JPH08185890A - Control method for battery used as drive source for moving body - Google Patents

Control method for battery used as drive source for moving body

Info

Publication number
JPH08185890A
JPH08185890A JP6327134A JP32713494A JPH08185890A JP H08185890 A JPH08185890 A JP H08185890A JP 6327134 A JP6327134 A JP 6327134A JP 32713494 A JP32713494 A JP 32713494A JP H08185890 A JPH08185890 A JP H08185890A
Authority
JP
Japan
Prior art keywords
discharge
battery
amount
instantaneous
charging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6327134A
Other languages
Japanese (ja)
Other versions
JP3673543B2 (en
Inventor
Masahiro Arakawa
正裕 荒川
Ichiro Kasama
一郎 笠間
Yoshikazu Kizu
良和 木津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP32713494A priority Critical patent/JP3673543B2/en
Publication of JPH08185890A publication Critical patent/JPH08185890A/en
Application granted granted Critical
Publication of JP3673543B2 publication Critical patent/JP3673543B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE: To make accurate judgement about the residual capacity of a battery by measuring momentary discharge current and voltage, and making a comparison between real discharge electric energy calculated via the integration of momentary discharge electric energy, and design discharge electric energy. CONSTITUTION: A mobile moving body 10 has a battery 11 mounted as a drive source, and a power feed outlet is fitted with an ammeter 13 and a voltmeter 14. Furthermore, the moving body 10 collects data signals from battery momentary discharge voltage and current as well as from a sensor mounted thereon at every prescribed time intervals, and transmits the signals from a transceiver device 17. The data signals are sent to a controller 20 via a communication device 30 and CPU 22 makes judgement about a residual discharge amount on the basis of a relationship between the design discharge depth and the life cycles of the battery 11 stored in a memory device 23. According to this construction, capacity control can be made on the basis of the preset design condition.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は移動体の駆動源に用い
られるバッテリの管理方法に関し、特に組電池構造とし
たNi−Cd系アルカリ蓄電池を駆動源として用いた移
動体のバッテリにおける放電電力及び放電深さを算出す
ることによって、バッテリの容量管理と寿命管理とを正
確に行い得る方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for managing a battery used as a drive source for a mobile body, and more particularly to discharge power in a battery for a mobile body using an Ni-Cd alkaline storage battery having a battery pack structure as a drive source. The present invention relates to a method for accurately performing battery capacity management and battery life management by calculating a discharge depth.

【0002】[0002]

【従来の技術】従来、工場内を自走するロボットのよう
な移動体の駆動源に用いられるバッテリとして用いられ
ていた鉛蓄電池は、その放電終了点付近でも電圧が緩や
かに降下するという放電特性を有している。従って、電
圧が或る値まで降下したらその電圧降下を検知して、充
電を行わせることができる。また、電池の寿命管理に関
しては、一定の放電深さで設計し、定常的な放電深さで
放電していると仮定した上での時間的な寿命管理が行わ
れている。
2. Description of the Related Art Conventionally, a lead-acid battery used as a battery for a drive source of a moving body such as a robot that runs in a factory has a discharge characteristic that the voltage gradually drops even near the discharge end point. have. Therefore, when the voltage drops to a certain value, the voltage drop can be detected and charging can be performed. Regarding battery life management, time-based life management is performed on the assumption that the battery is designed to have a constant discharge depth and that discharge is performed at a constant discharge depth.

【0003】しかし、近年、移動体の駆動源のような電
池の消費が一定でない分野では、鉛蓄電池よりもエネル
ギー密度が高く、比較的寿命の長い蓄電池の使用が望ま
れ、Ni−Cd系のアルカリ蓄電池の使用が増えて来て
いる。
However, in recent years, in fields where the battery consumption is not constant, such as a drive source for a mobile body, it is desired to use a storage battery having a higher energy density and a relatively longer life than a lead storage battery, and a Ni--Cd type storage battery is used. The use of alkaline storage batteries is increasing.

【0004】[0004]

【発明が解決しようとする課題】そこで、Ni−Cd系
のアルカリ蓄電池の放電特性を調べてみると、矩形特性
に近く、放電終了点に近づくと急激な電圧降下を起こ
す。そのために充電時期を見極めることが困難で、時に
は移動体を所定の充電場所まで自走させることができな
くなり、移動体を充電不可能な状態にさせてしまうこと
がある。また、急激な負荷の増加によって過放電が何度
も繰り返されたり、逆に放電深さの浅い状態が繰り返し
何度も起きた場合などを想定すると、定常的な放電深さ
で放電しているという仮定に基づく従来の時間的な寿命
管理では、正確でかつ十分な管理を行うことができな
い。何故なら、過放電が何度も繰り返されると、蓄電池
の内部物質の活性が衰えて寿命が縮むことになり、放電
深さの浅い状態が繰り返し何度も起きると、組電池から
なるバッテリのセル間にアンバランスが生じて見かけの
放電容量が減少してしまうからである。
Then, when the discharge characteristics of the Ni--Cd type alkaline storage battery are examined, the discharge characteristics are close to the rectangular characteristics and a sharp voltage drop occurs when the discharge end point is approached. For this reason, it is difficult to determine the charging time, and sometimes the moving body cannot be self-propelled to a predetermined charging place, which may make the moving body unchargeable. In addition, assuming that the overload is repeated many times due to a sudden increase in load, or conversely, the state where the discharge depth is shallow occurs repeatedly, the discharge is at a steady discharge depth. The conventional time-based life management based on this assumption cannot perform accurate and sufficient management. The reason for this is that if over-discharging is repeated many times, the activity of the internal substances of the storage battery will decline and the life will be shortened.If the state of shallow discharge depth occurs repeatedly, the battery cell of the assembled battery This is because an imbalance occurs between them and the apparent discharge capacity decreases.

