JPH0665045B2 - Fuel cell - Google Patents

Fuel cell

Info

Publication number
JPH0665045B2
JPH0665045B2 JP59241717A JP24171784A JPH0665045B2 JP H0665045 B2 JPH0665045 B2 JP H0665045B2 JP 59241717 A JP59241717 A JP 59241717A JP 24171784 A JP24171784 A JP 24171784A JP H0665045 B2 JPH0665045 B2 JP H0665045B2
Authority
JP
Japan
Prior art keywords
catalyst layer
fuel
side catalyst
cathode
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP59241717A
Other languages
Japanese (ja)
Other versions
JPS61121265A (en
Inventor
憲朗 光田
芳昭 阪本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP59241717A priority Critical patent/JPH0665045B2/en
Publication of JPS61121265A publication Critical patent/JPS61121265A/en
Publication of JPH0665045B2 publication Critical patent/JPH0665045B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、燃料電池に関し、特に小出力の電力源とし
て用いられるものに関する。
TECHNICAL FIELD The present invention relates to a fuel cell, and more particularly to a fuel cell used as a power source of small output.

〔従来の技術〕 燃料電池は外部から供給される燃料と酸化剤との電気化
学的反応により発電を行なう装置であり、基本的には電
解質によつて隔てられたアノードである燃料側電極及び
カソードである酸化剤側電極を備え、ガス分離板によつ
て両電極にそれぞれ燃料ガス及び酸化剤ガスが供給され
る。
[Prior Art] A fuel cell is a device that generates electricity by an electrochemical reaction between a fuel supplied from the outside and an oxidant. Basically, a fuel side electrode and a cathode that are anodes separated by an electrolyte. The fuel gas and the oxidant gas are supplied to both electrodes by the gas separation plate.

第5図は従来の単電池(6)を示す断面図である。図にお
いて、(1)は燃料側の電極基材、(2)は燃料側電極基材
(1)の一面部に設けられた燃料側触媒層、(3)は電解質保
持体で、例えば電解質保持マトリツクス、(4)は酸化剤
側電極基材(5)の一面部で、電解質保持マトリツクス(3)
に対設された酸化剤側触媒層である。また、第6図は単
電池(6)とガス分離板(7)とを交互に積層した燃料電池の
断面図を示すもので、この場合は4つの単電池(6)によ
り構成している。図において、(8)は酸化剤ガス流路、
(9)は燃料ガス流路、(10)は集電板である。ガス分離板
(7)は電子導電性材料によつて構成されており、酸化剤
ガスと燃料ガスを単電池(6)に供給するための酸化剤ガ
ス流路(8)及び燃料ガス流路(9)が設けられている。酸化
剤ガス流路(8)と燃料ガス流路(9)はそれぞれ平行な面上
に形成され透視したとき直交するように構成されてい
る。
FIG. 5 is a sectional view showing a conventional unit cell (6). In the figure, (1) is a fuel-side electrode base material, and (2) is a fuel-side electrode base material.
(1) a fuel-side catalyst layer provided on one surface, (3) is an electrolyte holder, for example, an electrolyte-holding matrix, (4) is one surface of the oxidant-side electrode substrate (5), the electrolyte-holding matrix (3)
Is a catalyst layer on the oxidant side opposite to the above. Further, FIG. 6 shows a cross-sectional view of a fuel cell in which unit cells (6) and gas separation plates (7) are alternately laminated, and in this case, four fuel cells (6) are formed. In the figure, (8) is an oxidant gas flow path,
(9) is a fuel gas flow path, and (10) is a current collector plate. Gas separation plate
(7) is composed of an electronically conductive material, the oxidant gas flow channel (8) and the fuel gas flow channel (9) for supplying the oxidant gas and the fuel gas to the unit cell (6) It is provided. The oxidant gas flow channel (8) and the fuel gas flow channel (9) are respectively formed on parallel planes and are configured to be orthogonal to each other when seen through.

