった。
For comparison, three unit cells of the same size as the battery of the embodiment of the present invention, in which the main electrode and the auxiliary electrode plus and minus terminals are formed on the upper part of the unit cell, are manufactured, and the terminals are crocodile clips. Were connected and connected to form an assembled battery. In this case, the total length of the battery pack is 15 cm, the height is 7 cm including the wiring space of 2 cm, and the depth is 2 cm, which is the same as that of the unit cell, and the total outer volume calculated as a rectangular parallelepiped is 210 cc, which is the same size. Although it was a single cell, the occupied volume was 1.5 times that of the construction method of the present invention, and the waste of occupied space was large.

【0040】熱源には、内径8mmのパイプを内蔵させ
た、幅10cm、長さ20cm、厚さ2cmの鉄製の板
を用意し、組電池の両側の熱伝導盤に接して配置した。
一方の鉄板にはオイル浴からオイルを循環させて、高温
側電極を70℃に設定し、他方の鉄板には冷却させたメ
タノールを循環させて低温側電極を50℃に設定した。
An iron plate having a width of 10 cm, a length of 20 cm, and a thickness of 2 cm, in which a pipe having an inner diameter of 8 mm was incorporated, was prepared as a heat source, and the plate was placed in contact with the heat conduction plates on both sides of the assembled battery.
Oil was circulated from the oil bath to one iron plate to set the high temperature side electrode to 70 ° C, and cooled iron was circulated to the other iron plate to set the low temperature side electrode to 50 ° C.

【0041】比較の場合は、各単電池がちょっとした外
的要因で動きやすく安定した熱を供給させるため、万力
で電池を鉄板に接して締めつけ固定する必要があった。
本発明における組電池の場合には、その必要はなく単電
池両サイドの凹凸の連結によってうまく固定された鉄板
の接触も容易に行えた。
In the case of comparison, it was necessary to clamp and fix the battery in contact with the iron plate with a vise in order that each unit cell could easily move due to a slight external factor to supply stable heat.
In the case of the assembled battery of the present invention, this is not necessary, and the iron plate that is well fixed by the connection of the irregularities on both sides of the unit cell can be easily contacted.

【0042】本発明における構成法の組電池では、1時
間温度差のバラツキを測定したところ、温度差の平均値
からのブレは各単電池に差はなく、何れも±3℃に止ま
った。一方、比較例における構成の組電池は、万力によ
る強力な締めつけを行う前は各単電池によって温度差の
バラツキが異なり、中央の単電池は±3℃と、本発明に
おける組電池と同じだったものの両端の単電池では、そ
れぞれ±5℃、±7℃と大きくなった。万力で強力に締
めつけることによってこのバラツキは小さくなり左右両
端で±3℃、±4℃までは改善された。
When the variation of the temperature difference was measured for the assembled battery of the constitution method of the present invention for one hour, the deviation from the average value of the temperature difference was not different among the individual cells, and both stopped at ± 3 ° C. On the other hand, in the assembled battery of the configuration of the comparative example, the variation in the temperature difference is different depending on each unit cell before the strong clamping with the vise, and the central unit cell is ± 3 ° C., which is the same as the assembled battery of the present invention. However, the cell size at both ends was as large as ± 5 ° C and ± 7 ° C, respectively. By tightening firmly with a vise, this variation was reduced and it was improved to ± 3 ° C and ± 4 ° C at both left and right ends.

【0043】これによると、本実施例において、本発明
になる構成法の組電池では、従来通りの構成による比較
例の組電池より、省占有スペースであり、かつ安定強固
な構成で熱供給も安定して行えることが明らかとなっ
た。
According to this, in the present embodiment, the assembled battery of the construction method according to the present invention occupies less space than the assembled battery of the comparative example having the conventional construction, and the heat supply is stable and robust. It became clear that it could be done stably.

【0044】[0044]

【発明の効果】以上述べたように、本発明における温度
差二次単電池によって、簡便で安定強固な組電池が作製
でき、熱供給も安定に行え、省スペースも実現されて高
エネルギー密度で安価な構成の温度差二次電池の組電池
が可能となった。
As described above, the temperature-difference secondary cell according to the present invention makes it possible to produce a simple and stable and robust assembled battery, stably supply heat, save space, and realize high energy density. An assembled battery of a temperature difference secondary battery having an inexpensive structure has become possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】温度差二次電池の構成概念の一例を示した図。FIG. 1 is a diagram showing an example of a configuration concept of a temperature difference secondary battery.