【0005】本発明は従来技術における上記問題点を解
決するために為されたもので、その目的とするところ
は、緊急時を除く如何なる場合にも過放電を防止するバ
ッテリの容量管理と、放電量(放電深さ)に基づくバッ
テリの寿命管理を正確かつ十分に行うことができる移動
体の駆動源に用いられるバッテリの管理方法を提供する
ことにある。
The present invention has been made in order to solve the above problems in the prior art, and its purpose is to manage the capacity of a battery and prevent discharge in any case except in an emergency. It is an object of the present invention to provide a method of managing a battery used as a drive source of a mobile body, which can accurately and sufficiently manage the life of the battery based on the amount (discharge depth).

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、本発明の第1態様によれば、移動体の駆動源に用い
られるバッテリの管理方法であって、電池の交換または
1回の充電が完了した時点から所定時間間隔毎にその時
々の瞬時電流及び瞬時電圧を計測することと、該計測電
流及び計測電圧から瞬時放電電力量を計算し、かつ、こ
れを記憶することと、前記充電後から現時刻までの間の
瞬時放電電力量を積算することによって現在の実放電電
力量を算出することと、予め定めた設計放電深さから求
められる設計放電電力量に対して前記実放電電力量を比
較することと、該比較において前記実放電電力量が前記
設計放電電力量より小さければ前記移動体の運転による
放電を継続することと、前記比較において前記実放電電
力量が前記設計放電電力量より大きくなり、かつ、移動
体が自動運転されている場合には所定の充電位置に戻り
充電を行い、一方、移動体を手動運転している場合には
放電容量超過の警報を発することの各ステップからなる
ことを特徴とするバッテリの管理方法が提供される。
In order to achieve the above object, according to a first aspect of the present invention, there is provided a method of managing a battery used as a drive source for a moving body, which comprises replacing a battery or performing a single operation. Measuring an instantaneous current and an instantaneous voltage at each predetermined time interval from the time when charging is completed, calculating an instantaneous discharge power amount from the measured current and the measured voltage, and storing the calculated amount; The current actual discharge power amount is calculated by integrating the instantaneous discharge power amount from the charging to the current time, and the actual discharge power amount is calculated with respect to the design discharge power amount obtained from a predetermined design discharge depth. Comparing the electric power amounts, and in the comparison, if the actual discharge electric power amount is smaller than the design discharge electric power amount, continuing the discharge by the operation of the moving body, and in the comparison, the actual discharge electric power amount is the designed discharge electric power amount. If the amount of electricity is greater than the amount of electricity and the vehicle is operating automatically, it returns to the specified charging position to perform charging, while if the vehicle is operating manually, an alarm indicating that the discharge capacity is exceeded is issued. There is provided a battery management method comprising the following steps.

【0007】また、本発明の第2態様によれば、移動体
の駆動源に用いられるバッテリの管理方法であって、電
池の交換または1回の充電から次の充電までを1サイク
ルとするとき、電池の交換または1回の充電が完了した
時点から所定時間間隔毎にその時々の瞬時電流及び瞬時
電圧を計測することと、該計測電流及び計測電圧から瞬
時放電電力量を計算し、かつ、これを記憶することと、
該瞬時放電電力量を積算することによって求められる1
サイクル毎の実放電電力量から1サイクル毎の放電深さ
を求めることと、所定のサイクル回数を繰り返した後に
1サイクル毎の平均放電深さを計算することと、放電深
さと寿命サイクル数との関係を示すグラフに前記平均放
電深さを当てはめて該当する寿命サイクル数を求めるこ
とと、求めた寿命サイクル数に基づいて残存寿命サイク
ル数を算出することの各ステップからなることを特徴と
するバッテリの管理方法が提供される。
According to a second aspect of the present invention, there is provided a method for managing a battery used as a drive source for a moving body, wherein the battery replacement or one charge to the next charge is one cycle. Measuring the instantaneous current and the instantaneous voltage at each predetermined time interval from the time when the battery is replaced or once charged, and the instantaneous discharge electric energy is calculated from the measured current and the measured voltage, and Remember this,
1 obtained by integrating the instantaneous discharge electric energy
The calculation of the discharge depth for each cycle from the actual discharge electric energy for each cycle, the calculation of the average discharge depth for each cycle after repeating a predetermined number of cycles, and the calculation of the discharge depth and the number of life cycles A battery characterized by comprising respective steps of applying the average discharge depth to a graph showing a relationship to obtain a corresponding number of life cycles and calculating the number of remaining life cycles based on the obtained number of life cycles. Management methods are provided.

【0008】さらに、本発明によれば、上記第2態様に
記載の残存寿命サイクル数の算出ステップは、前記寿命
サイクル数から前記所定サイクル回数及び予備サイクル
数を減ずることを含む。
Further, according to the present invention, the step of calculating the remaining life cycle number according to the second aspect includes subtracting the predetermined cycle number and the preliminary cycle number from the life cycle number.

【0009】[0009]

【作用】本発明のバッテリ管理方法においては、例えば
数秒毎の所定時間間隔でバッテリからの瞬時放電電流及
び瞬時放電電圧を測定することによって、瞬時の放電電
力が算出され、この瞬時放電電力を積算することによっ
て実放電電力量が求められる。これを予め定めた設計放
電電力量と比較することによってバッテリの残存容量が
正確に判定され得る。また、電池の交換または1回の充
電から次の充電までを1サイクルとするとき、所定のサ
イクル回数を繰り返した後に、1サイクル毎の平均放電
深さを算出し、これを放電深さと寿命サイクル数との関
係グラフに当てはめることによって寿命サイクル数が求
められる。このようにして求めた寿命サイクル数からそ
の時までの所定サイクル数と予備サイクル数とを減じる
ことにより残存寿命サイクル数が算出され得る。従っ
て、バッテリの容量管理と寿命管理とを正確かつ十分に
行うことができる。
In the battery management method of the present invention, the instantaneous discharge power is calculated by measuring the instantaneous discharge current and the instantaneous discharge voltage from the battery at predetermined time intervals of, for example, every few seconds, and the instantaneous discharge power is integrated. By doing so, the actual discharge power amount is obtained. The remaining capacity of the battery can be accurately determined by comparing this with a predetermined design discharge power amount. In addition, when one cycle from battery replacement or one charge to the next charge, after repeating a predetermined number of cycles, the average discharge depth for each cycle is calculated, and this is calculated as the discharge depth and the life cycle. The life cycle number can be obtained by applying the graph to the relationship with the number. The remaining life cycle number can be calculated by subtracting the predetermined cycle number and the preliminary cycle number up to that time from the thus obtained life cycle number. Therefore, it is possible to accurately and sufficiently manage the capacity and the life of the battery.

【0010】[0010]

【実施例】以下、添付の図面に示した実施例に関連して
本発明を更に詳細に説明する。
The present invention will now be described in more detail with reference to the embodiments shown in the accompanying drawings.

【0011】図1には、本発明のバッテリの管理方法を
実施するシステムの概略全体構成がブロック図で示され
ている。図1において、自走式の移動体10はNi−C
d系アルカリ蓄電池を複数個直列に組んだ組電池からな
るバッテリ11を駆動源として搭載している。バッテリ
11からの電源供給出口にはスイッチ12を介して電流
計13及び電圧計14が取り付けられていて、バッテリ
11の放電電流及び放電電圧が随時測定されるようにな
っており、放電電力量(放電電流×放電電圧)の算出も
行うことができる。参照符号15は移動体10の走行モ
ータや、例えば移動体10に取り付けられた監視カメラ
(図示せず)等、付属物の駆動モータ等からなる負荷装
置を示している。
FIG. 1 is a block diagram showing a schematic overall configuration of a system for carrying out the battery management method of the present invention. In FIG. 1, a self-propelled moving body 10 is Ni-C.
A battery 11 which is an assembled battery in which a plurality of d-type alkaline storage batteries are assembled in series is mounted as a drive source. An ammeter 13 and a voltmeter 14 are attached to a power supply outlet from the battery 11 via a switch 12 so that a discharge current and a discharge voltage of the battery 11 can be measured at any time. It is also possible to calculate (discharge current × discharge voltage). Reference numeral 15 indicates a load device including a traveling motor of the moving body 10 and a drive motor of an accessory such as a surveillance camera (not shown) attached to the moving body 10, for example.

【0012】移動体10には更に、バッテリの瞬時放電
電圧vi 、瞬時放電電流ai 、並びにそのほかの搭載セ
ンサからのデータ信号xi を所定時間(例えば数秒)t
0 毎に収集し、送受信装置17及び別体の通信装置30
を介して固定操作側のコントローラ20へ送るCPU1
6が搭載されている。なお、参照符号18は充電用端子
を示す。
The moving body 10 is further provided with an instantaneous discharge voltage v i of the battery, an instantaneous discharge current a i , and a data signal x i from other on-board sensors for a predetermined time (for example, several seconds) t.
It is collected for each 0 and the transmission / reception device 17 and the separate communication device 30
CPU1 to send to the controller 20 on the fixed operation side via
6 is mounted. Reference numeral 18 indicates a charging terminal.

【0013】一方、固定操作側のコントローラ20に
は、通信装置30からの信号を入力するデコーダ21、
デコーダによって解読された信号を処理するCPU2
2、並びにCPU22によって処理された結果やその他
の必要データを記憶する記憶装置23が少なくとも内蔵
されている。この記憶装置23にはバッテリ11の規定
容量P0 (W×h)、設計放電深さy0 (%)、図4図
示の放電深さと寿命サイクル数との関係グラフ等が予め
格納されている。
On the other hand, the fixed operation side controller 20 has a decoder 21 for inputting a signal from the communication device 30,
CPU2 for processing the signal decoded by the decoder
2, and at least a storage device 23 for storing the result processed by the CPU 22 and other necessary data. The storage device 23 stores in advance the specified capacity P 0 (W × h) of the battery 11, the designed discharge depth y 0 (%), the relationship graph between the discharge depth and the number of life cycles shown in FIG. 4, and the like. .

【0014】移動体側CPU16から送受信装置17を
介して送る信号は、CPU16と固定操作側CPU22
の負荷を考慮して、場合によっては、瞬時放電電圧vi
及び瞬時放電電流ai の代わりに瞬時放電電力量qi
(=ai ×vi ×t0 )として送ることもできる。
A signal sent from the CPU 16 on the moving body side via the transmitter / receiver 17 is the CPU 16 and the CPU 22 on the fixed operation side.
, The instantaneous discharge voltage v i
And the instantaneous discharge power amount q i in place of the instantaneous discharge current a i
It can also be sent as (= a i × v i × t 0 ).

【0015】固定操作側のコントローラ20では、移動
体側から送られてくるデータ信号をデコーダ21によっ
て解読し、各センサの値として記憶装置23に保存し、
更に場合によっては、瞬時放電電圧vi 及び瞬時放電電
流ai をCPU22に送って瞬時放電電力量qi を算出
させ、これもまた記憶装置23に保存する。
In the controller 20 on the fixed operation side, the decoder 21 decodes the data signal sent from the mobile body side, and stores it in the storage device 23 as the value of each sensor.
Further, in some cases, the instantaneous discharge voltage v i and the instantaneous discharge current a i are sent to the CPU 22 to calculate the instantaneous discharge power amount q i , which is also stored in the storage device 23.

【0016】なお、以下の説明の準備として、本発明の
バッテリ管理方法を実施するための設計条件を次のよう
に定めて置く。 1.使用電池: Ni−Cd系アルカリ蓄電池の組電
池、 2.1サイクルあたりの設計放電深さ(y0 ):40%
(0.4C)、 3.上記設計放電深さに該当する寿命サイクル数:約8
300サイクル(図4のグラフからの読み取りによ
る)。
As preparation for the following description, design conditions for implementing the battery management method of the present invention are set and set as follows. 1. Batteries used: Ni-Cd alkaline storage battery pack, 2.1 Designed discharge depth per cycle (y 0 ): 40%
(0.4C), 3. Number of life cycles corresponding to the above design discharge depth: Approximately 8
300 cycles (by reading from the graph in FIG. 4).

【0017】次に、図2及び図3のフローチャートを参
照しながら本発明の第1実施例及び第2実施例を、以
下、順に説明する。
Next, referring to the flow charts of FIGS. 2 and 3, the first and second embodiments of the present invention will be described in order below.

【0018】最初に、図2に関連して本発明の第1実施
例であるバッテリ11の容量管理から説明すると、電池
交換をした直後または1回の充電が完了した直後(i=
0)からスタートし、所定時間t0 (例えば、数秒)毎
に瞬時放電電流ai 及び瞬時放電電圧vi が電流計13
及び電圧計14をそれぞれ介して移動体側CPU16に
読み取られる(F−1)。
First, referring to FIG. 2, the capacity management of the battery 11 according to the first embodiment of the present invention will be described. Immediately after battery replacement or immediately after one charging is completed (i =
0), the instantaneous discharge current a i and the instantaneous discharge voltage v i are measured by the ammeter 13 at every predetermined time t 0 (for example, several seconds).
And read by the CPU 16 on the moving body side via the voltmeter 14 (F-1).

【0019】上記瞬時放電電流ai 及び瞬時放電電圧v
i から瞬時放電電力量qi (=ai×vi ×t0 )をC
PU16または22で算出する(F−2)。
The instantaneous discharge current a i and the instantaneous discharge voltage v
From i , the instantaneous discharge power q i (= a i × v i × t 0 ) is C
It is calculated by the PU 16 or 22 (F-2).

【0020】更に、瞬時放電電力量qi を積算して現時
刻in時までの実放電電力量Qn をCPU22で算出す
る(F−3)。
Further, the instantaneous discharge power amount q i is integrated to calculate the actual discharge power amount Q n up to the present time in by the CPU 22 (F-3).

【0021】続いて、上記設計放電深さy0 及びバッテ
リ規定容量P0 から算出され得る設計放電電力量Q0
(=P0 ×y0 /100)から予備電力量αを減じた値
(Q0−α)と実放電電力量Qn とを比較する(F−
4)。なお、予備電力量αは移動体10を図示しない充
電場所まで戻すための電力量である。
[0021] Subsequently, the design discharge depth y 0 and battery defined dimensioning discharge power from P 0 be calculated quantity Q 0
(= P 0 × y 0/ 100) the value obtained by subtracting the reserve power quantity α from (Q 0 -α) and comparing the actual discharge electric power amount Q n (F-
4). The reserve power amount α is a power amount for returning the moving body 10 to a charging place (not shown).

【0022】上記比較による結果において、Qn >Q0
−αでないときは、移動体10の運転を継続する(F−
5)。
In the result of the above comparison, Q n > Q 0
When it is not α, the operation of the moving body 10 is continued (F-
5).

【0023】所定時間経過後、再び実放電電力量を算出
するかどうかを判断し(F−6)、通常であれば(F−
3)に戻り、(F−3)及び(F−4)の動作を行う。
所定時間経過毎に(F−3)から(F−6)の一連の動
作が(F−4)においてQn>Q0 −αになるまで繰り
返される。一方、緊急時の場合には、オペレータの判断
で移動体10の運転を更に継続する(F−7)。
After the lapse of a predetermined time, it is judged again whether the actual discharge electric energy is to be calculated (F-6), and if it is normal (F-
Returning to 3), the operations of (F-3) and (F-4) are performed.
A series of operations at predetermined time has elapsed from (F-3) (F- 6) are repeated until Q n> Q 0 -α in (F-4). On the other hand, in case of emergency, the operation of the moving body 10 is further continued at the operator's discretion (F-7).

【0024】移動体10の運転継続中に再び充電するか
どうかをオペレータは随時繰り返して判断する(F−
8)。なお、充電する場合は充電場所まで自走して充電
を受ける(F−10)。
The operator repeatedly determines whether or not to recharge the mobile unit 10 during continuous operation (F-
8). In addition, when charging, it will run to the charging location and receive charging (F-10).

【0025】オペレータの判断で更に移動体10の運転
を継続するうちに、バッテリ11の容量切れ(過放電)
となることがあり得る。その場合、移動体10はその場
に停止して自力走行不可能になる。この状態から、移動
体10を再び自力走行可能にするためには、移動体10
を停止場所から他力によって充電場所までに運び充電を
施す必要がある。
While the operation of the moving body 10 is further continued according to the operator's judgment, the capacity of the battery 11 is exhausted (over discharge).
Can be In that case, the moving body 10 stops on the spot and cannot run by itself. From this state, in order to allow the moving body 10 to travel again by itself,
It is necessary to carry the battery from the stopping place to the charging place by another force and charge it.

【0026】一方、前記(F−4)の比較においてQn
>Q0 −αであれば、移動体が自動運転かそれともオペ
レータによる手動運転かの判断がなされる(F−9)。
On the other hand, in the comparison of the above (F-4), Q n
If> Q 0 −α, it is determined whether the moving body is in automatic operation or manual operation by the operator (F-9).

【0027】自動運転中であれば、移動体10は図示し
ない充電場所に戻されて充電を受ける(F−10)。
During the automatic operation, the moving body 10 is returned to the charging place (not shown) to be charged (F-10).

【0028】手動運転中であれば、放電容量の超過をオ
ペレータに知らせるように警報を発する(F−11)。
During the manual operation, an alarm is issued to inform the operator that the discharge capacity is exceeded (F-11).

【0029】ここでも運転継続の判断はオペレータに委
ねられ(F−12)、運転中止かそれとも運転継続かの
判断が問われる(F−13)。運転中止と判断されれ
ば、(F−10)の充電動作が行われ、移動体10及び
その付属装置の運転中止ができないような緊急状態であ
るとオペレータが判断したときは、(F−7)に戻って
運転継続がなされる。
Here again, the operator is left to decide whether or not to continue the operation (F-12), and it is required to decide whether to stop the operation or continue the operation (F-13). If it is determined that the operation is stopped, the charging operation of (F-10) is performed, and when the operator determines that the emergency state cannot stop the operation of the moving body 10 and its accessory device, (F-7) ) To continue the operation.

【0030】次に、本発明の第2実施例であるバッテリ
の寿命管理方法を図3のフローチャートに従って説明す
る。
Next, a battery life management method according to a second embodiment of the present invention will be described with reference to the flowchart of FIG.

【0031】以下の説明において、バッテリ寿命はサイ
クル数で示されることになるが、バッテリの1サイクル
とは、電池交換または1回の充電から次の充電までの期
間を言う。従って、バッテリ11の寿命管理に際しては
このサイクル数が計測され、かつ、それが記憶装置23
に保存される。
In the following description, the battery life is indicated by the number of cycles, but one cycle of the battery means a period from battery replacement or one charging to the next charging. Therefore, when managing the life of the battery 11, the number of cycles is measured, and the cycle number is measured.
Stored in.

【0032】また、バッテリ寿命は各サイクルでの放電
深さ(バッテリの消費の仕方)と密接な関係があり、図
4に示される放電深さと寿命サイクル数との関係グラフ
からも明らかなように、バッテリの寿命サイクル数は放
電深さによって定まる。
The battery life has a close relationship with the discharge depth in each cycle (how the battery is consumed), and as is clear from the graph of the relationship between the discharge depth and the number of life cycles shown in FIG. The number of battery life cycles is determined by the depth of discharge.

【0033】図3において、まず1回目の充/放電サイ
クルjが終了した時点で、サイクルj内の実放電深さy
j を次のようにして算出する。すなわち、前述の容量管
理のところで説明したとうり、瞬時放電電流ai 及び瞬
時放電電圧vi から瞬時放電電力量qi を求め、サイク
ルj内のqi を積算してサイクルjにおける実放電電力
量Qj を算出する。求めたQj とバッテリ11の規定容
量P0 とを用いて次の数式からサイクルjにおける実放
電深さyj を算出する(S−1)。
In FIG. 3, first, at the time when the first charge / discharge cycle j is completed, the actual discharge depth y in cycle j is
Calculate j as follows. That is, as described in the above capacity management, the instantaneous discharge power amount q i is obtained from the instantaneous discharge current a i and the instantaneous discharge voltage v i , and q i in cycle j is integrated to calculate the actual discharge power in cycle j. Calculate the quantity Q j . Using the obtained Q j and the specified capacity P 0 of the battery 11, the actual discharge depth y j in the cycle j is calculated from the following formula (S-1).

【0034】[0034]

【数1】yj =Qj /100P0 僅か1回のサイクルにおける実放電深さだけでは移動体
10に搭載したバッテリ11の消費の仕方を決定するこ
とができないので、その後更に移動体10を運転してm
サイクル(但し、数10サイクル≦m≦100サイク
ル)分のバッテリの消費(充/放電)を繰り返す(S−
2)。
[Mathematical formula-see original document] y j = Q j / 100P 0 Since the way of consuming the battery 11 mounted on the moving body 10 cannot be determined only by the actual discharge depth in one cycle, the moving body 10 is further Drive m
Cycles (however, several tens cycles ≤ m ≤ 100 cycles) of battery consumption (charging / discharging) are repeated (S-
2).

【0035】mサイクル内の各サイクルの実放電深さを
それぞれ求め、これらを平均してm 10に搭載したバッテリ11のその期間の放電深さと決
定する(S−3)。
The actual discharge depth of each cycle within m cycles was obtained, and these were averaged to obtain m. It is determined as the discharge depth of the battery 11 mounted on the battery 10 (S-3).

【0036】[0036]

【数2】 ッテリ11の寿命サイクル数Lを求める(S−4)。[Equation 2] The life cycle number L of battery 11 is obtained (S-4).

【0037】斯くして、バッテリ11の残りのサイクル
寿命数をL−mにより求めることができる(S−5)。
Thus, the number of remaining cycle lives of the battery 11 can be obtained from Lm (S-5).

【0038】ここで、充電により再使用が可能な鉛蓄電
池や本発明で用いられるNi−Cd系アルカリ蓄電池の
ような2次電池とは言っても、寿命サイクル数が0に近
づくにつれて電解液や内部物質の活性度が衰え、バッテ
リとしての規定容量が低下してくるので、残りの寿命サ
イクル数が所定寿命サイクル数β(通常、数10寿命サ
イクル数)に達したところで電池交換の必要をオペレー
タに通報する様にしている。
Here, even if a secondary battery such as a lead storage battery that can be reused by charging or a Ni--Cd alkaline storage battery used in the present invention is mentioned, as the life cycle number approaches 0, the electrolyte solution and Since the activity of internal substances declines and the specified capacity of the battery decreases, it is necessary to replace the battery when the remaining life cycle number reaches a predetermined life cycle number β (usually several tens of life cycle numbers). I will call you.

【0039】そこで、本発明の寿命管理においても、上
記残りの寿命サイクル数(L−m)を所定寿命サイクル
数βと比較し(S−6)、L−m<βであれば電池交換
の必要をオペレータに通報し(S−7)、電池を交換す
る(S−8)。
Therefore, also in the life management of the present invention, the remaining life cycle number (Lm) is compared with the predetermined life cycle number β (S-6), and if Lm <β, the battery is replaced. The operator is notified of the need (S-7), and the battery is replaced (S-8).

【0040】一方、上記(S−6)の比較結果がL−m
>βであれば、再び(S−1)の動作に戻って、(S−
1)から(S−5)までの動作を繰り返すことによって
残りの寿命サイクル数の算出を行う。この一連の動作の
繰り返しは、(S−6)における比較結果がL−m<β
になるまで行われる。
On the other hand, the comparison result of (S-6) is Lm
If> β, the operation returns to (S-1) and (S-
The remaining life cycle number is calculated by repeating the operations from 1) to (S-5). When the series of operations is repeated, the comparison result in (S-6) is Lm <β.
It is performed until it becomes.

【0041】なお、参考までに図4に示されるグラフを
用いてNi−Cd系アルカリ電池の具体的な寿命サイク
ル数を求めてみると、設計放電深さを40%(0.4
C)とすると、寿命サイクル数が約8300であること
が読み取れる。また、寿命サイクル数が10000の場
合のアルカリ電池における放電深さは35%になること
が図4のグラフから読み取ることができる。通常、設計
放電深さは20%〜40%の間とされる。
For reference, the specific life cycle number of the Ni--Cd alkaline battery was calculated using the graph shown in FIG. 4, and the designed discharge depth was 40% (0.4
In the case of C), it can be read that the life cycle number is about 8300. Moreover, it can be read from the graph of FIG. 4 that the discharge depth in the alkaline battery when the number of life cycles is 10,000 is 35%. Usually, the designed discharge depth is between 20% and 40%.

【0042】以上説明した通り、本発明のバッテリ管理
においては放電深さに基づく管理が行われるので、組電
池におけるのセル間の不均等にも対処することができ
る。
As described above, in the battery management of the present invention, the management based on the discharge depth is performed, so that it is possible to deal with the unevenness between the cells in the assembled battery.

【0043】すなわち、組電池における特性として、浅
い放電及びそれに対応する浅い充電が複数回わたって繰
り返されると、組電池の各単体(セル)間に放電容量の
不均等が生じる。このような状態になると、通常の充電
方法では見かけの充電容量が低下すると言う問題が生じ
る。
That is, as a characteristic of the battery pack, when the shallow discharge and the corresponding shallow charge are repeated a plurality of times, the discharge capacities become uneven among the individual cells (cells) of the battery pack. In such a state, there arises a problem that the apparent charging capacity is lowered by the normal charging method.

【0044】そこで、浅い充/放電が10回程度繰り返
されたら、充電圧を約1.2倍にして充電を行う。この
充電によってセル間の放電容量の不均等が是正される。
これを均等充電と呼んでいる。
Therefore, when shallow charging / discharging is repeated about 10 times, the charging pressure is increased by about 1.2 times to perform charging. This charging corrects the uneven discharge capacity between cells.
This is called equal charging.

【0045】以上の説明は単に本発明の好適な実施例の
例証であり、本発明の範囲はこれに限定されることはな
い。本発明に関する更に多くの変形例や改造例が本発明
の範囲を逸脱することなく当該技術の熟達者にとってみ
れば容易に思い当たるであろう。
The above description is merely illustrative of the preferred embodiments of the present invention and the scope of the present invention is not limited thereto. Many more variations and modifications of the present invention will readily suggest themselves to those skilled in the art without departing from the scope of the invention.

【0046】[0046]

【発明の効果】以上の説明から明らかなように、本発明
によれば、バッテリからの電源供給出口に取りつけられ
た電圧計と電流計とによってバッテリの放電電力量(電
圧×電流)が測定され、それを積算することによって実
際の放電量(放電深さ)を正確に管理することができる
ので、次のような効果を達成することができる。 1.エネルギー密度の高いNi−Cd系アルカリ蓄電池
を移動体の駆動源として用いる場合、予め設定した設計
条件に基づいて容量管理を行うことができ、充/放電を
適切に行うことができる。 2.移動体が通常とは異なる運転を行い、予め設定した
設計放電深さと異なる放電を行う場合でも、それによる
寿命の低下を予測することができ、バッテリの状態保全
(CBM)を行うことができる。 3.浅い放電およびそれを補うための充電が繰り返され
た場合(10回程度)でも、電池のセル間の不均等を是
正するように、放電深さの管理によって、適宜、電池の
セル間の均等充電を実施して、見かけの充電容量の低下
を防ぐことができる。
As is apparent from the above description, according to the present invention, the discharge electric energy (voltage × current) of the battery is measured by the voltmeter and the ammeter attached to the power supply outlet from the battery. Since the actual amount of discharge (discharge depth) can be accurately managed by integrating it, the following effects can be achieved. 1. When a Ni-Cd alkaline storage battery having a high energy density is used as a drive source for a moving body, capacity management can be performed based on preset design conditions, and charging / discharging can be appropriately performed. 2. Even when the moving body performs an operation different from the normal operation and performs a discharge different from the preset design discharge depth, it is possible to predict a decrease in life due to the discharge and perform battery state maintenance (CBM). 3. Even if the shallow discharge and the charge to compensate for it are repeated (about 10 times), the discharge depth is managed appropriately so as to correct the unevenness between the cells of the battery. By implementing the above, it is possible to prevent an apparent decrease in charge capacity.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の方法を実施するシステムの概略全体構
成を示すブロック図である。
FIG. 1 is a block diagram showing a schematic overall configuration of a system for carrying out the method of the present invention.

【図2】本発明の第1実施例である容量管理に関するフ
ローチャートである。
FIG. 2 is a flowchart regarding capacity management according to the first embodiment of this invention.

【図3】本発明の第2実施例である寿命管理に関するフ
ローチャートである。
FIG. 3 is a flowchart relating to life management, which is a second embodiment of the present invention.

【図4】各種電池の放電深さと寿命サイクル数との関係
を示すグラフである。
FIG. 4 is a graph showing the relationship between the discharge depth and the number of life cycles of various batteries.

【符号の説明】[Explanation of symbols]

10 移動体 11 バッテリ 12 スイッチ 13 電流計 14 電圧計 15 負荷装置 16 CPU(移動体側) 17 送受信装置 18 充電用端子 20 コントローラ 21 デコーダ 22 CPU(固定操作側) 23 記憶装置 30 通信装置 10 Mobile Object 11 Battery 12 Switch 13 Ammeter 14 Voltmeter 15 Load Device 16 CPU (Mobile Object Side) 17 Transmitter / Receiver 18 Charging Terminal 20 Controller 21 Decoder 22 CPU (Fixed Operation Side) 23 Storage Device 30 Communication Device

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 移動体の駆動源に用いられるバッテリの
管理方法であって、電池の交換または1回の充電が完了
した時点から所定時間間隔毎にその時々の瞬時電流及び
瞬時電圧を計測することと、該計測電流及び計測電圧か
ら瞬時放電電力量を計算し、かつ、これを記憶すること
と、前記充電後から現時刻までの間の瞬時放電電力量を
積算することによって現在の実放電電力量を算出するこ
とと、予め定めた設計放電深さから求められる設計放電
電力量に対して前記実放電電力量を比較することと、該
比較において前記実放電電力量が前記設計放電電力量よ
り小さければ前記移動体の運転による放電を継続するこ
とと、前記比較において前記実放電電力量が前記設計放
電電力量より大きくなり、かつ、移動体が自動運転され
ている場合には所定の充電位置に戻り充電を行い、一
方、移動体を手動運転している場合には放電容量超過の
警報を発することの各ステップからなることを特徴とす
るバッテリの管理方法。
1. A method of managing a battery used as a drive source for a mobile body, which measures an instantaneous current and an instantaneous voltage at predetermined time intervals from the time when the battery is replaced or charged once. That the instantaneous discharge power amount is calculated from the measured current and the measured voltage, and that this is stored, and the instantaneous discharge power amount from the time after charging to the current time is integrated to obtain the current actual discharge. Calculating the amount of electric power, comparing the actual amount of discharged electric power to the amount of designed discharged electric power obtained from a predetermined designed discharge depth, and in the comparison, the amount of actual discharged electric power is the amount of designed discharged electric power If it is smaller, the discharge by the operation of the moving body is continued, and in the comparison, the actual discharge power amount is larger than the design discharge power amount, and if the moving body is automatically operated, a predetermined value is set. The method for managing a battery is characterized by comprising the steps of returning to the charging position to perform charging, and issuing an alarm of discharge capacity excess when the moving body is in manual operation.
【請求項2】 移動体の駆動源に用いられるバッテリの
管理方法であって、電池の交換または1回の充電から次
の充電までを1サイクルとするとき、電池の交換または
1回の充電が完了した時点から所定時間間隔毎にその時
々の瞬時電流及び瞬時電圧を計測することと、該計測電
流及び計測電圧から瞬時放電電力量を計算し、かつ、こ
れを記憶することと、該瞬時放電電力量を積算すること
によって求められる1サイクル毎の実放電電力量から1
サイクル毎の放電深さを求めることと、所定のサイクル
回数を繰り返した後に1サイクル毎の平均放電深さを計
算することと、放電深さと寿命サイクル数との関係を示
すグラフに前記平均放電深さを当てはめて該当する寿命
サイクル数を求めることと、求めた寿命サイクル数に基
づいて残存寿命サイクル数を算出することの各ステップ
からなることを特徴とするバッテリの管理方法。
2. A method of managing a battery used as a drive source of a mobile body, wherein when the battery replacement or one charging to the next charging is one cycle, the battery replacement or one charging is performed. Measuring an instantaneous current and an instantaneous voltage from time to time at a predetermined time interval, calculating an instantaneous discharge power amount from the measured current and the measured voltage, and storing the calculated amount; 1 from the actual discharge electric energy for each cycle obtained by integrating the electric energy
Obtaining the discharge depth for each cycle, calculating the average discharge depth for each cycle after repeating a predetermined number of cycles, and showing the average discharge depth in a graph showing the relationship between the discharge depth and the number of life cycles. A method of managing a battery, which comprises the steps of applying the above to obtain a corresponding number of life cycles and calculating the number of remaining life cycles based on the obtained number of life cycles.
【請求項3】 前記残存寿命サイクル数の算出ステップ
が、前記寿命サイクル数から前記所定サイクル回数及び
予備サイクル数を減ずることを含む請求項2記載のバッ
テリの管理方法。
3. The battery management method according to claim 2, wherein the step of calculating the number of remaining life cycles includes subtracting the predetermined number of cycles and the number of spare cycles from the number of life cycles.
JP32713494A 1994-12-28 1994-12-28 Management method of battery used for driving source of moving body Expired - Fee Related JP3673543B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32713494A JP3673543B2 (en) 1994-12-28 1994-12-28 Management method of battery used for driving source of moving body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32713494A JP3673543B2 (en) 1994-12-28 1994-12-28 Management method of battery used for driving source of moving body

Publications (2)

Publication Number Publication Date
JPH08185890A true JPH08185890A (en) 1996-07-16
JP3673543B2 JP3673543B2 (en) 2005-07-20

Family

ID=18195700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32713494A Expired - Fee Related JP3673543B2 (en) 1994-12-28 1994-12-28 Management method of battery used for driving source of moving body

Country Status (1)

Country Link
JP (1) JP3673543B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999017392A1 (en) * 1997-09-30 1999-04-08 Matsushita Electric Industrial Co., Ltd. Method for measuring residual capacity of secondary cell having nickel hydroxide positive plate
JP2000260486A (en) * 1999-03-05 2000-09-22 Sony Corp Battery pack, its charging-discharging count method, battery remaining capacity setting method of battery pack
WO2001065627A1 (en) * 2000-03-01 2001-09-07 Matsushita Electric Industrial Co., Ltd. Battery and maintenance service system for power supply device
CN109164396A (en) * 2018-09-21 2019-01-08 华北电力大学(保定) A kind of real-time ferric phosphate lithium cell life consumption appraisal procedure
KR102066223B1 (en) * 2018-10-08 2020-01-14 주식회사 시너젠 Method, apparatus and program for maintaining battery lifetime
WO2023221775A1 (en) * 2022-05-16 2023-11-23 长城汽车股份有限公司 Battery early warning method and apparatus, and vehicle and storage medium

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999017392A1 (en) * 1997-09-30 1999-04-08 Matsushita Electric Industrial Co., Ltd. Method for measuring residual capacity of secondary cell having nickel hydroxide positive plate
US6265877B1 (en) 1997-09-30 2001-07-24 Matsushita Electric Industrial Co., Ltd. Method for determining an end of discharge voltage for a secondary battery
JP2000260486A (en) * 1999-03-05 2000-09-22 Sony Corp Battery pack, its charging-discharging count method, battery remaining capacity setting method of battery pack
WO2001065627A1 (en) * 2000-03-01 2001-09-07 Matsushita Electric Industrial Co., Ltd. Battery and maintenance service system for power supply device
US6794849B2 (en) 2000-03-01 2004-09-21 Matsushita Electric Industrial Co., Ltd. Battery, based power supply device and associated maintenance system
CN109164396A (en) * 2018-09-21 2019-01-08 华北电力大学(保定) A kind of real-time ferric phosphate lithium cell life consumption appraisal procedure
CN109164396B (en) * 2018-09-21 2020-10-09 华北电力大学(保定) Real-time lithium iron phosphate battery life loss assessment method
KR102066223B1 (en) * 2018-10-08 2020-01-14 주식회사 시너젠 Method, apparatus and program for maintaining battery lifetime
WO2023221775A1 (en) * 2022-05-16 2023-11-23 长城汽车股份有限公司 Battery early warning method and apparatus, and vehicle and storage medium

Also Published As

Publication number Publication date
JP3673543B2 (en) 2005-07-20

Similar Documents

Publication Publication Date Title
JP2979939B2 (en) Operation method of secondary battery system
US8768549B2 (en) Battery maintenance system
US9142980B2 (en) Apparatus and method for controlling charge capacity balancing operation of secondary battery cell
US5739670A (en) Method for diagnosing battery condition
CN110462414B (en) Apparatus and method for estimating battery resistance
WO2000042689A1 (en) Energy gauge
WO1999065131A1 (en) Energy storage system
JP2004222427A (en) Charge control device, battery management system, battery pack, and impairment determination method of rechargeable battery by them
CN112924866B (en) Method and device for detecting capacity retention rate, vehicle and storage medium
WO2023159708A1 (en) Control method for normally-electrically charged self-maintenance of battery, and normally-electrically charged self-maintenance battery
KR20180116988A (en) A system for calculating the state of charge of a lfp battery for car and method thereof
CN115799672A (en) Management method and device of battery pack and energy storage system
JPH08185890A (en) Control method for battery used as drive source for moving body
JPH1051968A (en) Method for charging battery
US5608325A (en) Method of recalibrating a battery energy management processor
EP2951048B1 (en) Battery maintenance system
KR102418517B1 (en) SOC-SOH based ship battery control management system
JP7149836B2 (en) Power supply system, diagnostic equipment and uninterruptible power supply
JP3304883B2 (en) Secondary battery system
JPH10134847A (en) Battery control method
CN116157976B (en) Method for charging power battery and battery management system
CN117368728A (en) Lithium battery SOC estimation method and device based on short plate principle
CN117940947A (en) Method and device for battery power change
CN117941124A (en) Method and device for battery power change
CN112297947A (en) Automatic charging and discharging control system and control method for storage battery

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050425

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090428

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090428

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110428

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees