JPH08184622A - Method and apparatus for diagnosing insulation deterioration of power cable - Google Patents

Method and apparatus for diagnosing insulation deterioration of power cable

Info

Publication number
JPH08184622A
JPH08184622A JP18524695A JP18524695A JPH08184622A JP H08184622 A JPH08184622 A JP H08184622A JP 18524695 A JP18524695 A JP 18524695A JP 18524695 A JP18524695 A JP 18524695A JP H08184622 A JPH08184622 A JP H08184622A
Authority
JP
Japan
Prior art keywords
cable
ground wire
current
sheath
insulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18524695A
Other languages
Japanese (ja)
Inventor
Masahiro Hotta
昌弘 堀田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP18524695A priority Critical patent/JPH08184622A/en
Publication of JPH08184622A publication Critical patent/JPH08184622A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)

Abstract

PURPOSE: To accurately detect the state of the presence or absence of the insulation deterioration of a CV cable by excluding a stray current superposed on the deterioration signal from a water tree. CONSTITUTION: A ground line current flowing to the ground line 5 of the CV cable 3 of an operating state is detected, a sheath insulating resistance is measured, and electromotive force is obtained from the product of the ground line current value and the sheath insulating resistance value. The insulation deteriorated state of the cable to be measured is judged according to the amplitude of the current value obtained by applying the voltage of reverse polarity to the force to the ground line 5 of the cable 3.