【図2】本発明における温度差二次単電池の一構成概念
における俯瞰図。
FIG. 2 is an overhead view of one structural concept of the temperature difference secondary battery according to the present invention.

【図3】本発明における一構成概念に基づくブロック構
成図。
FIG. 3 is a block configuration diagram based on one configuration concept in the present invention.

【図4】本発明における一構成概念に従って作製した温
度差単電池の外観図。
FIG. 4 is an external view of a temperature difference single cell manufactured according to one configuration concept of the present invention.

【図5】本発明における直列に連結された温度差二次電
池の一構成概念図。
FIG. 5 is a conceptual diagram showing a configuration of temperature difference secondary batteries connected in series in the present invention.

【符号の説明】[Explanation of symbols]

1 温度差二次電池の低温側主電極 2 温度差二次電池の高温側主電極 3 イオン交換膜 4 低温媒体 5 高温媒体 6 低温側の電解液 7 高温側の電解液 8 温度差二次電池の低温側に設置された補助電極 9 温度差二次電池の高温側に設置された補助電極 10 主電極の温度差充電を行う外部回路 11 補助電極の放電外部回路 12 イオン交換膜圧着シート 13 イオン交換膜圧着シート 14 補助電極用集電体 15 補助電極用集電体 16 スペーサー 17 スペーサー 18 熱伝導盤 19 熱伝導盤 20 主電極用リード板 21 主電極用リード板 22 電池ケース 23 電池ケース 24 電解液充填用細管 25 電解液充填用細管 26 補助電極用リード端子 27 補助電極用リード端子 28 主電極用リード端子 29 主電極用リード端子 30 窪み 31 端子ブロック 32 突起 33 端子ブロック 1 Low temperature side main electrode of temperature difference secondary battery 2 High temperature side main electrode of temperature difference secondary battery 3 Ion exchange membrane 4 Low temperature medium 5 High temperature medium 6 Low temperature side electrolyte solution 7 High temperature side electrolyte solution 8 Temperature difference secondary battery Auxiliary electrode installed on the low temperature side of the battery 9 Auxiliary electrode installed on the high temperature side of the temperature difference secondary battery 10 External circuit for charging the temperature difference of the main electrode 11 Discharge external circuit of the auxiliary electrode 12 Ion exchange membrane pressure bonding sheet 13 Ions Exchange membrane pressure-bonding sheet 14 Current collector for auxiliary electrode 15 Current collector for auxiliary electrode 16 Spacer 17 Spacer 18 Heat conduction board 19 Heat conduction board 20 Lead plate for main electrode 21 Lead plate for main electrode 22 Battery case 23 Battery case 24 Electrolysis Liquid filling thin tube 25 Electrolyte filling thin tube 26 Auxiliary electrode lead terminal 27 Auxiliary electrode lead terminal 28 Main electrode lead terminal 29 Main electrode lead terminal 30 Cavity 31 Terminal block 32 projection 33 Terminal Block

