JPH08184554A - Method and apparatus for measuring moisture of powdery /granular material and moisture measuring cell - Google Patents

Method and apparatus for measuring moisture of powdery /granular material and moisture measuring cell

Info

Publication number
JPH08184554A
JPH08184554A JP33961194A JP33961194A JPH08184554A JP H08184554 A JPH08184554 A JP H08184554A JP 33961194 A JP33961194 A JP 33961194A JP 33961194 A JP33961194 A JP 33961194A JP H08184554 A JPH08184554 A JP H08184554A
Authority
JP
Japan
Prior art keywords
cell
granular material
moisture
glass window
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33961194A
Other languages
Japanese (ja)
Inventor
Takeyoshi Takahashi
武良 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP33961194A priority Critical patent/JPH08184554A/en
Publication of JPH08184554A publication Critical patent/JPH08184554A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE: To obtain a method for measuring the moisture of powdery/granular material accurately using near infrared rays. CONSTITUTION: A branch pipe 34 is coupled vertically to the outside of a plane 33 for carrying powdery/granular material 31 and a moisture measuring cell 35 having a transparent glass window 48 for transmitting near infrared rays 53 is provided at the branch pipe 34. The detector 54 of an infrared moisture meter 36 is disposed oppositely to the glass window 48, on the outside thereof, while spaced apart therefrom by a predetermined distance and a part of powdery/granular material 31 being carried on the carrying plane 33 is dropped through the branch pipe 34 into the cell 35 thus filling the cell 35. The powdery/ granular material 31 in the cell 35 is irradiated with near infrared rays 53 having predetermined wavelengths from the detector 54 through the glass window 48 and the reflected light is received by the detector 54 thus measuring the moisture of the powdery/granular material 31 in the cell 35 based on the ratio of infrared rays 53 absorbed thereby. Finally, compressed air is fed into the cell 35 and the powdery/granular material 31 in the cell 35 is returned onto the carrying plane 33 through the branch pipe 34.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】本発明は、近赤外線方式の水分計を用いた
粉粒体の水分測定方法及び装置、並びに水分測定用セル
に関し、更に詳しくは、簡易で且つ高精度に粉粒体の水
分を測定する方法及び装置、並びに水分測定用セルに関
する。
The present invention relates to a method and an apparatus for measuring the water content of powders and granules using a near infrared ray moisture meter, and a cell for measuring water content. More specifically, the water content of powders and granules can be easily and accurately measured. The present invention relates to a method and an apparatus for doing so, and a cell for measuring moisture.

【0002】[0002]

【従来の技術】従来より、この種の水分測定方法は種々
の業界で利用されている。例えば、図8に示す装置は、
樹脂や製粉等の粉粒体の水分制御に用いられているもの
で、粉粒体1の搬送路中に測定室2を介設し、測定室2
の上下流側に継ぎ手3を介して配管4、5を接続してい
る。測定室2の下部には、搬送用ベルトコンベア6が配
設されるとともに、ベルトコンベア6の搬送面7から一
定間隙Aを置いて粉粒体高さ調整用の邪魔板8が立設さ
れており、測定室2の上部には、搬送面7から一定高さ
H上方に且つ邪魔板8の下流側に近赤外線水分計9の検
出器10が装着されている。また、検出器10には、近
赤外線11の光路を囲繞してエアーパージ用フード12
が装着されるとともに、変換器13が接続されている。
2. Description of the Related Art Conventionally, this type of moisture measuring method has been used in various industries. For example, the device shown in FIG.
It is used to control the water content of powder or granules such as resin or milling.
Pipes 4 and 5 are connected to the upstream and downstream sides via a joint 3. In the lower part of the measurement chamber 2, a conveyor belt conveyor 6 is arranged, and a baffle plate 8 for adjusting the height of the granular material is erected at a constant gap A from the conveyor surface 7 of the conveyor belt 6. At the upper part of the measurement chamber 2, a detector 10 of a near-infrared moisture meter 9 is mounted above the transport surface 7 by a certain height H and on the downstream side of the baffle plate 8. In addition, the detector 10 surrounds the optical path of the near infrared rays 11 and surrounds the air purge hood 12.
Is mounted and the converter 13 is connected.

【0003】上記構造の装置においては、上流側の配管
4から測定室2内に搬送された粉粒体1は、邪魔板8に
より粉粒面の搬送面7からの高さが所定値になるように
調整されて、下流側の配管5に搬送される。そして、フ
ード12に清掃用空気14を吹き込んで検出器10の表
面のホコリ等を清掃除去しながら、検出器10から一定
波長の近赤外線11を粉粒体1に照射する。検出器10
は、その反射波を受けて、粉粒体1の水分に吸収された
近赤外線11の割合を検出し、検出値の電気信号を変換
器13に送る。変換器13は、検出器10からの電気信
号を粉粒体1の水分値に変換し、水分値の電気信号を水
分記録計、水分調節計等(図示省略)に送って、粉粒体
1の水分の記録、調節等を行わせる。
In the apparatus having the above structure, the powdery granules 1 conveyed from the upstream pipe 4 into the measuring chamber 2 have a predetermined height from the conveying surface 7 of the powdery granules due to the baffle plate 8. Is adjusted so as to be conveyed to the pipe 5 on the downstream side. Then, the cleaning air 14 is blown into the hood 12 to clean and remove dust and the like on the surface of the detector 10, while the detector 10 irradiates the granular material 1 with near-infrared rays 11 having a constant wavelength. Detector 10
Receives the reflected wave, detects the ratio of the near-infrared rays 11 absorbed by the water content of the granular material 1, and sends an electric signal of the detected value to the converter 13. The converter 13 converts the electric signal from the detector 10 into a moisture value of the powder and granules 1 and sends the electric signal of the moisture value to a moisture recorder, a moisture controller, etc. (not shown), and the powder and granules 1 Have them record and adjust the water content.

【0004】また、図9に示す装置は、樹脂の流動層造
粒装置における粉粒体の水分制御に用いられているもの
である。この流動層造粒装置15は、縦型円筒容器で、
底部に流動層用空気16の給気管17と、頂部にブロア
ー18を備えた流動層用空気16の排気管19とがそれ
ぞれ接続されており、また、内部には制御バルブ20を
備えた加湿管21の噴霧ノズル22が開口し、胴部の下
方には水分測定孔23が流動層造粒装置内部に向けて開
口している。そして、この水分測定孔23には、近赤外
水分計24の検出器25から延伸して近赤外線26を伝
達する光ファイバ27の先端部が覗いており、検出器2
5には、変換器28を介して加湿管21の制御バルブ2
0が接続されている。
Further, the apparatus shown in FIG. 9 is used for controlling the water content of powder particles in a resin fluidized bed granulating apparatus. The fluidized bed granulator 15 is a vertical cylindrical container,
An air supply pipe 17 for the fluidized-bed air 16 is connected to the bottom portion, and an exhaust pipe 19 for the fluidized-bed air 16 provided with a blower 18 is connected to the top portion, and a humidification pipe provided with a control valve 20 inside thereof. A spray nozzle 22 of 21 is opened, and a moisture measuring hole 23 is opened below the body portion toward the inside of the fluidized bed granulator. The tip of the optical fiber 27 that extends from the detector 25 of the near infrared moisture meter 24 and transmits the near infrared 26 is seen through the moisture measuring hole 23.
5 to the control valve 2 of the humidifying pipe 21 via the converter 28.
0 is connected.

【0005】上記構造の装置においては、造粒前の樹脂
の微粉を含んだ流動層用空気16が給気管17から流動
層造粒装置15の底部に吹き込まれ、上昇しながら樹脂
の微粉の流動層を形成する。この流動層に対して加湿管
21の噴霧ノズル22から造粒用水分29を噴霧し、流
動層中の微粉を加湿して粉粒体30を生成する。造粒後
の流動層用空気16は、ブロアー18により排気管19
から大気中に排出される。他方、近赤外水分計24の検
出器25は光ファイバー27を介して一定波長の近赤外
線26を水分測定孔23から粉粒体30に照射し、その
反射波を受けて粉粒体30の水分に吸収された近赤外線
26の割合を検出し、検出値の電気信号を変換器28に
送る。変換器28は、検出器25からの電気信号を粉粒
体30の水分値に変換し、水分値に応じた制御信号を加
湿管21の制御バルブ20に送って送粒用水分29の供
給量を調節し、粉粒体30の水分を適正値に維持する。
In the apparatus having the above structure, the fluidized-bed air 16 containing fine resin powder before granulation is blown into the bottom of the fluidized-bed granulator 15 from the air supply pipe 17, and the resin fine powder flows while rising. Form the layers. The granulating water 29 is sprayed from the spray nozzle 22 of the humidifying pipe 21 to the fluidized bed to humidify the fine powder in the fluidized bed to generate the granular material 30. The air 16 for the fluidized bed after granulation is exhausted by the blower 18 to the exhaust pipe 19
Is released into the atmosphere from On the other hand, the detector 25 of the near-infrared moisture meter 24 irradiates the near-infrared ray 26 having a constant wavelength through the moisture measuring hole 23 to the granular material 30 through the optical fiber 27, receives the reflected wave, and receives the moisture content of the granular material 30. The ratio of the near infrared rays 26 absorbed by the sensor is detected, and an electric signal of the detected value is sent to the converter 28. The converter 28 converts the electric signal from the detector 25 into a moisture value of the powder 30 and sends a control signal corresponding to the moisture value to the control valve 20 of the humidifying pipe 21 to supply the amount 29 of moisture for grain supply. Is adjusted to maintain the water content of the powder and granules 30 at an appropriate value.

【0006】さらに、特開昭61−138528号に
は、粉粒体を流動化して流動層を形成させ、石英ガラス
を用いて流動層内の粉粒体の水分を赤外線吸収式水分計
により測定する方法が開示されている。
Further, in Japanese Patent Laid-Open No. 61-138528, fluidization of powders and granules is performed to form a fluidized bed, and the water content of the powders and granules in the fluidized bed is measured by an infrared absorption moisture meter using quartz glass. A method of doing so is disclosed.

【0007】[0007]

【発明が解決しようとする課題】しかし、図8の装置に
よる水分測定方法では、邪魔板8により近赤外線11が
照射される粉粒面に凹凸が生じて平面性が保たれないた
めに、検出器10と粉粒面との間の距離Dが不均一にな
っている。また、継ぎ手3のシール性が悪いと、大気中
のごみや水分が継ぎ手3から測定室2内に侵入して、測
定粉粒面に悪影響を与える。これらのために、水分測定
値にばらつきが生じ、測定精度が低下するという問題が
あった。
However, in the water content measuring method using the apparatus shown in FIG. 8, the baffle plate 8 causes unevenness on the powder surface irradiated with the near-infrared rays 11 and the flatness cannot be maintained. The distance D between the container 10 and the powder surface is non-uniform. If the joint 3 has a poor sealing property, dust and water in the atmosphere enter the measuring chamber 2 through the joint 3 and adversely affect the measured powder surface. For these reasons, there is a problem that the measured water content varies and the measurement accuracy decreases.

【0008】また、図9の装置による水分測定方法で
は、粉粒体30が流動層を形成しているので、光ファイ
バー27の先端部から粉粒体30までの距離が不均一に
なることは免れず、また近赤外線26は光ファイバー2
7中で減衰するという問題がある。これらのために、水
分測定値がばらつき、測定精度が低いという問題があっ
た。また、上記方法はいずれも装置や操作が複雑でコス
トも高くなるという問題を含んでいる。
In the moisture measuring method using the apparatus shown in FIG. 9, since the granular material 30 forms a fluidized bed, the distance from the tip of the optical fiber 27 to the granular material 30 is not uniform. In addition, the near infrared ray 26 is the optical fiber 2
There is a problem of attenuation in 7. For these reasons, there is a problem that the measured water content varies and the measurement accuracy is low. Further, each of the above methods has a problem that the device and operation are complicated and the cost is high.

【0009】さらに、特開昭61−138528号に記
載されている方法では、粉粒体が流動状態であるため、
図9の装置の場合と同じく、水分計と粉粒体との距離が
不均一となり、その結果、水分測定値がばらつき、精度
の高い測定ができないという問題がある。本発明は、上
記の如き従来の水分測定方法を改良して、このような問
題点を取り除くことを目的とする。
Further, in the method described in JP-A-61-138528, since the powdery particles are in a fluid state,
As in the case of the device of FIG. 9, there is a problem that the distance between the moisture meter and the powder and granules becomes non-uniform, and as a result, the moisture measurement values vary, and highly accurate measurement cannot be performed. It is an object of the present invention to improve the conventional water content measuring method as described above and eliminate such a problem.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
に、第1の発明の粉粒体の水分測定方法は、粉粒体を搬
送する搬送面の外部に分岐管を上下方向に接続し、該分
岐管に近赤外線が透過可能な透明のガラス窓を備えた水
分測定用セルを設け、前記ガラス窓の外部にガラス窓に
一定距離離隔して相対向するように近赤外水分計の検出
器を設け、前記搬送面上を搬送される粉粒体の一部を前
記分岐管を介して前記セル内に落下、充填せしめ、この
セル内の粉粒体に前記検出器から前記ガラス窓を透して
一定波長の近赤外線を照射し、その反射波を前記検出器
に受けて、セル内の粉粒体の水分に吸収された前記近赤
外線の割合からセル内の粉粒体の水分を測定し、然る後
に前記セル内に圧縮空気を供給して、セル内の粉粒体を
前記分岐管を介して前記搬送面上に返送する方法であ
る。そして、前記粉粒体のセル内への落下、充填と、前
記粉粒体の水分測定と、前記粉粒体の搬送面上への返送
とは周期的に行なうのがよい。
In order to achieve the above object, the method for measuring the moisture content of a granular material according to the first aspect of the present invention is to connect a branch pipe vertically to the outside of a transportation surface for transporting the granular material. A moisture measuring cell provided with a transparent glass window capable of transmitting near-infrared rays in the branch pipe, and a near-infrared moisture meter of the near-infrared moisture meter so as to face the glass window outside the glass window by a certain distance. A detector is provided, and a part of the powder or granules conveyed on the conveying surface is dropped into the cell through the branch pipe so as to be filled, and the powder or granules in the cell is separated from the detector to the glass window. Irradiate a near-infrared ray of a certain wavelength through the, receives the reflected wave in the detector, the moisture content of the granular material in the cell from the ratio of the near-infrared radiation absorbed in the moisture content of the granular material in the cell After that, compressed air was supplied into the cell, and the powder or granular material in the cell was passed through the branch pipe. A method for returning onto the conveying surface. Then, it is preferable that the dropping and filling of the powdery particles into the cell, the measurement of the water content of the powdery particles, and the return of the powdery particles onto the conveying surface are performed periodically.

【0011】また、第2の発明の粉粒体の水分測定装置
は、前記方法を実施するための装置であって、粉粒体を
搬送する搬送面の外部に分岐管を上下方向に接続し、該
分岐管に近赤外線が透過可能な透明のガラス窓を備えた
水分測定用セルを設けるとともに、該セル内に粉粒体の
返送及び流入防止のための圧縮空気用ノズルを複数個配
置し、前記ガラス窓の外部にガラス窓に一定距離離隔し
て相対向するように近赤外水分計の検出器を設けた装置
である。
The powdery water content measuring device of the second invention is a device for carrying out the above method, wherein a branch pipe is vertically connected to the outside of a carrying surface for carrying the powdery material. The branch pipe is provided with a moisture measuring cell having a transparent glass window capable of transmitting near-infrared rays, and a plurality of compressed air nozzles are arranged in the cell for preventing the return and inflow of powder and granular material. An apparatus in which a detector of a near-infrared moisture meter is provided outside the glass window so as to face the glass window with a certain distance therebetween.

【0012】さらに、第3の発明は、前記方法及び装置
に使用されるセルであって、内部に中空部を有するセル
本体の中央部に水分測定用ガラス窓を備えるとともに、
片側又は両側に分岐管接続部を備え、前記水分測定用ガ
ラス窓の相対する面にガラス窓清掃用空気孔及び該ガラ
ス窓清掃用空気孔の片側又は両側に粉粒体返送用空気孔
を備え、該粉粒体返送用空気孔にL字形の圧縮空気用ノ
ズルを前記分岐管接続部に向けて設けたことを特徴とす
る水分測定用セルである。
Further, a third aspect of the present invention is a cell used in the above method and apparatus, wherein a moisture measuring glass window is provided in a central portion of a cell body having a hollow portion inside,
A branch pipe connecting portion is provided on one side or both sides, a glass window cleaning air hole is provided on the opposite surface of the moisture measurement glass window, and a powder or granular material returning air hole is provided on one side or both sides of the glass window cleaning air hole. The moisture measuring cell is characterized in that an L-shaped compressed air nozzle is provided in the powder / granule returning air hole toward the branch pipe connecting portion.

【0013】そして、前記粉粒体のセル内への落下、充
填と、前記粉粒体の水分測定と、前記粉粒体の搬送面上
への返送とを周期的に行なう方法を実施するためには、
セル内に配置した複数個の圧縮空気用ノズルのそれぞれ
に電磁弁を接続し、これら電磁弁のソレノイドの励磁及
び消磁を自動的に制御するコンピュータを設ければよ
い。
In order to implement a method of periodically dropping and filling the powdery or granular material into the cell, measuring the water content of the powdery or granular material, and returning the powdery or granular material onto the conveying surface. Has
A solenoid valve may be connected to each of the plurality of compressed air nozzles arranged in the cell, and a computer may be provided to automatically control the excitation and demagnetization of the solenoids of these solenoid valves.

【0014】[0014]

【作用】上記構成の水分測定方法では、搬送面上の粉粒
体の一部を分岐管を介してセル内に落下させて充填する
ので、セル内の粉粒体は、静止状態でガラス窓に接し、
その厚さを一定に保っている。そのため、検出器から測
定粉粒面までの距離は常に均一に保たれる。また、セル
内は粉粒体により密封状態にあるので、外部のごみや水
分等が測定粉粒面に到達して、水分測定に悪影響を及ぼ
すおそれがない。そのため、測定粉粒面の状態は常に一
定に保たれる。したがって、水分測定値にはばらつきが
生ぜず、測定精度が高い。
In the moisture measuring method having the above-mentioned structure, a part of the powdery particles on the conveying surface is dropped into the cell through the branch pipe to fill the cell, so that the powdery particle in the cell remains stationary in the glass window. Touching,
It keeps its thickness constant. Therefore, the distance from the detector to the measured powder surface is always kept uniform. Further, since the inside of the cell is sealed by the powder particles, there is no possibility that external dust, water and the like will reach the measurement powder surface and adversely affect the water measurement. Therefore, the state of the measured powder surface is always kept constant. Therefore, the measured water content does not vary and the measurement accuracy is high.

【0015】なお、粉粒体のセル内への落下、充填と、
粉粒体の水分測定と、粉粒体の搬送面上への返送とを周
期的に行なえるようにすると、粉粒体の水分測定及び調
湿の自動化が容易になる。
It should be noted that dropping and filling of the granular material into the cell,
If the moisture measurement of the powder and granules and the return of the powder and granules to the transport surface can be performed periodically, the moisture measurement and humidity control of the powder and granules can be automated easily.

【0016】[0016]

【実施例】以下、本発明の実施例を図1〜図7に基づい
て説明するが、本発明はこれら実施例のみに限定されな
いことは勿論である。
EXAMPLES Examples of the present invention will be described below with reference to FIGS. 1 to 7, but it goes without saying that the present invention is not limited to these examples.

【0017】実施例1 本実施例は、ホッパーに投入される粉粒体の水分測定方
法に係るもので、この方法を実施するための装置を図1
に示す。この装置は、図1に示すように、粉粒体31が
投入されるホッパー32の傾斜した搬送面33の外部に
分岐管34の両端を上下方向に接続し、分岐管34の途
中に水分測定用セル35を介設し、更に、近赤外水分計
36、電磁弁装置37及びコンピュータ38を配設して
なるものである。
Example 1 This example relates to a method for measuring the water content of a powder or granular material put into a hopper. An apparatus for carrying out this method is shown in FIG.
Shown in As shown in FIG. 1, this apparatus connects both ends of a branch pipe 34 in the vertical direction to the outside of a slanted transport surface 33 of a hopper 32 into which the granular material 31 is charged, and measures the water content in the middle of the branch pipe 34. The cell 35 is provided, and a near infrared moisture meter 36, a solenoid valve device 37, and a computer 38 are further arranged.

【0018】セル35は、図2及び図3に示すように、
内部に中空部39を有するセル本体40の表裏両面にパ
ッキン41を介して表蓋42及び裏蓋43を固設してな
り、両端面の分岐管接続部がOリング44を介して分岐
管34に接続されている。表蓋42の管座部には、ガラ
ス窓清掃用空気孔45と、その両側に粉粒体返送用空気
孔46とが穿設されるとともに、空気孔46にはL字形
の圧縮空気用ノズル47が外向きに接続されている。ま
た、裏蓋43の中央部には、円形の水分測定用ガラス窓
48が設けられており、ガラス窓48には、近赤外線が
透過可能な透明のガラス49、例えばサファイヤガラス
がパッキン50及びOリング51を介して嵌め込まれ、
押さえ52により固定されている。サファイヤガラス
は、近赤外線の透過減衰率が約2%と低く、且つ硬度が
高いので傷が付きにくいという利点がある。
The cell 35, as shown in FIGS. 2 and 3,
A front cover 42 and a back cover 43 are fixedly provided on both front and back surfaces of a cell body 40 having a hollow portion 39 inside with packings 41, and branch pipe connecting portions on both end faces have branch pipes 34 through O-rings 44. It is connected to the. An air hole 45 for cleaning a glass window and air holes 46 for returning powders and granules are provided on both sides of the tube seat portion of the front cover 42, and the air hole 46 has an L-shaped nozzle for compressed air. 47 is connected outward. A circular glass window 48 for moisture measurement is provided in the center of the back cover 43. In the glass window 48, a transparent glass 49 capable of transmitting near infrared rays, for example, sapphire glass is packed 50 and O. It is fitted through the ring 51,
It is fixed by a presser 52. Sapphire glass has a low near-infrared transmission attenuation rate of about 2%, and has a high hardness, so that it has an advantage of being less likely to be scratched.

【0019】近赤外水分計36は、セル35内の粉粒体
31に近赤外線53を照射して、粉粒体31の水分に吸
収された近赤外線53の割合を検出する検出器54と、
検出器54の検出値を粉粒体31の水分値に変換する変
換器55とからなっている。検出器54は、ガラス窓4
8の外部に、ガラス窓48に一定距離離隔して相対向す
るように配置されており、照射する近赤外線53の反射
率の関係上、近赤外線53の光軸をガラス窓48の軸線
に対して傾斜(角度α=15度程度)させてある。
The near-infrared moisture meter 36 irradiates the granular material 31 in the cell 35 with the near-infrared ray 53, and a detector 54 for detecting the ratio of the near-infrared ray 53 absorbed by the moisture of the granular material 31. ,
It is composed of a converter 55 for converting the detection value of the detector 54 into the moisture value of the powder or granular material 31. The detector 54 is a glass window 4
8 are arranged outside the glass window 48 so as to face each other with a certain distance therebetween, and the optical axis of the near-infrared ray 53 is relative to the axis of the glass window 48 in view of the reflectance of the radiated near-infrared ray 53. And is inclined (angle α = about 15 degrees).

【0020】電磁弁装置37は、5個の電磁弁56、5
7、58、59、60からなり、工場内の計装空気源か
らバルブ61、62を介して供給される清浄な圧縮空気
63を、分岐管34の下部に挿着した粉粒体返送用の圧
縮空気用ノズル64と、セル35に設けたガラス窓清掃
用空気孔45及び粉粒体返送用空気孔46と、ガラス窓
48と検出器54の間に設けたエアーパージ用ノズル6
5とに分配できるように配管されている。なお、圧縮空
気63は、バルブ66を介して検出器54内に供給さ
れ、その内部の清掃にも使用する。
The solenoid valve device 37 comprises five solenoid valves 56, 5
7, 58, 59, 60, and clean compressed air 63, which is supplied from an instrumentation air source in the factory through valves 61, 62, is inserted into the lower part of the branch pipe 34 for returning the powdery or granular material. A nozzle 64 for compressed air, an air hole 45 for cleaning a glass window and an air hole 46 for returning powder and granules provided in the cell 35, and an air purging nozzle 6 provided between the glass window 48 and the detector 54.
It is piped so that it can be distributed to The compressed air 63 is supplied to the inside of the detector 54 via the valve 66 and is also used for cleaning the inside thereof.

【0021】コンピュータ38は、入力部67、出力部
68及び通信用ボード部69を備え、これらを介して変
換器55、電磁弁装置37の各ソレノイド及び水分記録
計、水分調節計等の上位装置70に接続されている。
The computer 38 is provided with an input section 67, an output section 68 and a communication board section 69, through which a converter 55, each solenoid of the solenoid valve device 37 and a host device such as a moisture recorder and a moisture controller. Connected to 70.

【0022】上記構成の水分測定装置による水分測定
は、図4の電磁弁ソレノイドのタイミングチャート図に
示すように、60秒を1サイクルとして、コンピュータ
38の制御により周期的且つ自動的に行なわれる。1サ
イクルは7工程からなっており、以下に1サイクル中の
動作を工程順に説明する。尚、図4において、斜線部は
電磁弁ソレノイドの励磁状態を示し、空白部は電磁弁ソ
レノイドの消磁状態を示す。
As shown in the timing chart of the solenoid valve solenoid in FIG. 4, moisture measurement by the moisture measuring device having the above-described structure is performed periodically and automatically under the control of the computer 38, with 60 seconds as one cycle. One cycle consists of seven steps, and the operation in one cycle will be described below in the order of steps. In addition, in FIG. 4, the shaded portion indicates the excited state of the solenoid valve solenoid, and the blank portion indicates the demagnetized state of the solenoid valve solenoid.

【0023】第I工程では、電磁弁56のソレノイドが
励磁される。圧縮空気63は、電磁弁56から圧縮空気
用ノズル64を介して分岐管34の下部に供給され、そ
こに滞留している粉粒体31を搬送面33上に返送す
る。
In step I, the solenoid of the solenoid valve 56 is excited. The compressed air 63 is supplied from the electromagnetic valve 56 to the lower portion of the branch pipe 34 via the compressed air nozzle 64, and returns the powder particles 31 retained therein to the transport surface 33.

【0024】第II工程では、電磁弁56、58のソレノ
イドが励磁される。圧縮空気63は、電磁弁56からノ
ズル64を介して分岐管34の下部に供給されるととも
に、電磁弁58からセル35の下側の空気孔46に設け
たノズル47を介してセル35の下部に下向きに供給さ
れ、セル35の下部に滞留している測定ずみの粉粒体3
1を分岐管34の下部を介して搬送面33上に返送す
る。
In step II, the solenoids of the solenoid valves 56 and 58 are excited. The compressed air 63 is supplied from the electromagnetic valve 56 to the lower portion of the branch pipe 34 via the nozzle 64, and from the electromagnetic valve 58 to the lower portion of the cell 35 via the nozzle 47 provided in the air hole 46 on the lower side of the cell 35. Of the measured powder and granules 3 which are supplied downward to the cell and remain in the lower part of the cell 35.
1 is returned to the transport surface 33 via the lower portion of the branch pipe 34.

【0025】第III 工程では、電磁弁56のソレノイド
が消磁されるが、圧縮空気63は、電磁弁58から引き
続き供給され、セル35の下部に残留している粉粒体3
1の返送を継続する。
In the third step, the solenoid of the solenoid valve 56 is demagnetized, but the compressed air 63 is continuously supplied from the solenoid valve 58 and remains in the lower portion of the cell 35.
Continue to return 1.

【0026】第IV工程では、電磁弁58のソレノイドが
消磁されるとともに、電磁弁57、59のソレノイドが
励磁される。圧縮空気63は、電磁弁57からセル35
の空気孔45を介してセル35の中央部に供給されると
ともに、電磁弁59からセル35の上側の空気孔46に
設けたノズル47を介してセル35の上部に上向きに供
給され、セル35の中央部及び上部に滞留している測定
ずみの粉粒体31と分岐管34の上部に滞留している粉
粒体31とを分岐管34の上部を介して搬送面33上に
返送しながら、ガラス窓48の内面を清掃する。
In step IV, the solenoid of the solenoid valve 58 is demagnetized and the solenoids of the solenoid valves 57 and 59 are excited. The compressed air 63 flows from the solenoid valve 57 to the cell 35.
Is supplied to the central portion of the cell 35 through the air hole 45 of the cell 35, and is also supplied upward from the solenoid valve 59 to the upper portion of the cell 35 through the nozzle 47 provided in the air hole 46 on the upper side of the cell 35. While returning the measured powder and granules 31 staying in the central part and the upper part of the branch pipe 34 and the powder and granules 31 staying in the upper part of the branch pipe 34 to the conveying surface 33 via the upper part of the branch pipe 34. , The inner surface of the glass window 48 is cleaned.

【0027】第V工程では、電磁弁56、57、59、
60のソレノイドが励磁される。圧縮空気63は、第IV
工程でセル35から分岐管34の下部に落下した粉粒体
31を第I工程と同様にして搬送面33上に返送すると
ともに、第IV工程におけるセル35及び分岐管34の上
部に滞留している粉粒体31の返送とガラス窓48の内
面清掃とを継続し、更に電磁弁60からノズル65に供
給されてガラス窓48の外面を清掃する。
In step V, the solenoid valves 56, 57, 59,
Sixty solenoids are energized. Compressed air 63 is IV
The granular material 31 dropped from the cell 35 to the lower portion of the branch pipe 34 in the step is returned to the transport surface 33 in the same manner as in the first step, and is retained in the upper portion of the cell 35 and the branch tube 34 in the fourth step. The returning of the powder particles 31 and the cleaning of the inner surface of the glass window 48 are continued, and the outer surface of the glass window 48 is cleaned by being supplied to the nozzle 65 from the electromagnetic valve 60.

【0028】第VI工程では、電磁弁56、60のソレノ
イドが消磁される。圧縮空気63は第VI工程と同様にし
て電磁弁57からセル35の中央部に供給されるととも
に、電磁弁59からセル35の上部に上向きに供給さ
れ、ガラス窓48の内面清掃を継続しながら、搬送面3
3上の粉粒体31がセル35内に落下するのを防止す
る。
In step VI, the solenoids of the solenoid valves 56 and 60 are demagnetized. The compressed air 63 is supplied from the electromagnetic valve 57 to the central portion of the cell 35 in the same manner as in the VI step, and is also supplied upward from the electromagnetic valve 59 to the upper portion of the cell 35, while continuously cleaning the inner surface of the glass window 48. , Transport surface 3
3 to prevent the powder particles 31 from falling into the cell 35.

【0029】第VII 工程では、すべての電磁弁56、5
7、58、59、60のソレノイドが消磁され、電磁弁
からの圧縮空気63の供給が断たれる。そのため、搬送
面33上の新たな粉粒体31の一部が分岐管34の上部
を介してセル35内に落下し、充填される。続いて、検
出器54が、水分に吸収され易い一定波長(例えば1.
94μm、3.0μm等)の近赤外線53をガラス窓4
8を透してセル35内の粉粒体31に照射し、その反射
波を受けて粉粒体31の水分に吸収された近赤外線53
の割合を検出し、検出値の電気信号を変換器55に送
る。変換器55は、検出器54からの電気信号を粉粒体
31の水分値に変換し、水分値の電気信号をコンピュー
タ38の入力部67に送る。この水分測定は、1サイク
ル中に3回1秒間隔で行なわれる(図4のa線参照)。
コンピュータ38は、3回の測定値の平均水分値を通信
用ボード部69から水分記録計や水分調節計等の上位装
置70に送り、水分の記録、調節等を行わせる。このよ
うにして1サイクルが終わると、次のサイクルに移る。
In step VII, all solenoid valves 56, 5 are
The solenoids 7, 58, 59, 60 are demagnetized, and the supply of compressed air 63 from the solenoid valve is cut off. Therefore, a part of the new powder particles 31 on the transport surface 33 falls into the cell 35 via the upper portion of the branch pipe 34 and is filled therein. Subsequently, the detector 54 has a certain wavelength (for example, 1.
Near infrared rays 53 (94 μm, 3.0 μm, etc.)
The near-infrared rays 53 which are radiated to the granular material 31 in the cell 35 through 8 and are reflected by the reflected wave to be absorbed by the moisture of the granular material 31.
Is detected and an electric signal of the detected value is sent to the converter 55. The converter 55 converts the electric signal from the detector 54 into the moisture value of the powder 31 and sends the electric signal of the moisture value to the input unit 67 of the computer 38. This water content measurement is performed three times at one second intervals in one cycle (see line a in FIG. 4).
The computer 38 sends the average moisture value of the three measured values from the communication board section 69 to a higher-level device 70 such as a moisture recorder or a moisture controller to record and adjust the moisture. When one cycle is completed in this way, the next cycle is started.

【0030】なお、図5は、上記のようにして800分
間連続して測定した粉粒体の水分測定結果を示してい
る。この図において、b部では粉粒体が過乾燥のために
静電付着を起こし、c部では粉粒体が未乾燥のために凝
集を起こしている。いずれの場合も粉粒体の生産ライン
においてトラブル発生要因となるので、事前に粉粒体の
調湿が必要であることがわかる。
FIG. 5 shows the results of measuring the water content of the powder and granules continuously measured for 800 minutes as described above. In this figure, in part b, the powder and granules are electrostatically attached due to overdrying, and in part c, the powder and granules are agglomerated because they are not dried. In either case, it is a factor that causes troubles in the production line of powder and granules, so it is understood that the humidity control of the powder and granules is necessary in advance.

【0031】実施例2 本実施例は、実施例1における分岐管34の下部を配管
する場所がないような場合に、セル35内の測定ずみの
粉粒体31のすべてを分岐管34の上部から搬送面33
上に返送する場合である。この場合の装置は、図6に示
すように、ホッパー32の搬送面33の外部に分岐管3
4の上端を上下方向に接続し、分岐管34の下端にセル
35を接続し、更に、実施例1と同様に近赤外水分計3
6、電磁弁装置37及びコンピュータ38を配設してな
るものである。
Example 2 In this example, when there is no place to pipe the lower part of the branch pipe 34 in the first embodiment, all the measured powder and granules 31 in the cell 35 are placed above the branch pipe 34. To transport surface 33
In case of returning to above. As shown in FIG. 6, the apparatus in this case has the branch pipe 3 outside the transport surface 33 of the hopper 32.
4, the upper end of 4 is connected in the vertical direction, the cell 35 is connected to the lower end of the branch pipe 34, and the near-infrared moisture meter 3 is used as in the first embodiment.
6, an electromagnetic valve device 37 and a computer 38 are arranged.

【0032】前記セル35では、実施例1のセル35に
設けた2個のノズル47のうちの下側のノズル47が省
略され、その代わりに、下端面に設けた盲蓋71に圧縮
空気用ノズル72が上向きに接続されている。
In the cell 35, the lower nozzle 47 of the two nozzles 47 provided in the cell 35 of the first embodiment is omitted, and instead, a blind lid 71 provided on the lower end surface is provided for compressed air. The nozzle 72 is connected upward.

【0033】また、前記電磁弁装置37は、4個の電磁
弁56、57、58、59からなり、電磁弁56はノズ
ル72に、電磁弁57は空気孔45に、電磁弁58はノ
ズル47に、電磁弁59はノズル65にそれぞれ接続さ
れている。
The solenoid valve device 37 comprises four solenoid valves 56, 57, 58 and 59. The solenoid valve 56 is a nozzle 72, the solenoid valve 57 is an air hole 45, and the solenoid valve 58 is a nozzle 47. Further, the solenoid valves 59 are connected to the nozzles 65, respectively.

【0034】装置のその他の構成は、実施例1の装置と
全く同じである。上記構成の装置による水分測定は、図
7の電磁弁ソレノイドのタイミングチャート図に示すよ
うに、60秒を1サイクルとして、コンピュータ38の
制御により周期的且つ自動的に行われる。1サイクルは
6工程からなっており、以下に1サイクル中の動作を工
程順に説明する。尚、図7において、斜線部は電磁弁ソ
レノイドの励磁状態を示し、空白部は電磁弁ソレノイド
の消磁状態を示す。
The other structure of the apparatus is the same as that of the apparatus of the first embodiment. As shown in the timing chart of the solenoid valve solenoid in FIG. 7, moisture measurement by the device having the above-described configuration is performed periodically and automatically under the control of the computer 38 with 60 seconds as one cycle. One cycle consists of six steps, and the operation in one cycle will be described below in the order of steps. In addition, in FIG. 7, the shaded portion shows the excited state of the solenoid valve solenoid, and the blank portion shows the demagnetized state of the solenoid valve solenoid.

【0035】第I工程では、電磁弁56のソレノイドが
励磁される。圧縮空気63は、電磁弁56から圧縮空気
用ノズル72を介してセル35の下部に供給され、そこ
に滞留している測定ずみの粉粒体31を分岐管34内に
押し上げる。
In step I, the solenoid of the solenoid valve 56 is excited. The compressed air 63 is supplied from the solenoid valve 56 to the lower portion of the cell 35 through the compressed air nozzle 72, and pushes up the measured powdery or granular material 31 accumulated therein into the branch pipe 34.

【0036】第II工程では、電磁弁56、57、58の
ソレノイドが励磁される。圧縮空気63は、電磁弁56
からノズル72を介してセル35の下部に供給され、第
I工程における粉粒体31の押し上げを継続するととも
に、電磁弁57からセル35の空気孔45を介してセル
35の中央部に供給されて、ガラス窓48の内面を清掃
し、更に、電磁弁58からノズル47を介してセル35
の上部に上向きに供給され、セル35の上部及び分岐管
34内に滞留している測定ずみの粉粒体31を分岐管3
4を介して搬送面33上に返送する。
In step II, the solenoids of the solenoid valves 56, 57 and 58 are excited. The compressed air 63 is supplied to the solenoid valve 56.
Is supplied to the lower part of the cell 35 through the nozzle 72 from the solenoid valve 57 and continues to be pushed up in the first step, and is supplied to the central part of the cell 35 through the air hole 45 of the cell 35. Clean the inner surface of the glass window 48, and further, the cell 35 from the solenoid valve 58 through the nozzle 47.
Of the measured powder or granular material 31 that is supplied upward to the upper part of the cell 35 and remains in the upper part of the cell 35 and the branch pipe 34.
It returns to the conveyance surface 33 via 4.

【0037】第III 工程では、電磁弁56のソレノイド
が消磁される。圧縮空気63は、第II工程と同様にして
電磁弁57からセル35の中央部に供給されるととも
に、電磁弁58からセル35の上部に上向きに供給さ
れ、ガラス窓48の内面清掃を継続しながら、搬送面3
3上の粉粒体31が分岐管34からセル35内に落下す
るのを防止する。
In step III, the solenoid of the solenoid valve 56 is demagnetized. The compressed air 63 is supplied from the electromagnetic valve 57 to the central portion of the cell 35 in the same manner as in the second step, and is also supplied upward from the electromagnetic valve 58 to the upper portion of the cell 35 to continue cleaning the inner surface of the glass window 48. While carrying surface 3
3 to prevent the powder particles 31 from falling from the branch pipe 34 into the cell 35.

【0038】第IV工程では、電磁弁57、58、59の
ソレノイドが励磁される。圧縮空気63は、第III 工程
におけるガラス窓48の内面清掃と粉粒体31のセル3
5内への落下防止とを継続し、更に、電磁弁59からノ
ズル65に供給されてガラス窓48の外面を清掃する。
In step IV, the solenoids of the solenoid valves 57, 58 and 59 are excited. The compressed air 63 is used for cleaning the inner surface of the glass window 48 and the cells 3 of the powder and granules 31 in the third step.
5 is continuously prevented from falling into the interior of the glass window 5, and is further supplied from the electromagnetic valve 59 to the nozzle 65 to clean the outer surface of the glass window 48.

【0039】第V工程では、電磁弁57、59のソレノ
イドが消磁される。圧縮空気63は、第IV工程における
粉粒体31のセル35内への落下防止を継続する。
In step V, the solenoids of the solenoid valves 57 and 59 are demagnetized. The compressed air 63 continues to prevent the powder or granular material 31 from falling into the cell 35 in the IV step.

【0040】第VI工程では、すべての電磁弁56、5
7、58、59のソレノイドが消磁され、電磁弁からの
圧縮空気63の供給が絶たれ、新たに粉粒体31がセル
35内に落下、充填される。これ以後の動作は、実施例
1の第VII 工程における動作と全く同じである。
In step VI, all solenoid valves 56, 5
The solenoids 7, 58, 59 are demagnetized, the supply of compressed air 63 from the solenoid valve is cut off, and the powder particles 31 are newly dropped and filled in the cell 35. The operation thereafter is exactly the same as the operation in the step VII of the first embodiment.

【0041】[0041]

【発明の効果】本発明は、以上説明したように、搬送面
上の粉粒体を分岐管からセル内に落下、充填せしめるの
で、セル内の粉粒体は静止状態でガラス窓に接し、その
厚さを確実に一定に保つ。そのため、検出器から測定粉
粒面までの距離は常に均一になる。
As described above, according to the present invention, since the powder particles on the conveying surface are dropped from the branch pipe into the cell and filled, the powder particles in the cell are in a stationary state and contact the glass window, Be sure to keep its thickness constant. Therefore, the distance from the detector to the measured powder surface is always uniform.

【0042】また、セル内には粉粒体が充填されるの
で、外部のごみや水分等の異物が測定粉粒面に到達する
おそれがない。そのため、測定粉粒面の状態は常に一定
に保たれる。以上の結果、水分測定値にはばらつきが生
ぜず、測定精度が高い。
Further, since the particles are filled in the cell, there is no possibility that foreign matter such as dust or water will reach the measured particle surface. Therefore, the state of the measured powder surface is always kept constant. As a result, the measured water content does not vary and the measurement accuracy is high.

【0043】更に、粉粒体のセル内への落下、充填と、
粉粒体の水分測定と測定ずみの粉粒体の搬送面上への返
送とをコンピュータにより周期的且つ自動的に行なえる
ようにすることにより、粉粒体の生産ラインにおける生
産性を著しく向上させることができる。
Further, dropping and filling of the granular material into the cell,
The productivity of a granular material production line is significantly improved by enabling the computer to periodically and automatically measure the moisture content of the granular material and return the measured granular material to the transportation surface. Can be made.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1の水分測定装置を示す全体構
成図である。
FIG. 1 is an overall configuration diagram showing a moisture measuring apparatus according to a first embodiment of the present invention.

【図2】本発明の実施例1に用いた水分測定用セルの底
面図である。
FIG. 2 is a bottom view of the moisture measuring cell used in Example 1 of the present invention.

【図3】図2のX−X線断面図である。3 is a cross-sectional view taken along line XX of FIG.

【図4】本発明の実施例1における電磁弁ソレノイドの
タイミングチャート図である。
FIG. 4 is a timing chart of the solenoid valve solenoid according to the first embodiment of the present invention.

【図5】本発明の水分測定方法により得た粉粒体水分を
示すグラフである。
FIG. 5 is a graph showing the moisture content of powder and granules obtained by the moisture measurement method of the present invention.

【図6】本発明の実施例2の水分測定装置を示す全体構
成図である。
FIG. 6 is an overall configuration diagram showing a moisture measuring apparatus according to a second embodiment of the present invention.

【図7】本発明の実施例2における電磁弁ソレノイドの
タイミングチャート図である。
FIG. 7 is a timing chart of the solenoid valve solenoid according to the second embodiment of the present invention.

【図8】従来の水分測定方法を実施するための装置の要
部構成図である。
FIG. 8 is a main part configuration diagram of an apparatus for performing a conventional water content measuring method.

【図9】従来の他の水分測定方法を実施するための装置
の要部構成図である。
FIG. 9 is a main part configuration diagram of an apparatus for performing another conventional moisture measuring method.

【符号の説明】[Explanation of symbols]

31 粉粒体 33 搬送面 34 分岐管 35 水分測定用セ
ル 36 近赤外水分計 38 コンピュータ 47 圧縮空気用ノズル 48 ガラス窓 53 近赤外線 54 検出器 56、58、59、60電磁弁 63 圧縮空気 64 圧縮空気用ノズル 72 圧縮空気用ノ
ズル
31 powder and granules 33 transport surface 34 branch pipe 35 moisture measuring cell 36 near infrared moisture meter 38 computer 47 nozzle for compressed air 48 glass window 53 near infrared 54 detector 56, 58, 59, 60 solenoid valve 63 compressed air 64 Nozzle for compressed air 72 Nozzle for compressed air

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 粉粒体を搬送する搬送面の外部に分岐管
を上下方向に接続し、該分岐管に近赤外線が透過可能な
透明のガラス窓を備えた水分測定用セルを設け、前記ガ
ラス窓の外部にガラス窓に一定距離離隔して相対向する
ように近赤外水分計の検出器を設け、前記搬送面上を搬
送される粉粒体の一部を前記分岐管を介して前記セル内
に落下、充填せしめ、このセル内の粉粒体に前記検出器
から前記ガラス窓を透して一定波長の近赤外線を照射
し、その反射波を前記検出器に受けて、セル内の粉粒体
の水分に吸収された前記近赤外線の割合からセル内の粉
粒体の水分を測定し、然る後に前記セル内に圧縮空気を
供給して、セル内の粉粒体を前記分岐管を介して前記搬
送面上に返送することを特徴とする粉粒体の水分測定方
法。
1. A moisture measuring cell having a transparent glass window through which a near infrared ray can be transmitted, the branch pipe being vertically connected to the outside of a conveying surface for conveying the powder or granular material, A detector of a near-infrared moisture meter is provided outside the glass window so as to face each other with a certain distance from the glass window, and a part of the granular material conveyed on the conveying surface is passed through the branch pipe. Drop in the cell, let it be filled, irradiate the near-infrared rays of a certain wavelength through the glass window from the detector to the granular material in this cell, receive the reflected wave to the detector, in the cell The moisture content of the powder in the cell is measured from the ratio of the near-infrared rays absorbed in the moisture content of the powder, and then compressed air is supplied into the cell, and the powder in the cell is A method for measuring water content of a powder or granular material, which comprises returning the powder onto the transport surface via a branch pipe.
【請求項2】 粉粒体のセル内への落下、充填と、粉粒
体の水分測定と、粉粒体の搬送面上への返送とを周期的
に行なう請求項1記載の粉粒体の水分測定方法。
2. The granular material according to claim 1, wherein dropping and filling of the granular material into the cell, measurement of water content of the granular material, and returning of the granular material to the conveying surface are periodically performed. Method for measuring water content.
【請求項3】 粉粒体を搬送する搬送面の外部に分岐管
を上下方向に接続し、該分岐管に近赤外線が透過可能な
透明のガラス窓を備えた水分測定用セルを設けるととも
に、該セル内に粉粒体の返送及び流入防止のための圧縮
空気用ノズルを複数個配置し、前記ガラス窓の外部にガ
ラス窓に一定距離離隔して相対向するように近赤外水分
計の検出器を設けたことを特徴とする粉粒体の水分測定
装置。
3. A moisture measuring cell provided with a transparent glass window through which near-infrared rays can be transmitted by connecting a branch pipe in a vertical direction to the outside of a conveying surface for conveying the powder and granules, A plurality of compressed air nozzles are arranged in the cell to prevent the powder particles from being returned and flowed in, and a near infrared moisture meter is provided outside the glass window so as to face each other with a certain distance from the glass window. A moisture measuring device for powdery or granular material, comprising a detector.
【請求項4】 セル内に配置した複数個の圧縮空気用ノ
ズルのそれぞれに電磁弁を接続し、これら電磁弁のソレ
ノイドの励磁及び消磁を自動的に制御するコンピュータ
を設けた請求項3記載の粉粒体の水分測定装置。
4. The computer according to claim 3, wherein a solenoid valve is connected to each of the plurality of compressed air nozzles arranged in the cell, and a computer for automatically controlling excitation and demagnetization of solenoids of these solenoid valves is provided. Water content measuring device for powder and granules.
【請求項5】 内部に中空部を有するセル本体の中央部
に水分測定用ガラス窓を備えるとともに、片側又は両側
に分岐管接続部を備え、前記水分測定用ガラス窓の相対
する面にガラス窓清掃用空気孔及び該ガラス窓清掃用空
気孔の片側又は両側に粉粒体返送用空気孔を備え、該粉
粒体返送用空気孔にL字形の圧縮空気用ノズルを前記分
岐管接続部に向けて設けたことを特徴とする水分測定用
セル。
5. A moisture measuring glass window is provided in the center of a cell body having a hollow portion inside, and a branch pipe connecting portion is provided on one side or both sides, and the glass window is provided on the opposite surface of the moisture measuring glass window. The air holes for cleaning and the air holes for cleaning the glass window are provided with air holes for returning the granular material on one side or both sides, and an L-shaped compressed air nozzle is provided in the branch pipe connecting portion in the air hole for returning the granular materials. A moisture measurement cell, which is provided for the cell.
JP33961194A 1994-12-27 1994-12-27 Method and apparatus for measuring moisture of powdery /granular material and moisture measuring cell Pending JPH08184554A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33961194A JPH08184554A (en) 1994-12-27 1994-12-27 Method and apparatus for measuring moisture of powdery /granular material and moisture measuring cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33961194A JPH08184554A (en) 1994-12-27 1994-12-27 Method and apparatus for measuring moisture of powdery /granular material and moisture measuring cell

Publications (1)

Publication Number Publication Date
JPH08184554A true JPH08184554A (en) 1996-07-16

Family

ID=18329134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33961194A Pending JPH08184554A (en) 1994-12-27 1994-12-27 Method and apparatus for measuring moisture of powdery /granular material and moisture measuring cell

Country Status (1)

Country Link
JP (1) JPH08184554A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010016184A1 (en) * 2008-08-08 2010-02-11 日立造船株式会社 Non-destructive inspection device for oxygen concentration in bag-shaped container
CZ303066B6 (en) * 2009-07-28 2012-03-21 Vysoká škola technická a ekonomická v Ceských Budejovicích Method of measuring filtration and hydraulic properties of pack of drainage tubing and apparatus for making the same
JP2017191058A (en) * 2016-04-15 2017-10-19 株式会社クボタ Dryer and spectroscopic analyzer for the same
US11318682B2 (en) 2018-04-06 2022-05-03 Hewlett-Packard Development Company, L.P. Three-dimensional (3D) object printing based on build material permeability

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010016184A1 (en) * 2008-08-08 2010-02-11 日立造船株式会社 Non-destructive inspection device for oxygen concentration in bag-shaped container
JP2010038846A (en) * 2008-08-08 2010-02-18 Hitachi Zosen Corp Nondestructive inspection device of oxygen concentration within bag-like container
US8379209B2 (en) 2008-08-08 2013-02-19 Hitachi Zosen Corporation Non-destructive inspection device for oxygen concentration in bag-shaped container
CZ303066B6 (en) * 2009-07-28 2012-03-21 Vysoká škola technická a ekonomická v Ceských Budejovicích Method of measuring filtration and hydraulic properties of pack of drainage tubing and apparatus for making the same
JP2017191058A (en) * 2016-04-15 2017-10-19 株式会社クボタ Dryer and spectroscopic analyzer for the same
WO2017179662A1 (en) * 2016-04-15 2017-10-19 株式会社クボタ Dryer and spectroscopic analysis device for dryer
US11318682B2 (en) 2018-04-06 2022-05-03 Hewlett-Packard Development Company, L.P. Three-dimensional (3D) object printing based on build material permeability

Similar Documents

Publication Publication Date Title
CA2104053C (en) Automated fluid bed process
US20160003736A1 (en) Dust line with optical sensor, and method for measuring the composition of dust
JP2008183168A (en) Tablet manufacturing system
JPH10509796A (en) Non-destructive identification of tablets and tablet dissolution by infrared spectroscopy analysis
US10189054B2 (en) Deviation handling apparatus and deviation handling method
AU737273B2 (en) Apparatus and associated method for inspecting containers for bulges
CN207600891U (en) A kind of material size on-line detector
JPH08184554A (en) Method and apparatus for measuring moisture of powdery /granular material and moisture measuring cell
US4698190A (en) Method and apparatus of controlling granulation of moisture-absorbing powder material
US5157976A (en) Powder granule sample inspection apparatus
US20040096495A1 (en) Method and apparatus for producing tablets
US5261285A (en) Powder granule sample inspection apparatus
JP3909382B2 (en) Granulation control method of granular material in fluidized bed processing apparatus
JPH08159961A (en) Method for measuring water content of particle
EP0917907A2 (en) Granulation method and system with particle size distribution control
JPH11190697A (en) Method and device for inspecting foreign matter in powder and grain
JPS61200444A (en) Method and apparatus for measuring moisture of particulate
JP4638187B2 (en) Powder inspection method and powder inspection apparatus
JP2007061696A (en) Sorting system
Gong et al. The effect of heterogeneity on wood drying, part II: experimental results
JPS614947A (en) Method and device for measuring water of fluid body
JPH03130063A (en) Method and apparatus for detecting density of continuous body of tobacco
JP2009525472A (en) Measurement, monitoring and control of directed product flow in fluidized bed or spouted bed equipment and suitable equipment
JPH10123058A (en) Particle-size measuring apparatus for powder and granular material and treatment apparatus for fluidized layer by using it
JP4678593B2 (en) Moisture measurement method for sintered raw materials

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20030225