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、交流電圧が印加さ
れている活線下の電力ケーブルの絶縁劣化診断法に係
り、特に、直流成分電流法を用い、測定誤差となる迷走
電流の影響を受けずに劣化判定を行う電力ケーブルの絶
縁劣化診断方法及び装置に関する。 【0002】 【従来の技術】絶縁材料、特に高分子材料は、使用中に
種々の原因により次第にその絶縁性能が低下する所謂絶
縁劣化現象が生じる。絶縁材料の劣化は、使用される絶
縁材料の種類、使用される場所によって劣化の状態が異
なる。この絶縁材料の劣化状態を知ることは、電力機器
の絶縁破壊事故を予防する上で極めて重要である。架橋
ポリエチレンを絶縁材料とする架橋ポリエチレン絶縁電
力ケーブル(以下、CVケーブルと称する)を水分の多
い環境で使用していると、絶縁体中に水トリーが生じ
る。この水トリーは、CVケーブルの電気的特性を著し
く低下させ、絶縁劣化を生じせしめ絶縁破壊事故の主な
原因となっている。したがって、CVケーブルの絶縁劣
化による絶縁破壊事故を未然に防ぐには、この水トリー
の発生を知ることが重要である。従来より布設された電
力ケーブルの水トリーを、活線下で直流成分を検出する
ことによって検知する方法の開発が行われている。 【0003】従来の絶縁劣化診断法では、図2に示す如
き方法が採られている。この図2に示す如き絶縁劣化診
断法は、高圧母線1にケーブル端末接続部2を介して接
続される被測定ケーブルであるCVケーブル3の遮蔽層
4に接続される接地線5に流れる電流の中から水トリー
からの劣化信号である直流成分電流を測定器6によって
検出し、活線下においてCVケーブル3(図2において
は、CVケーブル3は単心のケーブルを例に採ってい
る)の劣化状態を診断する方法である(例えば、特公平
6−14094号公報)。この公報に示される方法は、
活線下において被測定ケーブルである電力ケーブルの接
地線(又は、接地用変圧器の中性点接地線)に流れる電
流の中から水トリーからの劣化信号である直流成分電流
を検出し、電力ケーブルの劣化状態を診断する方法であ
る。すなわち、活線路で絶縁劣化診断の対象とする電力
ケーブル線路の遮蔽層と大地間から直流成分電流を検出
して、その極性、大きさ及び時間特性を解析し、水トリ
ーの有無、水トリーの大きさ及び発生方向を検出し、活
線状態の電力ケーブルの使用継続の可否を判定するもの
である。 【0004】 【発明が解決しようとする課題】このような検出しよう
とする劣化信号(直流成分電流)は非常に小さく、電力
ケーブルを構成する最外層である絶縁シースの絶縁抵抗
が低下すると、大地と電力ケーブルの遮蔽層との電位差
によって迷走電流が発生し、この迷走電流がCVケーブ
ルの絶縁体の劣化信号に重畳することになる。このため
測定器によって測定される電流値と真の直流成分電流
(劣化信号)との差が大きくなり、劣化信号の測定誤差
となって現れ、測定器によって測定される電流値、すな
わち誤差の生じた劣化信号によってCVケーブルの絶縁
劣化診断を行うため、CVケーブルの適正な絶縁劣化診
断を行うことができない。従来の方法に基づいて測定器
で測定した劣化信号には、電力ケーブルのシース絶縁抵
抗に依存した迷走電流が重畳している。このため、シー
ス絶縁抵抗が低い場合には、測定器によって大きな直流
成分電流が検出されても、この測定値が直ちに劣化信号
と判定することができず、ケーブルの劣化状態を正確に
把握することができない。 【0005】本発明の目的は、水トリーからの劣化信号
に重畳する迷走電流を排除し、CVケーブルの絶縁体の
絶縁劣化の有無の状態を高精度に検出することにある。 【0006】 【課題を解決するための手段】CVケーブルの絶縁体中
に水トリーが生じると、この水トリーによって直流成分
電流が生じるが、この直流成分電流は、常に一定した値
を示すものではなく、絶えず変動している。本発明は、
この絶えず変動する直流成分電流を利用することによ
り、CVケーブルの絶縁体中に水トリーが生じているか
否かを判定しようとするものである。 【0007】請求項1記載の発明に係る電力ケーブルの
絶縁劣化診断方法は、運転状態にある電力ケーブルの接
地線に流れる接地線電流を検出すると共に、シース絶縁
抵抗を測定し、前記接地線電流値と前記シース絶縁抵抗
値との積から起電力を求め、該起電力と逆極性の電圧を
前記電力ケーブルの接地線に印加して得られた電流値の
大きさによって被測定ケーブルの絶縁劣化状態を判定し
ようというものである。 【0008】請求項2記載の発明に係る電力ケーブルの
絶縁劣化診断装置は、運転状態にある電力ケーブルの遮
蔽層に接続され接地線に流れる接地線電流を検出すると
共にシース絶縁抵抗を測定する測定器と、前記測定器を
アースする接地線とによってなる電力ケーブルの絶縁劣
化診断装置において、上記測定器によって求めた電流値
とシース絶縁抵抗値との積から起電力を求め、該起電力
と逆極性の電圧を前記電力ケーブルの接地線に印加する
直流発生器と、前記測定器を前記直流発生器をバイパス
して接地線を介して短絡するスイッチとの並列回路を上
記測定器と接地線との間に挿入して構成したものであ
る。 【0009】 【発明の実施の形態】以下、本発明の実施の形態につい
て説明する。図1には、本発明に係る電力ケーブルの絶
縁劣化診断方法及び装置の一実施の形態が示されてい
る。図において、1は高圧母線で、ケーブル端末接続部
2を介して被測定ケーブルであるCVケーブル3(本実
施の形態においては、単心のケーブルを例に採ってい
る)が接続されている。このCVケーブル3には、高圧
母線1から例えば3.8kVの交流電圧が印加されてい
る。このCVケーブル3の遮蔽層4には、他端が接地さ
れている接地線5が接続されており、この接地線5に
は、測定器6が接続され、この測定器6の他端には、直
流発生器7とスイッチ8の並列回路が接続されている。
この直流発生器7とスイッチ8の並列回路の他端は、接
地線5によって接地されている。9はCVケーブル3の
遮蔽層4の上に被覆されたシースである。測定器6は、
CVケーブル3の遮蔽層4から接地線5に流れる接地線
電流を測定すると共に、CVケーブル3の遮蔽層4に所
定の電圧(例えば、5V)を印加したときにCVケーブ
ル3の遮蔽層4からCVケーブル3のシース9を通って
大地側に流れる電流(迷走電流)を検出して、シース絶
縁抵抗を測定する機能を有している。この測定器6によ
って測定したCVケーブル3の遮蔽層4から接地線5に
流れる接地線電流値と、CVケーブル3のシース9のシ
ース絶縁抵抗値とを掛け合わせ接地線5に流れる迷走電
流の起電力を演算する。この測定器6による接地線5に
流れる接地線電流の測定、CVケーブル3のシース9の
シース絶縁抵抗の測定のときは、スイッチ8をONして
行う。 【0010】直流発生器7は、演算して求めた迷走電流
の起電力に基づいて接地線5に、測定した迷走電流の起
電力を打ち消すような逆極性の電圧を印加するものであ
る。この直流発生器7による逆極性の電圧を印加する場
合には、スイッチ8をOFFにしておく。 【0011】次に、本実施の形態の動作について説明す
る。まず、スイッチ8をONし、この状態で接地線5に
流れる接地線電流(劣化信号)を測定器6によって測定
する。しかる後、測定器6によってCVケーブル3の遮
蔽層4に所定の電圧(例えば、5V)を印加し、この所
定の電圧の印加によってCVケーブル3の遮蔽層4から
CVケーブル3のシース9を通って大地側に流れる電流
(迷走電流)値を測定器6が検出してCVケーブル3の
シース9のシース絶縁抵抗を測定する。この測定器6に
よって測定された接地線電流とシース絶縁抵抗の2つの
値の積から、接地線5に流れる接地線電流の起電力を算
出する。そこで、スイッチ8をOFFし、この測定器6
によって測定された接地線電流とシース絶縁抵抗の2つ
の値から求めた接地線電流の起電力を直流発生器7に入
力して、この直流発生器7によって、測定した起電力を
打ち消すような起電力と逆極性の電圧を接地線5に印加
する。そして、この逆極性の電圧を印加した時に接地線
5に流れる接地線電流を測定器6によって測定する。こ
のように直流発生器7によって、測定した起電力と逆極
性の電圧を接地線5に印加しても、CVケーブル3の絶
縁体中に発生した水トリーによる直流成分電流の値が変
動しているため、接地線5に流れる接地線電流は『0』
にはならず、水トリーによる直流成分電流の値の変動が
接地線電流という形で検出される。CVケーブル3の絶
縁体の絶縁劣化が進行している場合、逆起電力を印加し
ても迷走電流は完全に打ち消せず、電流値はnAオーダ
以上となる。 【0012】 【実施例】CVケーブル3の絶縁体の絶縁劣化が全く無
いケーブル(以下、未劣化ケーブルと称する)とCVケ
ーブル3の絶縁体が水トリー劣化を起こしているケーブ
ル(以下、劣化ケーブルと称する)を用いた具体的実施
例について、本実施の形態に係る絶縁劣化診断法に基づ
いて絶縁状態を測定した結果と従来の絶縁劣化診断法に
基づいて絶縁状態を測定した結果とを比較して表1に示
してある。 【0013】【表1】 表1には、未劣化ケーブルと劣化ケーブルについて従来
の絶縁劣化診断法に基づいて絶縁状態を測定した結果が
比較して示されている。 【0014】表1では、未劣化ケーブルについて、シー
ス絶縁抵抗が250MΩのシース、シース絶縁抵抗が2
5MΩのシース、シース絶縁抵抗が2.5MΩのシース
をそれぞれ被覆した3種類を作成し、それぞれについ
て、本実施の形態に掛かる絶縁劣化診断方法による接地
線電流の測定と、従来の方法による接地線電流の測定を
行い、その測定値を示している。また、劣化ケーブルに
ついても、シース絶縁抵抗が250MΩのシース、シー
ス絶縁抵抗が25MΩのシース、シース絶縁抵抗が2.
5MΩのシースをそれぞれ被覆した3種類を作成し、そ
れぞれについて、本実施の形態に掛かる絶縁劣化診断方
法による接地線電流の測定と、従来の方法による接地線
電流の測定を行い、その測定値を示している。 【0015】表1から明らかなように、従来の方法によ
る接地線電流の測定結果を見ると、未劣化ケーブルの場
合、CVケーブル3の絶縁体に劣化が生じていないので
接地線5に流れる電流測定値は、本来大きな値を示さな
い筈である。ところが、未劣化ケーブルの場合について
の従来の方法による接地線電流の測定結果を見ると、シ
ース9のシース絶縁抵抗が250MΩのときの接地線5
に流れる電流測定値が−1.063nAで、25MΩの
ときの接地線5に流れる電流測定値が−11.119n
Aとシース絶縁抵抗が250MΩのときの約10倍とな
っており、さらにシース9のシース絶縁抵抗が2.5M
Ωと250MΩの10分の1と著しく低くなると、接地
線5に流れる電流測定値が−118.844nAと、シ
ース絶縁抵抗が250MΩのときの約100倍となって
いる。このように未劣化ケーブルの場合、接地線5に流
れる電流測定値が本来大きな値を示さない筈であるのに
シース9のシース絶縁抵抗が250MΩ、25MΩ、
2.5MΩのいずれの電流測定値もnAオーダーの値と
なっており、しかもシース9のシース絶縁抵抗が250
MΩ、25MΩ、2.5MΩと低くなるにしたがって接
地線5に流れる電流測定値が大きな値になっている。こ
れは、未劣化ケーブルの場合、CVケーブル3の絶縁体
の絶縁劣化が全く無い状態で絶縁体の絶縁劣化によって
接地線5に流れる電流測定値が上がるのではなく、接地
線5に流れる電流測定値に迷走電流が重畳し、この迷走
電流がシース9のシース絶縁抵抗が低くなるにしたがっ
て大きくなり、主にこの変化する迷走電流を検出してい
るからである。すなわち、未劣化ケーブルの場合でも、
シース9のシース絶縁抵抗が250MΩ→25MΩ→
2.5MΩと劣化していくと、迷走電流が大きくなり、
この迷走電流が接地線5に流れる電流測定値に重畳して
接地線5に流れる電流測定値として検出される。 【0016】ところが、本実施の形態の絶縁劣化診断法
による接地線電流の測定結果を見ると、未劣化ケーブル
の場合、接地線5に流れる接地線電流の起電力と逆極性
の電圧を印加して接地線5に流れる接地線電流を測定す
ると、表1に示すように、シース9のシース絶縁抵抗が
250MΩのときの接地線5に流れる電流測定値が−
0.419nAで、25MΩのときの接地線5に流れる
電流測定値が−0.257nA、さらに2.5MΩのと
きの接地線5に流れる電流測定値が−0.800nAと
なっている。すなわち、シース9のシース絶縁抵抗値が
250MΩ→25MΩ→2.5MΩと劣化していき迷走
電流が大きくなっても、CVケーブル3の絶縁体に劣化
が生じていない場合には、接地線5に流れる接地線電流
の測定値が全てpAオーダーの値となり、迷走電流の影
響がないことが判る。 【0017】また、表1から明らかなように、従来の方
法による接地線電流の測定結果を見ると、劣化ケーブル
の場合、CVケーブル3の絶縁体に水トリー劣化が生じ
ているので接地線5に流れる電流測定値は、本来大きな
値を示す筈であり、シース9のシース絶縁抵抗が250
MΩのときの接地線5に流れる電流測定値が−40.1
31nAで、25MΩのときの接地線5に流れる電流測
定値が−45.332nAで、2.5MΩのときの接地
線5に流れる電流測定値が−132.071nAとなっ
ている。しかし、これらの値は、未劣化ケーブルの場合
についての従来例と本実施の形態の比較から明らかなよ
うに、これらの値には、迷走電流が重畳されている。こ
の3つの結果をみると、従来の方法による接地線電流の
測定結果では、CVケーブル3の絶縁体に劣化が生じて
いない未劣化ケーブルの場合と、CVケーブル3の絶縁
体に水トリー劣化が生じている劣化ケーブルの場合との
間に約14〜38nAの差しかなく、従来の方法による
接地線電流の測定方法では、CVケーブル3の絶縁体に
水トリー劣化が生じているか否かは、接地線電流の測定
値に約14〜38nAの変化があったか否かを判定しな
ければならず実質的に困難を極めている。 【0018】劣化ケーブルの場合について、本実施の形
態の絶縁劣化診断法に基づいて、接地線5に流れる接地
線電流の起電力と逆極性の電圧を印加して接地線5に流
れる接地線電流を測定すると、表1に示すように、シー
ス9のシース絶縁抵抗が250MΩのときの接地線5に
流れる電流測定値が−4.927nAで、25MΩのと
きの接地線5に流れる電流測定値が−7.439nA、
さらに2.5MΩのときの接地線5に流れる電流測定値
が−18.297nAとなっている。これらの検出値
は、未劣化ケーブルの場合の従来法との比較で明らかな
ように、シース9のシース絶縁抵抗の低下による迷走電
流が重畳されていない。しかし、CVケーブル3の絶縁
体に水トリー劣化が生じているので接地線5に流れる電
流測定値は、いずれもnAオーダーの値となっている。
これをCVケーブル3の絶縁体に水トリー劣化が生じて
いない未劣化ケーブルの場合についての本実施の形態の
絶縁劣化診断法に基づく接地線5に流れる接地線電流値
と比較すると、シース9のシース絶縁抵抗値が250M
Ωから2.5MΩに劣化しても、未劣化ケーブルの場合
接地線5に流れる接地線電流の測定値が全てpAオーダ
ーの値であり、CVケーブル3の絶縁体に水トリー劣化
が生じた場合には、本実施の形態の絶縁劣化診断法に基
づくと接地線5に流れる接地線電流の測定値がpAオー
ダーの値からnAオーダーの値に変化するので容易に劣
化状態を検出することができる。 【0019】表1から明らかなように、シース9の絶縁
抵抗の変化に伴い接地線5に流れる接地線電流が未劣化
ケーブル、劣化ケーブル共に増加している。特にシース
9の絶縁抵抗が2.5MΩと著しく低くなると、接地線
5に流れる接地線電流が急激に増加している。そこで、
本実施の形態の絶縁劣化診断法に基づいて、接地線5に
流れる接地線電流の起電力と逆極性の電圧を印加して接
地線5に流れる接地線電流を測定すると、未劣化ケーブ
ルの場合は、測定される電流値は小さくなりpAオーダ
ーの値となる。しかし、劣化ケーブルの場合は、接地線
5に流れる接地線電流の起電力と逆極性の電圧を印加し
ても高い電流値が測定される。すなわち、接地線5に流
れる接地線電流の起電力と逆極性の電圧を印加しても測
定される電流値はpAオーダに補正されなくなる。した
がって、シース9の絶縁抵抗が低くなって迷走電流が大
きくなった場合に、接地線5に流れる接地線電流の起電
力と逆極性の電圧を印加して接地線5に流れる接地線電
流を測定し、その測定値が大きければCVケーブル3の
絶縁体に水トリー劣化が発生していることが判定でき
る。 【0020】CVケーブル3の絶縁体に水トリーによる
劣化が生じていない未劣化ケーブルが種々の環境に置か
れると、一般的には、CVケーブル3の絶縁体に水トリ
ーによる劣化が生じていなくても、CVケーブル3の最
外層であるシース9が劣化して絶縁抵抗が低下すること
があるが、CVケーブル3の絶縁体に水トリーによる劣
化が生じた場合、CVケーブル3の最外層であるシース
9が劣化しないで絶縁抵抗に変化がないということはな
い。したがって、当初、絶縁抵抗が250MΩのシース
9を被覆したCVケーブル3を布設した場合、CVケー
ブル3の絶縁体に水トリーによる劣化が生じていなくて
も、CVケーブル3の最外層であるシース9が劣化して
絶縁抵抗が25MΩ又は2.5MΩに低下することはあ
る。この場合、従来の方法による接地線電流の測定結果
では、−11.119nA又は−118.844nAの
値が検出されることになるが、本実施の形態の絶縁劣化
診断法に基づいて、接地線5に流れる接地線電流の起電
力と逆極性の電圧を印加して接地線5に流れる接地線電
流を測定すると、−0.257nA又は−0.800n
Aと電流値はいずれもpAオーダの値が検出されること
になる。ところが、当初、絶縁抵抗が250MΩのシー
ス9を被覆したCVケーブル3を布設した場合、CVケ
ーブル3の絶縁体に水トリーによる劣化が生じると、C
Vケーブル3の最外層であるシース9が劣化して絶縁抵
抗が25MΩ又は2.5MΩに低下することがある。こ
の場合、従来の方法による接地線電流の測定結果では、
−45.332nA又は−132.071nAの値が検
出され、共に検出電流値がnAオーダで、CVケーブル
3の絶縁体が未劣化の場合と数値に大きな差が生じない
ため、CVケーブル3の絶縁体に水トリーによる劣化が
生じたことを容易に検出することができない。また、本
実施の形態の絶縁劣化診断法に基づいて、接地線5に流
れる接地線電流の起電力と逆極性の電圧を印加して接地
線5に流れる接地線電流を測定すると、−7.439n
A又は−18.297nAと電流値はいずれもnAオー
ダの値が検出され、これによって容易にCVケーブル3
の絶縁体が未劣化の場合と数値がいずれもpAオーダで
あることから大きな差となって現れ、CVケーブル3の
絶縁体に水トリーによる劣化が生じたことを容易に検出
することができる。 【0021】また、表1の結果から、直流成分電流法に
よる測定(従来の方法による接地線電流の測定)による
と、CVケーブル3の絶縁体に水トリーによる劣化が生
じ、シース絶縁抵抗が低下(2.5MΩ)すると、接地
線電流に対する迷走電流の影響が大きくなり、絶縁体の
劣化が生じたときの接地線電流が−132.071nA
に対し、未劣化ケーブルの場合の接地線電流が−11
8.844nAと大差なくなりCVケーブル3の絶縁体
の適正な絶縁劣化診断を行うことができないことが判
る。ところが、接地線5に流れる接地線電流の起電力と
逆極性の電圧を印加する本実施の形態の絶縁劣化診断法
によると、CVケーブル3の絶縁体に水トリーによる劣
化が生じ、シース絶縁抵抗が低下(2.5MΩ)して、
迷走電流が大きくなっても、接地線5に流れる接地線電
流の起電力と逆極性の電圧(逆起電力)を印加して迷走
電流を打ち消すため、その電流値の大きさからだけで、
CVケーブルの絶縁劣化診断を行うことができる。 【0022】 【発明の効果】請求項1記載の発明によれば、運転状態
にある電力ケーブルの接地線に流れる接地線電流を検出
すると共に、シース絶縁抵抗を測定し、前記接地線電流
値と前記シース絶縁抵抗値との積から起電力を求め、該
起電力と逆極性の電圧を前記電力ケーブルの接地線に印
加することにより、シース絶縁抵抗が2.5MΩ以下で
も、水トリーからの劣化信号に重畳する迷走電流を排除
し、得られた電流値の大きさによって被測定ケーブルに
絶縁劣化が生じているか否かを高精度に判定することが
できる。 【0023】請求項2記載の発明によれば、高圧母線に
ケーブル端末接続部を介して接続される運転状態にある
電力ケーブルの遮蔽層に接続され接地線に流れる接地線
電流を検出すると共にシース絶縁抵抗を測定する測定器
と、前記測定器をアースする接地線とによってなる電力
ケーブルの絶縁劣化診断装置において、上記測定器によ
って求めた接地線電流値とシース絶縁抵抗値との積から
接地線起電力を求め、該起電力と逆極性の電圧を前記電
力ケーブルの接地線に印加する直流発生器と、前記測定
器を前記直流発生器をバイパスして接地線を介して短絡
するスイッチとの並列回路を上記測定器と接地線との間
に挿入して構成してあるので、シース絶縁抵抗が2.5
MΩ以下でも、水トリーからの劣化信号に重畳する迷走
電流を排除し、得られた電流値の大きさによって被測定
ケーブルに絶縁劣化が生じているか否かを高精度に判定
することができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of diagnosing insulation deterioration of a power cable under live line to which an AC voltage is applied, and more particularly to a DC component current method. The present invention relates to a method and apparatus for diagnosing insulation deterioration of a power cable that determines deterioration without being affected by a stray current that causes a measurement error. 2. Description of the Related Art Insulating materials, particularly polymer materials, cause a so-called insulation deterioration phenomenon in which the insulating performance gradually decreases due to various causes during use. Degradation of the insulating material differs depending on the type of insulating material used and the place of use. It is extremely important to know the state of deterioration of this insulating material in order to prevent a dielectric breakdown accident in electric power equipment. When a cross-linked polyethylene insulated power cable (hereinafter, referred to as a CV cable) using cross-linked polyethylene as an insulating material is used in a water-rich environment, a water tree is generated in the insulator. This water tree significantly deteriorates the electrical characteristics of the CV cable, causes insulation deterioration, and is a major cause of dielectric breakdown accidents. Therefore, in order to prevent a dielectric breakdown accident due to insulation deterioration of the CV cable, it is important to know the occurrence of this water tree. Conventionally, a method of detecting a water tree of a power cable installed by detecting a direct current component under a hot line has been developed. In the conventional insulation deterioration diagnosis method, a method as shown in FIG. 2 is adopted. The insulation deterioration diagnosing method as shown in FIG. 2 uses the current flowing in the ground wire 5 connected to the shield layer 4 of the CV cable 3 which is the cable to be measured connected to the high voltage busbar 1 via the cable terminal connecting portion 2. The DC component current, which is a deterioration signal from the water tree, is detected from the inside by the measuring device 6, and the CV cable 3 (in FIG. 2, the CV cable 3 is a single-core cable is taken as an example) under the hot line. This is a method for diagnosing a deterioration state (for example, Japanese Patent Publication No. 6-14094). The method shown in this publication is
The DC component current, which is a deterioration signal from the water tree, is detected from the current flowing through the ground wire (or the neutral point ground wire of the grounding transformer) of the power cable, which is the cable under test, under the live line, and the power is detected. This is a method of diagnosing the deterioration state of the cable. That is, the DC component current is detected between the shield layer and the ground of the power cable line that is the target of the insulation deterioration diagnosis in the live line, and its polarity, size, and time characteristics are analyzed, and the presence or absence of the water tree and the water tree The size and the generation direction are detected to determine whether or not the power cable in the live line state can be continuously used. Such a deterioration signal (DC component current) to be detected is very small, and if the insulation resistance of the insulation sheath, which is the outermost layer constituting the power cable, is lowered, the ground signal is generated. A stray current is generated due to the potential difference between the power cable and the shield layer of the power cable, and the stray current is superimposed on the deterioration signal of the insulator of the CV cable. Therefore, the difference between the current value measured by the measuring instrument and the true DC component current (deterioration signal) becomes large, and it appears as a measurement error of the deterioration signal, and the current value measured by the measuring instrument, that is, an error occurs. Since the insulation deterioration diagnosis of the CV cable is performed by the deterioration signal, the proper insulation deterioration diagnosis of the CV cable cannot be performed. A stray current depending on the sheath insulation resistance of the power cable is superimposed on the deterioration signal measured by the measuring device based on the conventional method. Therefore, if the sheath insulation resistance is low, even if a large DC component current is detected by the measuring instrument, this measured value cannot be immediately judged as a deterioration signal, and the deterioration state of the cable must be accurately grasped. I can't. An object of the present invention is to eliminate the stray current superimposed on the deterioration signal from the water tree and to detect with high accuracy the presence or absence of insulation deterioration of the insulator of the CV cable. [0006] When a water tree is generated in the insulator of a CV cable, a direct current component current is generated by this water tree, but this direct current component current does not always show a constant value. None, it is constantly fluctuating. The present invention
By utilizing this constantly fluctuating DC component current, it is intended to judge whether or not a water tree is generated in the insulator of the CV cable. According to a first aspect of the invention, there is provided a method for diagnosing insulation deterioration of a power cable, which detects a ground wire current flowing in a ground wire of the power cable in an operating state, measures a sheath insulation resistance, and measures the ground wire current. Electromotive force is obtained from the product of the value and the sheath insulation resistance value, and the insulation deterioration of the cable to be measured depends on the magnitude of the current value obtained by applying a voltage having a polarity opposite to that of the electromotive force to the ground wire of the power cable. It is to determine the state. According to a second aspect of the present invention, there is provided a power cable insulation deterioration diagnosing device for measuring a sheath insulation resistance while detecting a ground wire current flowing through a ground wire connected to a shield layer of a power cable in an operating state. In a device for diagnosing deterioration of a power cable consisting of a measuring instrument and a grounding wire for grounding the measuring instrument, an electromotive force is obtained from a product of a current value obtained by the measuring instrument and a sheath insulation resistance value, and the inverse of the electromotive force is obtained. A DC generator that applies a voltage of polarity to the ground wire of the power cable, and a parallel circuit of a switch that short-circuits the measuring device by bypassing the DC generator via the grounding wire, and the measuring device and the grounding wire. It is configured by being inserted between. BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below. FIG. 1 shows an embodiment of a method and apparatus for diagnosing insulation deterioration of a power cable according to the present invention. In the figure, reference numeral 1 is a high voltage busbar, to which a CV cable 3 (a single-core cable is taken as an example in the present embodiment) which is a cable to be measured is connected via a cable terminal connecting portion 2. An alternating voltage of, for example, 3.8 kV is applied to the CV cable 3 from the high voltage bus bar 1. A ground wire 5 whose other end is grounded is connected to the shielding layer 4 of the CV cable 3, a measuring device 6 is connected to the ground wire 5, and the other end of the measuring device 6 is connected to the grounding wire 5. A parallel circuit of the DC generator 7 and the switch 8 is connected.
The other end of the parallel circuit of the DC generator 7 and the switch 8 is grounded by the ground wire 5. Reference numeral 9 is a sheath coated on the shielding layer 4 of the CV cable 3. The measuring device 6
The ground wire current flowing from the shield layer 4 of the CV cable 3 to the ground wire 5 is measured, and when a predetermined voltage (for example, 5V) is applied to the shield layer 4 of the CV cable 3, the shield layer 4 of the CV cable 3 It has a function of detecting a current (stray current) flowing to the ground side through the sheath 9 of the CV cable 3 and measuring the sheath insulation resistance. The value of the ground wire current flowing from the shield layer 4 of the CV cable 3 to the ground wire 5 measured by the measuring device 6 is multiplied by the sheath insulation resistance value of the sheath 9 of the CV cable 3 to generate the stray current. Calculate power. When measuring the ground wire current flowing through the ground wire 5 by the measuring device 6 and the sheath insulation resistance of the sheath 9 of the CV cable 3, the switch 8 is turned on. The DC generator 7 applies a reverse polarity voltage to the ground line 5 so as to cancel the measured stray current electromotive force based on the calculated stray current electromotive force. When the reverse polarity voltage is applied by the DC generator 7, the switch 8 is turned off. Next, the operation of this embodiment will be described. First, the switch 8 is turned on, and the ground line current (deterioration signal) flowing through the ground line 5 is measured by the measuring device 6 in this state. Then, a predetermined voltage (for example, 5 V) is applied to the shield layer 4 of the CV cable 3 by the measuring device 6, and the shield layer 4 of the CV cable 3 is passed through the sheath 9 of the CV cable 3 by the application of the predetermined voltage. The measuring device 6 detects the value of the electric current (stray current) flowing to the ground side and measures the sheath insulation resistance of the sheath 9 of the CV cable 3. The electromotive force of the ground wire current flowing through the ground wire 5 is calculated from the product of the two values of the ground wire current measured by the measuring device 6 and the sheath insulation resistance. Therefore, the switch 8 is turned off and the measuring device 6
The electromotive force of the ground line current obtained from the two values of the ground line current and the sheath insulation resistance measured by is input to the DC generator 7, and the DC generator 7 cancels the measured electromotive force. A voltage having a polarity opposite to that of electric power is applied to the ground line 5. Then, the ground wire current flowing through the ground wire 5 when the voltage of the opposite polarity is applied is measured by the measuring device 6. As described above, even if the voltage having the opposite polarity to the measured electromotive force is applied to the ground wire 5 by the DC generator 7, the value of the DC component current due to the water tree generated in the insulator of the CV cable 3 varies. Therefore, the ground wire current flowing through the ground wire 5 is “0”.
However, the variation of the value of the DC component current due to the water tree is detected in the form of the ground line current. When the insulation deterioration of the insulator of the CV cable 3 is progressing, the stray current cannot be completely canceled even if the counter electromotive force is applied, and the current value is on the order of nA or more. EXAMPLE A cable in which the insulation of the insulator of the CV cable 3 has no insulation deterioration (hereinafter referred to as an undeteriorated cable) and a cable in which the insulation of the CV cable 3 causes water tree deterioration (hereinafter, a deteriorated cable) (Referred to as “)”, a result of measuring the insulation state based on the insulation deterioration diagnosis method according to the present embodiment and a result of measuring the insulation state based on the conventional insulation deterioration diagnosis method are compared. And shown in Table 1. [Table 1] Table 1 shows a comparison of the results of measuring the insulation state of the undeteriorated cable and the deteriorated cable based on the conventional insulation deterioration diagnosis method. In Table 1, for the undeteriorated cable, the sheath insulation resistance is 250 MΩ and the sheath insulation resistance is 2.
Three types of sheaths each having a sheath of 5 MΩ and a sheath having an insulation resistance of 2.5 MΩ were prepared, and for each of them, the ground line current was measured by the insulation deterioration diagnosis method according to the present embodiment, and the ground line was measured by the conventional method. The current is measured and the measured value is shown. As for the deteriorated cable, the sheath insulation resistance is 250 MΩ, the sheath insulation resistance is 25 MΩ, and the sheath insulation resistance is 2.
Three types of sheaths each of which has a coating of 5 MΩ were prepared. For each of them, the ground line current was measured by the insulation deterioration diagnosis method according to the present embodiment and the ground line current was measured by the conventional method. Shows. As is apparent from Table 1, the results of measuring the ground wire current by the conventional method show that in the case of an undeteriorated cable, since the insulator of the CV cable 3 has not deteriorated, the current flowing in the ground wire 5 is The measured value should not show a large value originally. However, looking at the measurement result of the ground wire current by the conventional method in the case of the undeteriorated cable, the ground wire 5 when the sheath insulation resistance of the sheath 9 is 250 MΩ.
The measured value of the current flowing to the terminal is -1.063 nA, and the measured value of the current flowing to the ground wire 5 at 25 MΩ is -11.119 n.
A and the sheath insulation resistance are about 10 times those of 250 MΩ, and the sheath insulation resistance of the sheath 9 is 2.5 M.
When Ω and 250 MΩ are significantly reduced to 1/10 of 250 MΩ, the measured value of the current flowing through the ground line 5 is −118.844 nA, which is about 100 times that when the sheath insulation resistance is 250 MΩ. As described above, in the case of an undeteriorated cable, the measured value of the current flowing through the ground wire 5 should not originally show a large value, but the sheath insulation resistance of the sheath 9 is 250 MΩ, 25 MΩ,
All measured current values of 2.5 MΩ are on the order of nA, and the sheath insulation resistance of the sheath 9 is 250
The measured value of the current flowing through the ground line 5 increases as the resistance decreases to MΩ, 25 MΩ, and 2.5 MΩ. This is because in the case of an undeteriorated cable, the measured value of the current flowing through the ground wire 5 does not increase due to the insulation deterioration of the insulator in the state where there is no insulation deterioration of the insulator of the CV cable 3, but the measurement of the current flowing through the ground wire 5 is performed. This is because the stray current is superposed on the value, and the stray current increases as the sheath insulation resistance of the sheath 9 decreases, and this varying stray current is mainly detected. That is, even in the case of an undeteriorated cable,
The sheath insulation resistance of the sheath 9 is 250 MΩ → 25 MΩ →
As it deteriorates to 2.5 MΩ, the stray current increases,
This stray current is superimposed on the measured value of the current flowing through the ground line 5 and detected as the measured value of the current flowing through the ground line 5. However, looking at the measurement result of the ground wire current by the insulation deterioration diagnosis method of the present embodiment, in the case of an undeteriorated cable, a voltage having a polarity opposite to the electromotive force of the ground wire current flowing through the ground wire 5 is applied. When the ground wire current flowing through the ground wire 5 is measured as shown in Table 1, the measured value of the current flowing through the ground wire 5 when the sheath insulation resistance of the sheath 9 is 250 MΩ is −.
At 0.419 nA, the measured value of the current flowing through the ground line 5 at 25 MΩ is −0.257 nA, and the measured value of the current flowing at the ground line 5 at 2.5 MΩ is −0.800 nA. That is, even if the sheath insulation resistance value of the sheath 9 deteriorates from 250 MΩ to 25 MΩ to 2.5 MΩ and the stray current increases, if the insulator of the CV cable 3 does not deteriorate, the ground wire 5 is connected to the ground wire 5. It can be seen that the measured values of the flowing ground wire current are all in the pA order, and there is no influence of the stray current. Further, as is apparent from Table 1, when the ground wire current measurement result by the conventional method is seen, in the case of a deteriorated cable, the water tree deterioration occurs in the insulator of the CV cable 3, so that the ground wire 5 The measured value of the current flowing through should be originally large, and the sheath insulation resistance of the sheath 9 is 250
The measured value of the current flowing through the ground wire 5 when MΩ is -40.1
The measured value of the current flowing through the ground line 5 at 31 nA and 25 MΩ is −45.332 nA, and the measured value of the current flowing through the ground line 5 at 2.5 MΩ is −132.071 nA. However, as is clear from a comparison between the conventional example and the present embodiment in the case of an undeteriorated cable, a stray current is superposed on these values. Looking at these three results, in the measurement result of the ground wire current by the conventional method, in the case of an undeteriorated cable in which the insulator of the CV cable 3 is not deteriorated and in the insulator of the CV cable 3, water tree deterioration is observed. There is no difference of about 14 to 38 nA from the case of the deteriorated cable that is occurring, and in the method of measuring the ground wire current according to the conventional method, it is determined whether the water tree deterioration occurs in the insulator of the CV cable 3. It is substantially difficult to judge whether or not there is a change of about 14 to 38 nA in the measured value of the ground line current. In the case of a deteriorated cable, the ground wire current flowing in the ground wire 5 is applied based on the insulation deterioration diagnosis method of this embodiment by applying a voltage having a polarity opposite to the electromotive force of the ground wire current flowing in the ground wire 5. As shown in Table 1, when the sheath insulation resistance of the sheath 9 is 250 MΩ, the measured current value flowing through the ground wire 5 is −4.927 nA, and when the sheath insulation resistance of the sheath 9 is 25 MΩ, the measured current value flowing through the ground wire 5 is -7.439 nA,
Furthermore, the measured value of the current flowing through the ground wire 5 at 2.5 MΩ is -18.297 nA. Stray currents due to a decrease in the sheath insulation resistance of the sheath 9 are not superimposed on these detected values, as is clear from a comparison with the conventional method in the case of an undeteriorated cable. However, since the water tree is deteriorated in the insulator of the CV cable 3, the measured value of the current flowing through the ground wire 5 is in the order of nA.
Comparing this with the ground wire current value flowing in the ground wire 5 based on the insulation deterioration diagnosis method of the present embodiment in the case of an undeteriorated cable in which the water tree deterioration does not occur in the insulator of the CV cable 3, the sheath 9 Sheath insulation resistance value is 250M
Even if the cable deteriorates from Ω to 2.5 MΩ, in the case of an undeteriorated cable, the measured values of the ground wire current flowing in the ground wire 5 are all in the pA order, and water tree deterioration occurs in the insulator of the CV cable 3. In addition, according to the insulation deterioration diagnosis method of the present embodiment, the measured value of the ground wire current flowing through the ground wire 5 changes from the pA order value to the nA order value, so that the deterioration state can be easily detected. . As is apparent from Table 1, the ground wire current flowing through the ground wire 5 increases with the change in the insulation resistance of the sheath 9 for both the undeteriorated cable and the deteriorated cable. In particular, when the insulation resistance of the sheath 9 is remarkably lowered to 2.5 MΩ, the ground wire current flowing through the ground wire 5 sharply increases. Therefore,
Based on the insulation deterioration diagnosis method of the present embodiment, the voltage of the reverse polarity of the electromotive force of the ground wire current flowing through the ground wire 5 is applied and the ground wire current flowing through the ground wire 5 is measured. , The measured current value becomes small and becomes a pA order value. However, in the case of a deteriorated cable, a high current value can be measured even if a voltage having a polarity opposite to the electromotive force of the ground wire current flowing through the ground wire 5 is applied. That is, even if a voltage having a polarity opposite to the electromotive force of the ground line current flowing through the ground line 5 is applied, the measured current value is not corrected to the pA order. Therefore, when the insulation resistance of the sheath 9 decreases and the stray current increases, a voltage having a polarity opposite to the electromotive force of the ground wire current flowing through the ground wire 5 is applied to measure the ground wire current flowing through the ground wire 5. However, if the measured value is large, it can be determined that the water tree deterioration has occurred in the insulator of the CV cable 3. When the undeteriorated cable in which the insulator of the CV cable 3 is not deteriorated by the water tree is placed in various environments, generally, the insulator of the CV cable 3 is not deteriorated by the water tree. Even if the sheath 9 which is the outermost layer of the CV cable 3 is deteriorated and the insulation resistance is reduced, when the insulator of the CV cable 3 is deteriorated by the water tree, the outermost layer of the CV cable 3 is deteriorated. It does not mean that the insulation resistance does not change without deterioration of a certain sheath 9. Therefore, initially, when the CV cable 3 covering the sheath 9 having an insulation resistance of 250 MΩ is laid, even if the insulator of the CV cable 3 is not deteriorated by the water tree, the sheath 9 which is the outermost layer of the CV cable 3 is provided. May deteriorate and the insulation resistance may decrease to 25 MΩ or 2.5 MΩ. In this case, the value of −11.119 nA or −118.844 nA is detected in the measurement result of the ground line current by the conventional method, but the ground line current is detected based on the insulation deterioration diagnosis method of the present embodiment. When the voltage of the opposite polarity to the electromotive force of the ground line current flowing in 5 is applied and the ground line current flowing in the ground line 5 is measured, it is -0.257 nA or -0.800 n.
A value of pA is detected for both A and current value. However, initially, when the CV cable 3 covering the sheath 9 having an insulation resistance of 250 MΩ is laid, if the insulator of the CV cable 3 deteriorates due to the water tree, C
The sheath 9 which is the outermost layer of the V cable 3 may deteriorate and the insulation resistance may decrease to 25 MΩ or 2.5 MΩ. In this case, the ground line current measured by the conventional method shows that
A value of −45.332 nA or −132.071 nA is detected, the detected current value is both on the order of nA, and there is no significant difference in the numerical values from the case where the insulator of the CV cable 3 is not deteriorated, and therefore the insulation of the CV cable 3 is not generated. It is not possible to easily detect that the body has deteriorated due to a water tree. In addition, based on the insulation deterioration diagnosing method of the present embodiment, when a voltage having a polarity opposite to the electromotive force of the ground line current flowing through the ground line 5 is applied and the ground line current flowing through the ground line 5 is measured, it is -7. 439n
A or -18.297 nA and the current value are both detected in the nA order, which facilitates the CV cable 3
Since the insulator of No. 1 is not deteriorated and the numerical values are in pA order, a large difference appears, and it is possible to easily detect that the insulator of the CV cable 3 is deteriorated by the water tree. Further, from the results of Table 1, according to the measurement by the DC component current method (the measurement of the ground wire current by the conventional method), the insulation of the CV cable 3 is deteriorated by the water tree, and the sheath insulation resistance is lowered. (2.5 MΩ), the influence of the stray current on the ground wire current becomes large, and the ground wire current when the insulator deteriorates is -132.071 nA.
In contrast, the ground wire current in the case of an undeteriorated cable is -11
It is almost the same as 8.844 nA, which means that proper insulation deterioration diagnosis of the insulator of the CV cable 3 cannot be performed. However, according to the insulation deterioration diagnosing method of the present embodiment in which the electromotive force of the ground wire current flowing in the ground wire 5 and the voltage of the opposite polarity are applied, the insulation of the CV cable 3 is deteriorated by the water tree, and the sheath insulation resistance is increased. Decreases (2.5 MΩ),
Even if the stray current becomes large, a voltage (counter electromotive force) having a polarity opposite to that of the ground line current flowing through the ground line 5 is applied to cancel the stray current. Therefore, only by the magnitude of the current value,
The insulation deterioration diagnosis of the CV cable can be performed. According to the first aspect of the present invention, the ground wire current flowing through the ground wire of the power cable in the operating state is detected, and the sheath insulation resistance is measured to obtain the ground wire current value. The electromotive force is obtained from the product of the sheath insulation resistance value, and a voltage having a polarity opposite to that of the electromotive force is applied to the ground wire of the power cable, so that the deterioration from the water tree even if the sheath insulation resistance is 2.5 MΩ or less. By eliminating the stray current superimposed on the signal, it is possible to determine with high accuracy whether or not insulation deterioration has occurred in the cable to be measured, based on the magnitude of the obtained current value. According to the second aspect of the present invention, the ground wire current flowing in the ground wire connected to the shield layer of the power cable in the operating state connected to the high voltage bus bar through the cable terminal connecting portion is detected, and the sheath is detected. In a device for insulation deterioration diagnosis of a power cable comprising a measuring instrument for measuring insulation resistance and a grounding line for grounding the measuring instrument, a grounding wire is obtained from the product of the grounding wire current value and the sheath insulation resistance value obtained by the measuring instrument. A DC generator that obtains an electromotive force and applies a voltage having a polarity opposite to that of the electromotive force to the ground wire of the power cable; and a switch that short-circuits the measuring instrument by bypassing the DC generator and via the ground wire. Since the parallel circuit is inserted between the measuring instrument and the ground wire, the sheath insulation resistance is 2.5.
Even at MΩ or less, it is possible to eliminate the stray current that is superimposed on the deterioration signal from the water tree, and to determine with high accuracy whether or not insulation deterioration has occurred in the cable to be measured depending on the magnitude of the obtained current value.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る絶縁劣化診断方法及び装置の一実
施の形態を示す回路図である。
FIG. 1 is a circuit diagram showing an embodiment of an insulation deterioration diagnosing method and apparatus according to the present invention.

【図2】従来の絶縁劣化診断装置を示す回路図である。FIG. 2 is a circuit diagram showing a conventional insulation deterioration diagnostic device.

【符号の説明】[Explanation of symbols]

1……………………………………………………高圧母線 2……………………………………………………ケーブル
端末接続部 3……………………………………………………CVケー
ブル 4……………………………………………………遮蔽層 5……………………………………………………接地線 6……………………………………………………測定器 7……………………………………………………直流発生
器 8……………………………………………………スイッチ 9……………………………………………………シース
1 …………………………………………………… High voltage bus 2 …………………………………………………… Cable terminal connection 3… ………………………………………………… CV cable 4 …………………………………………………… Shield layer 5 ……………… …………………………………………… Grounding wire 6 …………………………………………………… Measuring instrument 7 ………………………… ………………………………… DC generator 8 …………………………………………………… Switch 9 …………………………………… …………………sheath

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 運転状態にある電力ケーブルの接地線に
流れる接地線電流を検出すると共に、シース絶縁抵抗を
測定し、前記接地線電流値と前記シース絶縁抵抗値との
積から起電力を求め、該起電力と逆極性の電圧を前記電
力ケーブルの接地線に印加して得られた電流値の大きさ
によって被測定ケーブルの絶縁劣化状態を判定すること
を特徴とする電力ケーブルの絶縁劣化診断方法。
1. An electromotive force is obtained from the product of the ground wire current value and the sheath insulation resistance value while detecting the ground wire current flowing in the ground wire of the power cable in the operating state and measuring the sheath insulation resistance. , A diagnosis of insulation deterioration of a power cable, characterized in that the insulation deterioration state of the cable to be measured is determined by the magnitude of the current value obtained by applying a voltage having a polarity opposite to that of the electromotive force to the ground wire of the power cable. Method.
【請求項2】 運転状態にある電力ケーブルの遮蔽層に
接続され、接地線に流れる接地線電流を検出すると共に
シース絶縁抵抗を測定する測定器と、前記測定器をアー
スする接地線とによってなる電力ケーブルの絶縁劣化診
断装置において、上記測定器によって求めた電流値とシ
ース絶縁抵抗値との積から起電力を求め、該起電力と逆
極性の電圧を前記電力ケーブルの接地線に印加する直流
発生器と、前記測定器を前記直流発生器をバイパスして
接地線を介して短絡するスイッチとの並列回路を上記測
定器と接地線との間に挿入してなる電力ケーブルの絶縁
劣化診断装置。
2. A measuring instrument which is connected to a shield layer of an electric power cable in an operating state, detects a grounding line current flowing in a grounding line and measures a sheath insulation resistance, and a grounding line which grounds the measuring instrument. In an insulation deterioration diagnosis device for a power cable, an electromotive force is obtained from the product of a current value obtained by the above measuring instrument and a sheath insulation resistance value, and a DC voltage having a polarity opposite to the electromotive force is applied to the ground wire of the power cable. A power cable insulation deterioration diagnosis device in which a parallel circuit of a generator and a switch that short-circuits the measuring device by bypassing the direct current generator via a ground line is inserted between the measuring device and the ground line. .
JP18524695A 1994-11-02 1995-07-21 Method and apparatus for diagnosing insulation deterioration of power cable Pending JPH08184622A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18524695A JPH08184622A (en) 1994-11-02 1995-07-21 Method and apparatus for diagnosing insulation deterioration of power cable

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP26926294 1994-11-02
JP6-269262 1994-11-02
JP18524695A JPH08184622A (en) 1994-11-02 1995-07-21 Method and apparatus for diagnosing insulation deterioration of power cable

Publications (1)

Publication Number Publication Date
JPH08184622A true JPH08184622A (en) 1996-07-16

Family

ID=26502991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18524695A Pending JPH08184622A (en) 1994-11-02 1995-07-21 Method and apparatus for diagnosing insulation deterioration of power cable

Country Status (1)

Country Link
JP (1) JPH08184622A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006200898A (en) * 2005-01-18 2006-08-03 Life Technos:Kk Interrupt insulation measuring device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006200898A (en) * 2005-01-18 2006-08-03 Life Technos:Kk Interrupt insulation measuring device

Similar Documents

Publication Publication Date Title
EP2588871B1 (en) Apparatus and method for measuring the dissipation factor of an insulator
EP0437214B1 (en) Method for diagnosing an insulation deterioration of an electric apparatus
JP6128921B2 (en) Non-interruptible insulation diagnosis device and non-interruptible insulation diagnosis method
JP5559638B2 (en) Degradation judgment method for power cables
JPH08184622A (en) Method and apparatus for diagnosing insulation deterioration of power cable
JP2876322B2 (en) Diagnosis method for insulation deterioration of CV cable
JP2001272432A (en) LIVE-WIRE tan delta MEASURING APPARATUS
EP2588872B1 (en) Apparatus and method for measuring the dissipation factor of an insulator
JP3161757B2 (en) Power system insulation deterioration detection method, insulation deterioration detection device, insulation deterioration detection system, and insulation deterioration determination device
JPH10160778A (en) Method and device for diagnosing insulation deferioration of live, power cable
JPH09318696A (en) Method and device for diagnosing insulation deterioration of active line power cable
JP3010367B2 (en) Insulation resistance measurement method of cable sheath under hot wire
JP3389063B2 (en) Power cable deterioration diagnosis method
JP2742636B2 (en) Diagnosis method for insulation deterioration of power cable
JPH05133995A (en) Method for diagnosing insulation deterioration of power cable
JPH07294573A (en) Method and apparatus for diagnosis of insulation degradation of live cable by ac four-voltage measurement
JPH1078472A (en) Method for diagnosing deterioration of cv cable
JP2001183412A (en) Insulation degradation diagnosing method for power cable
JPH09178787A (en) Method for diagnosing insulation deterioration of power cable
JP2889252B2 (en) Power cable dielectric loss measuring device
JPH01110267A (en) Insulation deterioration diagnostic apparatus
JPH07191071A (en) Method for diagnosing insulation deterioration of power cable
JPH03111775A (en) Water-tree-current detecting apparatus for cv cable
JPS63281073A (en) Detecting method for water tree current of cv cable
JP2002214273A (en) Breaking inspection circuit for high voltage cable shielding copper tape