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】電極の一方を高温に設定し、電極の他方を
低温に設定し、電極間に温度差を設けて起電力を生じせ
しめる温度差電池の電解液中にイオン交換膜を導入し
て、イオン交換膜で隔てられた両側の電解液の濃度を電
気化学反応に応じてコントロールされるようにして二次
化した上、さらにこのイオン交換膜の両側に補助電極一
対を設けて主電極による充電中でも使用可能とした温度
差二次電池の単電池をカセット式に接続可能にしたこと
を特徴とする温度差二次電池。
1. An ion exchange membrane is introduced into an electrolytic solution of a temperature difference battery in which one of the electrodes is set to a high temperature and the other of the electrodes is set to a low temperature, and a temperature difference is provided between the electrodes to generate an electromotive force. Then, the concentration of the electrolytic solution on both sides separated by the ion exchange membrane is controlled so as to be controlled according to the electrochemical reaction, and a pair of auxiliary electrodes are provided on both sides of this ion exchange membrane to form the main electrode. A temperature-difference rechargeable battery characterized in that a single battery of a temperature-difference rechargeable battery that can be used even during charging by means of a cassette type can be connected.
【請求項2】前記単電池の一方の側に突部を前記突部と
嵌合する凹みを他方の側に設けるとともに、前記突起あ
るいは凹みには補助電極集電体のリード端子が設けら
れ、前記単電池のケースサイド表面には同じ高さになる
ように主電極用のリード板が備えられており、前記補助
電極相互、主電極相互が二以上の単電池の突部と凹部を
嵌合することにより電気的に接続するようになっている
ことを特徴とする請求項1記載の温度差二次電池。
2. A protrusion is provided on one side of the unit cell and a recess is formed on the other side for fitting the protrusion, and a lead terminal of an auxiliary electrode current collector is provided on the protrusion or the recess. A lead plate for the main electrode is provided on the case side surface of the unit cell so as to have the same height, and the auxiliary electrodes and the main electrodes are fitted to the protrusions and recesses of two or more unit cells. The temperature-difference secondary battery according to claim 1, wherein the temperature-difference secondary battery is electrically connected to the secondary battery.
【請求項3】二個以上の単電池をカセット式に接続した
ことを特徴とする請求項1又は2記載の温度差二次電
池。
3. The temperature difference secondary battery according to claim 1, wherein two or more unit cells are connected in a cassette type.
JP34030394A 1994-12-28 1994-12-28 Temperature differential secondary battery Pending JPH08185900A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34030394A JPH08185900A (en) 1994-12-28 1994-12-28 Temperature differential secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34030394A JPH08185900A (en) 1994-12-28 1994-12-28 Temperature differential secondary battery

Publications (1)

Publication Number Publication Date
JPH08185900A true JPH08185900A (en) 1996-07-16

Family

ID=18335659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34030394A Pending JPH08185900A (en) 1994-12-28 1994-12-28 Temperature differential secondary battery

Country Status (1)

Country Link
JP (1) JPH08185900A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018079325A1 (en) * 2016-10-27 2018-05-03 国立研究開発法人産業技術総合研究所 Thermo-electrochemical cell
JP2019200055A (en) * 2018-05-14 2019-11-21 株式会社バルカー Experimental device, experimental system, program, method, and learning method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018079325A1 (en) * 2016-10-27 2018-05-03 国立研究開発法人産業技術総合研究所 Thermo-electrochemical cell
JPWO2018079325A1 (en) * 2016-10-27 2019-06-24 国立研究開発法人産業技術総合研究所 Thermochemical battery
JP2019200055A (en) * 2018-05-14 2019-11-21 株式会社バルカー Experimental device, experimental system, program, method, and learning method
WO2019220959A1 (en) * 2018-05-14 2019-11-21 株式会社バルカー Experiment device, experiment system, program, and method, and learning method
TWI808171B (en) * 2018-05-14 2023-07-11 日商華爾卡股份有限公司 Experimental device, experimental system, program, method and learning method

Similar Documents

Publication Publication Date Title
CA1198475A (en) Fuel cell using organic, high-molecular electrolyte
US6818338B2 (en) Fuel cell assembly
CN101826621A (en) Bipolar plate for fuel cells
EP1964199B1 (en) Fuel cell
CN210576229U (en) Flow battery stack and heat insulation plate thereof
JPH03116661A (en) Solid electrolyte assembled-type battery
US3748179A (en) Matrix type fuel cell with circulated electrolyte
JP2840287B2 (en) Methanol fuel cell
JP2000058100A (en) Electrode layered structure
JPH08185900A (en) Temperature differential secondary battery
JP3430468B2 (en) Temperature difference secondary battery
JP4304955B2 (en) Solid polymer electrolyte fuel cell
JPH1126033A (en) Multi-cell temperature difference secondary battery
JPH0665045B2 (en) Fuel cell
JPS61279069A (en) Constitution of fuel cell
KR20140073460A (en) Emergency molten salt assembled battery, method for using the same, and emergency power supply apparatus
CN113036197B (en) Zinc-bromine flow battery
CN1754272A (en) Electrochemical energy source and electronic device incorporating such an energy source
JPH033338B2 (en)
KR100195093B1 (en) Bipolar plate for fuel cell
JPH08185903A (en) Temperature difference secondary battery
JPH0215564A (en) Electrode member of solid electrolyte type fuel cell and solid electrolyte type fuel cell
JP2505007Y2 (en) Electrolyte circulation type laminated battery
KR0124862Y1 (en) Molten carbonate type fuel cell
JPH07123046B2 (en) Molten carbonate fuel cell