次に動作について説明する。単電池(6)において、燃料
側電極基材(1)にはガス分離板(7)の燃料ガス流路(9)か
ら燃料ガスが供給され、燃料側触媒層(2)中の三相界面
で反応する。同様に、酸化剤側電極基材(5)には酸化剤
ガス流路(8)から酸化剤ガスが供給され、酸化剤側触媒
層(4)中の三相界面で反応が起こる。この反応が起こる
と電解質保持マトリツクス(3)中でイオンが移動し、両
電極基材(1),(5)間で電荷の授受が行なわれて起電力を
生じる。ガス分離板(7)は単電池(6)への反応ガスの供給
という働きの他に、積層した上下の単電池(6)を電気的
に直列に接続するという働きをする。第6図では4つの
単電池(6)がガス分離板(7)によつて直列に接続され、生
じた電気は集電板(10)によつて集められて外部負荷に接
続される。
Next, the operation will be described. In the single cell (6), the fuel gas is supplied to the fuel-side electrode substrate (1) from the fuel gas channel (9) of the gas separation plate (7), and the three-phase interface in the fuel-side catalyst layer (2) React with. Similarly, the oxidant gas is supplied from the oxidant gas flow channel (8) to the oxidant side electrode base material (5), and a reaction occurs at the three-phase interface in the oxidant side catalyst layer (4). When this reaction occurs, ions move in the electrolyte holding matrix (3), and charges are exchanged between the electrode base materials (1) and (5) to generate an electromotive force. The gas separating plate (7) functions not only to supply the reaction gas to the unit cells (6) but also to electrically connect the stacked upper and lower unit cells (6) in series. In FIG. 6, four unit cells (6) are connected in series by the gas separating plate (7), and the generated electricity is collected by the current collecting plate (10) and connected to the external load.

以上のような燃料電池は電力源として用いられる。しか
し、得られた電圧は直流であり、工場や家庭における電
力消費は100〜220Vの二相または三相の交流が用
いられる。従つて燃料電池から得られた電力はインバー
タを介して交流に変換されるのであるが、インバータで
の変換効率を良くするには少なくとも60V以上の直流
電圧が必要である。しかるに、燃料電池の出力電圧は単
電池当り0.6〜0.8Vであり、60Vを得るには8
0〜100セルの積層が必要である。ガス分離板(7)を
含めて単電池(6)当りにかかる厚さは、いかに薄く構成
しても5mmが限度である。また、動作温度を制御するた
めに冷却器を単電池の数セルごとに挿入する必要があ
る。従つて60Vの出力を得るには1〜2mの高さにな
り、大出力の電力源としてはともかく、小出力の電力源
として簡易に用いるには大きすぎる。
The above fuel cell is used as a power source. However, the obtained voltage is direct current, and power consumption in factories and homes is two-phase or three-phase alternating current of 100 to 220V. Therefore, the electric power obtained from the fuel cell is converted into alternating current through the inverter, but a direct current voltage of at least 60 V or more is required to improve the conversion efficiency in the inverter. However, the output voltage of the fuel cell is 0.6 to 0.8V per cell, and 8 to obtain 60V.
A stack of 0-100 cells is required. The thickness of the unit cell (6) including the gas separation plate (7) is limited to 5 mm no matter how thin the cell is. Further, it is necessary to insert a cooler for every several cells of a single battery in order to control the operating temperature. Therefore, the height becomes 1 to 2 m in order to obtain an output of 60 V, which is too large to be easily used as a small output power source, as well as a large output power source.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

従来の燃料電池は以上のように構成されているので、所
定の電圧を得るためには高さを増さなければならず、小
出力の電力源として簡易に用いるには外形が大きすぎる
という問題点があつた。
Since the conventional fuel cell is configured as described above, the height must be increased in order to obtain a predetermined voltage, and the external shape is too large to be easily used as a power source of small output. There was a point.

この発明は上記のような問題点を解決するためになされ
たもので、高さを増さずに所定の電圧を得ることがで
き、小出力の電力源として適したコンパクトでかつ電圧
を上げることができる燃料電池を得ることを目的とす
る。
The present invention has been made to solve the above-mentioned problems, and it is possible to obtain a predetermined voltage without increasing the height, and it is suitable as a small output power source, and is capable of increasing the voltage. The purpose is to obtain a fuel cell capable of

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る燃料電池は、ガス透気性の電極基材の一
面部の一部分に燃料側触媒層を設け、この一面部のうち
燃料側触媒層が形成されていない部分に対向する他面部
の一部分に酸化剤側触媒層を設け、電極基材のうち燃料
側触媒層と酸化剤側触媒層との間にあって一面部にも他
面部にも触媒層が形成されていない中央部で両触媒層間
にガスシール部を有する電極体、この電極体と同じ構成
より成る少なくとも第2、第3の電極体、及び少なくと
も2つの電解質保持体を備え、電極体の燃料側触媒層形
成部を第1アノードとし、第1電解層保持体を介在して
第2の電極体の酸化剤側触媒層形成部を第1カソードと
して対設し、電極体の酸化剤側触媒層形成部を第2カソ
ードとし、第2電解質保持体を介在して第3の電極体の
燃料側触媒層形成部を第2アノードとして対設させると
共に第1アノードと第2アノードが同じレベルであり、
第1カソードと第2カソードが同一レベルであり、 第1アノードと第2アノードにまたがりアノードとの間
に燃料ガス流路が形成された電気絶縁性ガス供給板を備
え、かつ第1カソードと第2カソードにまたがりカソー
ドとの間に酸化剤ガス流路が形成された電気絶縁性ガス
供給板を備えたものである。
In the fuel cell according to the present invention, a fuel-side catalyst layer is provided on a part of one surface of a gas-permeable electrode base material, and a part of the other surface of the one-surface part opposite to the part where the fuel-side catalyst layer is not formed. An oxidant-side catalyst layer is provided on the electrode base material, and between the fuel-side catalyst layer and the oxidant-side catalyst layer of the electrode base material and no catalyst layer is formed on either one surface portion or the other surface portion. An electrode body having a gas seal portion, at least second and third electrode bodies having the same structure as the electrode body, and at least two electrolyte holding bodies are provided, and the fuel-side catalyst layer forming portion of the electrode body serves as the first anode. , The oxidant side catalyst layer forming portion of the second electrode body is provided as a first cathode, and the oxidant side catalyst layer forming portion of the electrode body is used as a second cathode. 2 Fuel side catalyst layer formation of the third electrode body with the electrolyte holder interposed The a first anode and the second anode are the same level with to pair set as the second anode,
The first cathode and the second cathode are at the same level, and the first cathode and the second anode are provided with an electrically insulating gas supply plate in which a fuel gas flow path is formed between the anode and the second anode. It is provided with an electrically insulating gas supply plate which extends over two cathodes and has an oxidant gas flow channel formed between the two cathodes.

〔作用〕[Action]

この発明における電極基材は、ガスシール部を介在して
一面部にアノードと他面部にカソードを構成するため、
単電池を電気的に直列に接続する働きを兼ねる。従つ
て、同一レベル方向に単電池を直列化でき、高さを増す
ことなく電圧を上げることができる。
Since the electrode base material in the present invention constitutes the anode on one surface portion and the cathode on the other surface portion with the gas seal portion interposed,
It also has the function of electrically connecting the cells in series. Therefore, the unit cells can be serialized in the same level direction, and the voltage can be increased without increasing the height.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。第1
図はこの発明の一実施例に係るアノード・カソード体の
断面を示すもので、図において、(11a)はガス透気性の
電極基材、(2a)は電極基材(11a)の一面部の一部分に設
けられた燃料側触媒層、(4a)は燃料側触媒層(2a)が形成
されていない電極基材(11a)の一面部に対向する他面部
に設けられた酸化剤側触媒層、(12a)は電極基材(11a)の
うち燃料側触媒層(2a)と酸化剤側触媒層(4a)の間にあっ
て、一面部にも他面部にも触媒層(2a)、(4a)が形成され
ていない中央部で、両触媒層(2a),(4a)間をガスシール
するガスシール部であり、電極基材(11a)、燃料側触媒
層(2a)、酸化剤側触媒層(4a)、ガスシール部(12a)で電
極体Aを構成している。また、この電極体Aは燃料側触
媒層形成部、例えば燃料側触媒層(2a)とこれが形成され
た電極基材(11a)の一部分でアノードを構成し、酸化剤
側触媒層形成部、例えば酸化剤側触媒層(4a)とこれが形
成された電極基材(11a)の一部分でカソードを構成して
いる。アノード・カソード体は、複数の電極体を電解質
保持体、例えば電解質保持マトリツクスを介在させて積
層されている。例えば、電極体(A)の燃料側触媒層(2a)
は第1電解質保持マトリツクス(3a)を介在して、電極体
(D)の酸化剤側触媒層(4d)と対設して第1アノード・カ
ソードを構成し、電極体(A)の酸化剤側触媒層(4a)は第
2電解質保持マトリツクス(3b)を介在して、電極体(B)
の燃料側触媒層(2b)と対設して第2アノード・カソード
を構成している。また、複数の電極体の各アノードは同
レベルに形成されると共に、各カソードは同レベルに形
成されている。さらに、このアノード・カソード体の各
アノードにまたがつて電気絶縁性の燃料ガス供給板が形
成され、各カソードにまたがつて電気絶縁性の酸化剤ガ
ス供給板が形成されて燃料電池を構成している。ここ
で、各符号の添字のアルフアベツトは一つの電極基材上
に構成された材料に共通した符号を示しており、一般に
述べる場合は添字なしの符号を用いる。
An embodiment of the present invention will be described below with reference to the drawings. First
The figure shows a cross section of an anode / cathode body according to an embodiment of the present invention.In the figure, (11a) is a gas-permeable electrode base material, and (2a) is one surface part of the electrode base material (11a). A fuel side catalyst layer provided in a part, (4a) is an oxidant side catalyst layer provided on the other surface portion facing one surface portion of the electrode base material (11a) on which the fuel side catalyst layer (2a) is not formed, (12a) is between the fuel side catalyst layer (2a) and the oxidant side catalyst layer (4a) of the electrode base material (11a), the catalyst layer (2a), (4a) on one surface portion and the other surface portion. In the central portion not formed, both catalyst layers (2a), is a gas seal portion for gas sealing between (4a), the electrode substrate (11a), the fuel side catalyst layer (2a), the oxidant side catalyst layer ( 4a) and the gas seal portion (12a) constitute the electrode assembly A. In addition, the electrode body A constitutes an anode with the fuel side catalyst layer forming portion, for example, the fuel side catalyst layer (2a) and a part of the electrode base material (11a) on which it is formed, and the oxidant side catalyst layer forming portion, for example, The oxidant side catalyst layer (4a) and a part of the electrode base material (11a) on which the oxidant side catalyst layer (4a) is formed constitute a cathode. The anode / cathode body is formed by stacking a plurality of electrode bodies with an electrolyte holding body, for example, an electrolyte holding matrix interposed therebetween. For example, the fuel side catalyst layer (2a) of the electrode body (A)
Is the electrode body with the first electrolyte holding matrix (3a) interposed.
(D) The oxidant side catalyst layer (4d) is opposed to form the first anode / cathode, and the oxidant side catalyst layer (4a) of the electrode body (A) has the second electrolyte holding matrix (3b). In between, electrode body (B)
The second anode / cathode is formed by facing the fuel side catalyst layer (2b). Further, each anode of the plurality of electrode bodies is formed at the same level, and each cathode is formed at the same level. Further, an electrically insulating fuel gas supply plate is formed across each anode of the anode / cathode body, and an electrically insulating oxidant gas supply plate is formed across each cathode to form a fuel cell. ing. Here, the subscripts of each reference numeral indicate the reference numerals common to the materials formed on one electrode base material, and the reference numerals without subscripts are used in general description.

上記のように構成された燃料電池は、各アノード・カソ
ードでそれぞれ単電池を形成し、電極基材(11)は各電極
の働きをすると共に、各単電池を直列に接続する働きを
兼ねており、各単電池は複数の電極基材(11)によつて横
方向に直列に接続されている。この時、一つの電極基材
(11)中には燃料ガス及び酸化剤ガスが流れるため、これ
らの混合を防ぐためにガスシール部(12)が設けられてい
る。ガス透過性の電極基材(11)に対するガスシール処理
の一例として、電極基材(11)に例えばリン酸ジルコニウ
ムや5酸化リンなどの無機粒子を充填し、電解質を含浸
させたウエツトシール処理がある。また、パツキング材
などを充填する乾式のガス不透気化処理でもよい。
In the fuel cell configured as described above, each anode / cathode forms a unit cell, and the electrode base material (11) functions as each electrode and also functions to connect each unit cell in series. The individual cells are laterally connected in series by a plurality of electrode base materials (11). At this time, one electrode base material
Since the fuel gas and the oxidant gas flow in (11), the gas seal part (12) is provided to prevent the mixture of these. As an example of the gas sealing treatment for the gas permeable electrode base material (11), there is a wet sealing treatment in which the electrode base material (11) is filled with inorganic particles such as zirconium phosphate or phosphorus pentoxide and impregnated with an electrolyte. . Alternatively, a dry gas impermeability treatment in which a packing material or the like is filled may be used.

第2図はアノード・カソード体の端部の一例を示すもの
で、(10)は集電板であり、直列に接続された単電池の一
番端の電極基材(11)とその端部(13)と密接に接触してお
り、集電するものである。
Fig. 2 shows an example of the ends of the anode / cathode body. (10) is a collector plate, which is the end electrode base material (11) of the cells connected in series and its end. It is in close contact with (13) and collects current.

以上のように構成された燃料電池は同一レベルに直列化
できるため、高さを増さずに電圧を上げることができ
る。
Since the fuel cells configured as described above can be serialized at the same level, the voltage can be increased without increasing the height.

また、上記実施例では、電極基材(11)の中央部で両触媒
層(2),(4)間は曲率を有して構成しているが、第3図に
示すように直線的に構成しても同様の効果がある。本願
発明の単電池の直列構造は、例えば第1図に示す各部材
を第1図に示す順序に斜めに将棋倒しの状態に配列した
後、全体を上下方向に加圧してプレス整形して得られ
る。この時電極基材(11)が例えばカーボン繊維の様に柔
軟なものであり、且つ電解質保持体(3)も例えば炭化ケ
イ素粉末をポリテトラフルオロエチレン(PTFE)等のバイ
ンダーで結着した柔軟なスポンジ状のものである場合
は、全体をプレス整形した時に両部材とも譲歩して変形
し、その結果第1図に示す様な境界が曲線状の構造体が
形成される。また電極基材(11)がステンレス繊維やニッ
ケル繊維の様に剛性を有するものである場合は、電極基
材(11)をあらかじめ第3図の(11)の形状に整形した後に
前記の全体構造のプレス整形を行うことにより、第3図
の様に境界が直線状の構造体が形成される。この時電解
質保持体(3)は柔軟なスポンジ状であるため剛性を有す
る電極基材(11)の形状にならって整形される。
In addition, in the above-mentioned embodiment, the central portion of the electrode base material (11) has a curvature between both catalyst layers (2) and (4), but as shown in FIG. Even if configured, the same effect can be obtained. The series structure of the unit cells of the present invention is obtained, for example, by arranging the respective members shown in FIG. 1 in a shogi-playing state in the order shown in FIG. . At this time, the electrode base material (11) is flexible such as carbon fiber, and the electrolyte holder (3) is also flexible such that silicon carbide powder is bound with a binder such as polytetrafluoroethylene (PTFE). In the case of the sponge-like one, both members yield and deform when the whole is press-shaped, and as a result, a structure having a curved boundary as shown in FIG. 1 is formed. When the electrode base material (11) has rigidity such as stainless fiber or nickel fiber, the electrode base material (11) is shaped into the shape of (11) in FIG. By performing the press shaping of, a structure having a linear boundary is formed as shown in FIG. At this time, since the electrolyte holder (3) is in the form of a flexible sponge, it is shaped according to the shape of the electrode base material (11) having rigidity.

さらに、第4図は、例えば9個の電極体を直列に接続し
たカソード・アノード体を、電気絶縁性ガス供給板(13)
を介して4段積層して形成した燃料電池の断面構成図を
示すものである。この実施例では、集電板(10)と電気配
線(14)によつて上下方向にも直列に接続され、合計36
セルの単電池が接続されている。電気絶縁性ガス供給板
(13)はアノードに燃料ガスを供給する燃料ガス流路
(9)、及びカソードに酸化剤ガスを供給する酸化剤ガス
流路(8)を構成すると共に、積層されたカソード・アノ
ード体を電気的に絶縁する。この実施例によれば、第6
図に示した従来の燃料電池と同じ高さで、9倍の積層数
となり、電圧を上げることができる。また、解電極体の
電極基材(11)の長さを短かくすると、一段のカソード・
アノード体の直列数をさらに多くでき、コンパクトで、
自由に電圧を上げることができる。
Further, FIG. 4 shows a cathode / anode body in which, for example, nine electrode bodies are connected in series, and an electrically insulating gas supply plate (13) is provided.
FIG. 3 is a cross-sectional configuration diagram of a fuel cell formed by stacking four layers with the fuel cell interposed therebetween. In this embodiment, the current collector plate (10) and the electric wiring (14) are connected in series in the vertical direction, and a total of 36
A cell battery is connected. Electrically insulating gas supply plate
(13) is a fuel gas flow path for supplying fuel gas to the anode
(9) and an oxidant gas flow path (8) for supplying an oxidant gas to the cathode are constituted, and the stacked cathode and anode bodies are electrically insulated. According to this embodiment, the sixth
The height is the same as that of the conventional fuel cell shown in the figure, and the number of stacked layers is 9 times, and the voltage can be increased. In addition, if the length of the electrode substrate (11) of the desolving electrode body is shortened, a single-stage cathode
The number of series of anode bodies can be increased, and it is compact
You can raise the voltage freely.

また、この発明はアルカリ型燃料電池、リン酸型燃料電
池、溶融炭酸塩型燃料電池など、あらゆる型の燃料電池
に適用することができる。
Further, the present invention can be applied to all types of fuel cells such as alkaline fuel cells, phosphoric acid fuel cells, and molten carbonate fuel cells.

〔発明の効果〕〔The invention's effect〕

以上のように、これ発明によればガス透気性の電極基材
の一面部の一部分に燃料側触媒層を設け、この一面部の
うち燃料側触媒層が形成されていない部分に対向する他
面部の一部分に酸化剤側触媒層を設け、電極基材のうち
燃料側触媒層と酸化剤側触媒層との間にあって一面部に
も他面部にも触媒層が形成されていない中央部で両触媒
層間にガスシール部を有する電極体は、この電極体と同
じ構成より成る少なくとも第2、第3の電極体、及び少
なくとも2つの電解質保持体を備え、電極体の燃料側触
媒層形成部を第1アノードとし、第1電解層保持体を介
在して第2の電極体の酸化剤側触媒層形成部を第1カソ
ードとして対設し、電極体の酸化剤側触媒層形成部を第
2カソードとし、第2電解質保持体を介在して第3の電
極体の燃料側触媒層形成部を第2アノードとして対設さ
せると共に第1アノードと第2アノードが同レベルであ
り、第1カソードと第2カソードが同レベルであり、 第1アノードと第2アノードにまたがりアノードとの間
に燃料ガス流路が形成された電気絶縁性ガス供給板を備
え、かつ第1カソードと第2カソードにまたがりカソー
ドとの間に酸化剤ガス流路が形成された電気絶縁性ガス
供給板を備えることにより、カソード・アノードを同一
レベル方向に直列化でき、高さを増さずに電圧を上げる
ことができる。従つて、このような燃料電池を多段に積
み上げれば、コンパクトで電圧を上げることができる効
果がある。
As described above, according to the present invention, the fuel-side catalyst layer is provided on a part of one surface of the gas-permeable electrode base material, and the other surface of the one-side surface facing the part where the fuel-side catalyst layer is not formed is provided. The catalyst layer on the oxidant side is provided in a part of the catalyst, and the catalyst layer is not formed on either one surface or the other surface of the electrode substrate between the fuel side catalyst layer and the oxidant side catalyst layer. An electrode body having a gas seal portion between layers includes at least second and third electrode bodies having the same structure as this electrode body and at least two electrolyte holding bodies, and the fuel side catalyst layer forming portion of the electrode body is One anodic, the oxidant side catalyst layer forming part of the second electrode body is opposed as the first cathode with the first electrolytic layer holder interposed, and the oxidant side catalyst layer forming part of the electrode body is the second cathode. And the fuel side catalyst of the third electrode body with the second electrolyte holder interposed. The forming portion is opposed to the second anode, the first anode and the second anode are at the same level, the first cathode and the second cathode are at the same level, and the first anode and the second anode are straddled. An electrically insulating gas supply plate having a fuel gas channel formed therein, and an electrically insulating gas supply plate having an oxidant gas channel formed between the first cathode and the second cathode and between the cathodes As a result, the cathode and the anode can be serialized in the same level direction, and the voltage can be increased without increasing the height. Therefore, stacking such fuel cells in multiple stages is compact and has the effect of increasing the voltage.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明の一実施例による燃料電池に係るカソ
ード・アノード体を示す断面図、第2図はカソード・ア
ノード体の端部の一例を示す断面図、第3図はこの発明
の他の実施例による燃料電池に係るカソード・アノード
体を示す断面図、第4図はこの発明のさらに他の実施例
による燃料電池を示す断面構成図、第5図は従来の燃料
電池に係る単電池を示す断面図、第6図は従来の燃料電
池を示す断面図である。 (2a),(2b),(2c)……燃料側触媒層、(3a),(3b),(3c)……
電解質保持体、(4a),(4b),(4c)……酸化剤側触媒層、
(8)……酸化剤ガス流路、(9)……燃料ガス流路、(11a),
(11b),(11c),(11d)……電極基材、(12a),(12b)……ガス
シール部、(13)……電気絶縁性ガス供給板、A,B,
C,D……電極体。 なお、図中同一符号は同一、又は相当部分を示す。
FIG. 1 is a sectional view showing a cathode / anode body for a fuel cell according to an embodiment of the present invention, FIG. 2 is a sectional view showing an example of an end portion of the cathode / anode body, and FIG. 4 is a cross-sectional view showing a cathode / anode body for a fuel cell according to the embodiment of the present invention, FIG. 4 is a cross-sectional structural view showing a fuel cell according to still another embodiment of the present invention, and FIG. 5 is a unit cell for a conventional fuel cell. FIG. 6 is a sectional view showing a conventional fuel cell. (2a), (2b), (2c) …… Fuel side catalyst layer, (3a), (3b), (3c) ……
Electrolyte holder, (4a), (4b), (4c) ... Oxidizer side catalyst layer,
(8) …… Oxidant gas flow path, (9) …… Fuel gas flow path, (11a),
(11b), (11c), (11d) …… electrode substrate, (12a), (12b) …… gas seal part, (13) …… electrically insulating gas supply plate, A, B,
C, D ... Electrode body. The same reference numerals in the drawings indicate the same or corresponding parts.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】ガス透気性の電極基材の一面部の一部分に
燃料側触媒層を設け、この一面部のうち上記燃料側触媒
層が形成されていない部分に対向する他面部の一部分に
酸化剤側触媒層を設け、上記電極基材のうち上記燃料側
触媒層と酸化剤側触媒層との間にあって一面部にも他面
部にも上記触媒層が形成されていない中央部で上記両触
媒層間にガスシール部を有する電極体、この電極体と同
じ構成より成る少なくとも第2、第3の電極体、及び少
なくとも2つの電解質保持体を備え、上記電極体の燃料
側触媒層形成部を第1アノードとし、第1電解質保持体
を介在して第2の電極体の酸化剤側触媒層形成部を第1
カソードとして対設し、上記電極体の酸化剤側触媒層形
成部を第2カソードとし、第2電解質保持体を介在して
第3の電極体の燃料側触媒層形成部を第2アノードとし
て対設させると共に、第1アノードと第2アノードが同
レベルであり、第1カソードと第2カソードが同レベル
であり、第1アノードと第2アノードにまたがりアノー
ドとの間に燃料ガス流路が形成された電気絶縁性ガス供
給板を備え、かつ第1カソードと第2カソードにまたが
りカソードとの間に酸化剤ガス流路が形成された電気絶
縁性ガス供給板を備えた燃料電池。
1. A fuel-side catalyst layer is provided on a part of one surface of a gas-permeable electrode base material, and a part of the other surface of the one-surface part opposite to the part where the fuel-side catalyst layer is not formed is oxidized. An agent-side catalyst layer is provided, and both catalysts are provided in a central portion between the fuel-side catalyst layer and the oxidant-side catalyst layer of the electrode base material where the catalyst layer is not formed on one surface portion or the other surface portion. An electrode body having a gas seal portion between layers, at least second and third electrode bodies having the same configuration as the electrode body, and at least two electrolyte holding bodies are provided, and the fuel side catalyst layer forming portion of the electrode body is The first oxidant side catalyst layer forming portion of the second electrode body is the first anode, and the first electrolyte holding body is interposed therebetween.
As a cathode, the oxidant side catalyst layer forming portion of the electrode body serves as a second cathode, and the fuel side catalyst layer forming portion of the third electrode body serves as a second anode with a second electrolyte holder interposed. The first anode and the second anode are at the same level, the first cathode and the second cathode are at the same level, and the fuel gas flow path is formed between the anode and the second anode. Fuel cell having an electrically insulating gas supply plate provided with the electrically insulating gas supply plate, and an electrically insulating gas supply plate having an oxidant gas flow path formed between the first cathode and the second cathode and between the cathodes.
【請求項2】ガスシール部は、電極基材に無機粒子を充
填し、電解質を含浸したウェットシール部であることを
特徴とする特許請求の範囲第1項記載の燃料電池。
2. The fuel cell according to claim 1, wherein the gas seal portion is a wet seal portion in which the electrode base material is filled with inorganic particles and impregnated with an electrolyte.
JP59241717A 1984-11-15 1984-11-15 Fuel cell Expired - Fee Related JPH0665045B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59241717A JPH0665045B2 (en) 1984-11-15 1984-11-15 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59241717A JPH0665045B2 (en) 1984-11-15 1984-11-15 Fuel cell

Publications (2)

Publication Number Publication Date
JPS61121265A JPS61121265A (en) 1986-06-09
JPH0665045B2 true JPH0665045B2 (en) 1994-08-22

Family

ID=17078484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59241717A Expired - Fee Related JPH0665045B2 (en) 1984-11-15 1984-11-15 Fuel cell

Country Status (1)

Country Link
JP (1) JPH0665045B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011204609A (en) * 2010-03-25 2011-10-13 Sanyo Electric Co Ltd Fuel cell layer, fuel cell system, and method for manufacturing the fuel cell layer

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4443939C1 (en) * 1994-12-09 1996-08-29 Fraunhofer Ges Forschung PEM fuel cell with structured plates
JPH10510664A (en) * 1994-12-17 1998-10-13 ラフバロウ ユニヴァーシティ イノヴェイションズ リミテッド Structure of electrolyte fuel cell
DE19833064C2 (en) * 1998-07-22 2001-10-11 Fraunhofer Ges Forschung Fuel cell for high output voltages
JP4984428B2 (en) * 2005-05-11 2012-07-25 日本電気株式会社 Fuel cell system
FR2923654B1 (en) 2007-11-13 2010-02-12 Commissariat Energie Atomique FUEL CELL COMPRISING A PLURALITY OF ELEMENTARY CELLS CONNECTED IN SERIES BY CURRENT COLLECTORS.

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011204609A (en) * 2010-03-25 2011-10-13 Sanyo Electric Co Ltd Fuel cell layer, fuel cell system, and method for manufacturing the fuel cell layer
KR20130056225A (en) * 2010-03-25 2013-05-29 소시에떼 비아이씨 Fuel cell layer, fuel cell system and method for fabricating the fuel cell layer
US8900774B2 (en) 2010-03-25 2014-12-02 Sanyo Electric Co., Ltd. Fuel cell layer, fuel cell system and method for fabricating the fuel cell layer

Also Published As

Publication number Publication date
JPS61121265A (en) 1986-06-09

Similar Documents

Publication Publication Date Title
US4648955A (en) Planar multi-junction electrochemical cell
JP3424223B2 (en) Fuel cell stack structure
EP0800709B1 (en) Electrolytic and fuel cell arrangements
JPH0447951B2 (en)
US3300343A (en) Fuel cell including electrodes having two dissimilar surfaces
JPH0665045B2 (en) Fuel cell
EP0814528A3 (en) Solid electrolyte fuel cell stack
JPH0529006A (en) Fuel cell
JP2841340B2 (en) Solid electrolyte fuel cell
JP2933228B2 (en) Solid oxide fuel cell module
CN113948748A (en) Connecting plate and solid oxide fuel cell/electrolytic cell stack
JPH0227670A (en) Fuel cell
GB2093263A (en) Fuel Cell Blocks
CN113767489A (en) Fuel cell stack including variable bipolar plates
JPS63166159A (en) Solid electrolyte fuel cell
JPH01313856A (en) Electrode member for solid electrolyte type fuel cell, its manufacture and solid electrolyte type fuel cell
JPH06333582A (en) Solid polyelectrolyte fuel cell
JP2799880B2 (en) Fuel cell connector and fuel cell structure
JPH0754709B2 (en) Fuel cell
JPH0395865A (en) Solid electrolyte fuel cell
JPS5943649Y2 (en) gas diffusion electrode
JP2658082B2 (en) Molten carbonate fuel cell
JP3117341B2 (en) Cell structure
GB1148987A (en) Improvements in "fuel cell"
JPS6316569A (en) Fuel cell

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees