JP4678593B2 - Moisture measurement method for sintered raw materials - Google Patents

Moisture measurement method for sintered raw materials Download PDF

Info

Publication number
JP4678593B2
JP4678593B2 JP2005308350A JP2005308350A JP4678593B2 JP 4678593 B2 JP4678593 B2 JP 4678593B2 JP 2005308350 A JP2005308350 A JP 2005308350A JP 2005308350 A JP2005308350 A JP 2005308350A JP 4678593 B2 JP4678593 B2 JP 4678593B2
Authority
JP
Japan
Prior art keywords
raw material
water
moisture
wavelength
sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005308350A
Other languages
Japanese (ja)
Other versions
JP2007114143A (en
Inventor
達朗 本田
勝 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Industries Ltd
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2005308350A priority Critical patent/JP4678593B2/en
Publication of JP2007114143A publication Critical patent/JP2007114143A/en
Application granted granted Critical
Publication of JP4678593B2 publication Critical patent/JP4678593B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

本発明は、焼結鉱の焼結原料に含まれる水分、特に造粒への寄与が大きいと考えられる原料粒子間に存在する原料粒子間水の水分量を精度良く連続的に測定することができる焼結原料の水分計測方に関する。 The present invention is capable of continuously measuring the moisture contained in the sintered raw material of the sintered ore, in particular, the moisture content of the water between the raw material particles existing between the raw material particles considered to have a large contribution to granulation with high accuracy. can be related to moisture measurement how of sintering material.

焼結鉱の製造工程において、焼結鉱の原料となる焼結原料は、数種類の鉄鉱石、CaO源としての石灰石、SiO及びMgO源としての蛇紋岩、燃料としての粉コークス及び返鉱等から構成されている。通常、これらの原料は、その銘柄毎に原料槽に貯蔵されており、配合割合に応じて定量切り出しされている。切り出された各原料は、原料搬送用のベルトコンベア上で合流し、造粒機まで搬送される。そして、造粒機において、原料に水分が添加されて混合造粒が行われる。さらに、造粒後の原料は、焼結機に供給されて原料充填層が形成され、その最上部が点火される。その後、原料充填層へ大気が下方吸引されることによって焼結反応が充填層の上部から下部に進行する。下部の焼成が完了すると、焼結機排鉱部で破砕された後にクーラーで冷却される。 In the production process of sintered ore, the sintered raw material used as the raw material for sintered ore includes several types of iron ore, limestone as CaO source, serpentine as SiO 2 and MgO source, powder coke as fuel and return ore, etc. It is composed of Usually, these raw materials are stored in a raw material tank for each brand, and are quantitatively cut out according to the blending ratio. The cut out raw materials are merged on a raw material transport belt conveyor and transported to a granulator. In the granulator, moisture is added to the raw material to perform mixed granulation. Further, the raw material after granulation is supplied to a sintering machine to form a raw material packed layer, and the uppermost portion thereof is ignited. Thereafter, the atmosphere is sucked downward into the raw material packed bed, whereby the sintering reaction proceeds from the upper part to the lower part of the packed bed. When the firing of the lower part is completed, it is crushed in the sinter machine ore and then cooled by a cooler.

上記の焼結原料とこれに添加される水分の役割、ひいては水分計測の必要性については次のように考えられる。焼結原料の造粒は、水がバインダーとなって原料の粒子同士が付着することによってなされる。この粒子同士の付着によって生成した造粒物を擬似粒子と称し、擬似粒子の粒径を擬似粒度と称する。擬似粒度を大きくすると、焼結反応が進行する際の原料充填層の通気性が向上する。原料充填層の通気性が向上すると、焼結速度が高まるため、焼結鉱の生産量を確保する上で焼結原料の造粒は重要である。この造粒において、水分は擬似粒度を制御する重要な因子であるため、目標水分が得られるように添加水分を制御する必要がある。   The role of the above-mentioned sintered raw material and moisture added thereto, and the necessity of moisture measurement, can be considered as follows. The granulation of the sintered raw material is performed by adhering the raw material particles with water as a binder. The granulated product generated by the adhesion between the particles is referred to as a pseudo particle, and the particle size of the pseudo particle is referred to as a pseudo particle size. Increasing the pseudo grain size improves the air permeability of the raw material packed layer when the sintering reaction proceeds. When the air permeability of the raw material packed layer is improved, the sintering speed is increased. Therefore, granulation of the sintered raw material is important in securing the production amount of the sintered ore. In this granulation, since moisture is an important factor for controlling the pseudo particle size, it is necessary to control the added moisture so that the target moisture can be obtained.

ここで、焼結原料に添加する水分量制御用の測定装置として、比較的繰り返して再現性の良い連続測定が可能であることから、特許文献1〜3や非特許文献1に記載のような赤外線吸収式水分計(以下、赤外線水分計とも称する)が広く使用されている。   Here, as a measurement device for controlling the amount of water added to the sintering raw material, continuous measurement with relatively good reproducibility is possible relatively repeatedly, as described in Patent Documents 1 to 3 and Non-Patent Document 1. An infrared absorption moisture meter (hereinafter also referred to as an infrared moisture meter) is widely used.

より具体的に説明すれば、特許文献1には、連続波長の赤外線を放射する光源からの光を、水分に吸収される1.94μm近傍の波長帯を選択的に透過する狭帯域フィルターと、水分子に吸収されない2.10μm近傍ならびに、2.30μm近傍の波長帯を選択的に透過する狭帯域フィルターとを有するフィルター用回転板を介して、焼結混合原料に照射し、該焼結混合原料からの反射光を受光部に配設された光電変換素子で受光し、前記光電変換素子によって検出された赤外線量から焼結混合原料の水分量を求めることを特徴とする赤外線水分計による焼結混合原料の水分測定方法が提案されている。   More specifically, Patent Document 1 discloses a narrowband filter that selectively transmits light from a light source that emits infrared light having a continuous wavelength through a wavelength band near 1.94 μm absorbed by moisture, The sintered mixed raw material is irradiated through a filter rotating plate having a narrow band filter that selectively transmits a wavelength band near 2.10 μm that is not absorbed by water molecules and a wavelength band near 2.30 μm. The reflected light from the raw material is received by a photoelectric conversion element disposed in the light receiving section, and the moisture content of the sintered mixed raw material is obtained from the amount of infrared detected by the photoelectric conversion element. A method for measuring the water content of the mixed raw material has been proposed.

また、非特許文献1には、赤外線水分計について次の点が記載されている。まず、吸収波長に関して、通常は水の吸収帯として、1.43μm、1.94μm、2.95μmの3つの波長が用いられること、0〜2%の低水分では2.95μm、0〜30%水分では1.94μm、それ以上の水分では1.43μmが用いられることが記載されている。また、第1表に、鉄鋼・金属における焼結原料の水分はおよそ0〜10%であることが記載されており、このことから鉄鋼・金属における焼結原料の水分測定には、1.94μmの波長が用いられることが示唆されているといえる。さらに、非特許文献1には、赤外線水分計は、水分の相対変化をとらえるもので、絶対値を計測するものではないので、基準となる手分析値(後述する絶乾式水分測定法など)との突き合せを行うことにより初めてオンライン水分計として測定できることが記載されている。   Non-Patent Document 1 describes the following points regarding the infrared moisture meter. First, regarding the absorption wavelength, three wavelengths of 1.43 μm, 1.94 μm, and 2.95 μm are usually used as the absorption band of water, and 2.95 μm and 0 to 30% at low moisture of 0 to 2%. It is described that 1.94 μm is used for moisture, and 1.43 μm is used for more moisture. In Table 1, it is described that the moisture content of the sintered raw material in steel and metal is about 0 to 10%. Therefore, the moisture content of the sintered raw material in steel and metal is 1.94 μm. It can be said that it is suggested that the wavelength is used. Further, in Non-Patent Document 1, an infrared moisture meter captures a relative change in moisture and does not measure an absolute value. Therefore, a reference manual analysis value (such as an absolute dry moisture measurement method described later) is used. It is described that it can be measured as an on-line moisture meter for the first time by performing the matching.

以上に説明した特許文献1や非特許文献1の記載から明らかなように、従来、赤外線水分計を用いた焼結原料の水分測定において、水の吸収波長としては1.9μm近傍、特に1.94μmを中心とした波長帯が用いられてきた。   As is apparent from the description of Patent Document 1 and Non-Patent Document 1 described above, conventionally, in the moisture measurement of a sintered raw material using an infrared moisture meter, the absorption wavelength of water is around 1.9 μm, particularly 1. A wavelength band centered on 94 μm has been used.

また、特許文献2には、間欠的に実施される焼結原料の配合変更の都度その直後に、試料を採取して乾燥前後の重量変化から水分を測定する方法(以下、絶乾式水分測定法とも称する)を実施し、その結果に基づいて赤外線水分計の新たな検量線を作成し、この検量線を基に水分測定を行うことが提案されている。   In addition, Patent Document 2 discloses a method (hereinafter referred to as an absolutely dry moisture measurement method) in which a sample is taken and moisture is measured from a weight change before and after drying immediately after a change in the composition of a sintered raw material that is intermittently performed. It is also proposed to create a new calibration curve for the infrared moisture meter based on the result, and to perform moisture measurement based on this calibration curve.

さらに、特許文献3には、ミキサーへの散水量をフィードフォワード制御系とフィードバック制御系とを組合せて制御するに際し、実績水分値として、絶乾式水分測定法と赤外線水分計とによって測定した水分値を併用することが提案されている。   Furthermore, in Patent Document 3, when controlling the amount of water sprayed to the mixer in combination with the feedforward control system and the feedback control system, the moisture value measured by an absolutely dry moisture measuring method and an infrared moisture meter as the actual moisture value. It has been proposed to use together.

一方、非特許文献2には、焼結原料に含まれる水分は、鉄鉱石の粒子内に吸収される水と、原料粒子間でバインダーとして機能する水とに大別されることが開示されている。より具体的には、原料の真粒の内部に浸透した水や、原料内にもともと化学的に結合している水(いわゆる結晶水)は造粒への寄与が小さいのに対し、原料粒子間にバインダーとして存在する水(原料粒子間水)はその表面張力により粒子同士の結合を進行させるため造粒への寄与が大きいことが開示されている。斯かる理論に基づけば、造粒が適正であるか否かは、焼結原料に含まれる全水分量から原料粒子内に吸収される水分量を差し引いた原料粒子間水の水分量で評価されることになるので、造粒における水分制御を精度良く行うには、原料粒子間水の水分量を精度良く計測することが重要であると考えられる。
特開昭63−63948号公報 特開平6−34532号公報 特開平10−17946号公報 高野聡一郎、「粉粒体プロセスにおける水分計測」、計測技術、2000年5月、p.21−25 佐藤駿ほか3名、「焼結原料の造粒および通気現象のモデル化の検討」、鉄と鋼、Vol.68(1982)p.2174−2181
On the other hand, Non-Patent Document 2 discloses that the moisture contained in the sintered raw material is roughly divided into water absorbed in the iron ore particles and water functioning as a binder between the raw material particles. Yes. More specifically, water penetrating into the true grains of the raw material or water that is chemically bonded to the raw material (so-called crystal water) has a small contribution to granulation, whereas It is disclosed that water existing as a binder (water between raw material particles) greatly contributes to granulation because the bonding between the particles proceeds by the surface tension. Based on such a theory, whether or not granulation is appropriate is evaluated by the amount of water between the raw material particles obtained by subtracting the amount of water absorbed in the raw material particles from the total amount of water contained in the sintered raw material. Therefore, it is considered that it is important to accurately measure the water content of the water between the raw material particles in order to control the water content in granulation with high accuracy.
JP 63-63948 A JP-A-6-34532 Japanese Patent Laid-Open No. 10-17946 Koichiro Takano, “Moisture Measurement in the Granule Process”, Measurement Technology, May 2000, p. 21-25 Satoshi Sato et al., “Study on granulation of sintering raw material and modeling of aeration phenomenon”, Iron and Steel, Vol. 68 (1982) p. 2174-2181

ここで、赤外線水分計を用いて焼結原料に含まれる水分量を測定する際には、鉄鉱石の種類やその配合比率、副原料の配合比率、粒度、色などによって測定値が影響を受け、誤差が生じるという欠点がある。換言すれば、水分検出感度に比べて、水分以外の影響因子による反射光強度のバラツキ(ひいては吸光度のバラツキ)の方が大きいという欠点がある。   Here, when measuring the amount of water contained in the sintered raw material using an infrared moisture meter, the measured value is affected by the type of iron ore, its blending ratio, the blending ratio of auxiliary materials, particle size, color, etc. There is a disadvantage that an error occurs. In other words, there is a drawback in that the variation in reflected light intensity (and thus the variation in absorbance) due to influencing factors other than moisture is greater than the moisture detection sensitivity.

そこで、特許文献1に記載の方法は、水の吸収波長以外の波長を追加して高精度化を試みているが、これでは十分な精度が得られないという問題がある。   Therefore, the method described in Patent Document 1 tries to improve accuracy by adding a wavelength other than the absorption wavelength of water, but there is a problem in that sufficient accuracy cannot be obtained.

また、特許文献2や特許文献3に記載の方法は、赤外線水分計の測定値が前述のように焼結原料の配合比率や粒度等の影響を受けやすいことに鑑み、赤外線水分計と絶乾式水分測定法とを併用し、焼結原料が変わるたびに絶乾式水分測定法で水分量を測定し、赤外線水分計の検量線を修正することで測定精度の向上を図ろうとしているが、測定精度を高めるためには絶乾式水分測定法での測定頻度を高める等の煩雑さが発生するという問題がある。   In addition, the methods described in Patent Document 2 and Patent Document 3 are based on the infrared moisture meter and the absolute dry method in view of the fact that the measured value of the infrared moisture meter is easily affected by the blending ratio and particle size of the sintering raw material as described above. In combination with the moisture measurement method, every time the sintering raw material changes, the moisture content is measured by the absolute dry moisture measurement method, and the calibration curve of the infrared moisture meter is modified to improve the measurement accuracy. In order to increase the accuracy, there is a problem that complications such as increasing the measurement frequency in the absolutely dry moisture measurement method occur.

そして、特許文献1〜3のいずれに記載の方法も、焼結原料の造粒における水分制御に最も影響を与える原料粒子間水の水分量を評価することについては、その解決手段を提示するに至っていない。   And any of the methods described in Patent Documents 1 to 3 presents the means for solving the problem of evaluating the amount of water between the raw material particles that most affects the moisture control in the granulation of the sintered raw material. Not reached.

本発明は、斯かる従来技術の問題点を解決するべくなされたものであり、焼結鉱の焼結原料に含まれる水分、特に造粒への寄与が大きいと考えられる原料粒子間に存在する原料粒子間水の水分量を精度良く連続的に測定することができる焼結原料の水分計測方を提供することを課題とする。 The present invention has been made to solve such problems of the prior art, and is present between raw material particles that are considered to have a large contribution to the water content, particularly granulation, contained in the sintered raw material of the sintered ore. the water content of between raw material particles water can be precisely measured continuously providing moisture measuring how the sintering material to an object.

前記課題を解決するべく、本発明の発明者らは赤外線水分計について種々の検討を重ねた結果、下記の(1)及び(2)の新しい知見を見出すに至った。すなわち、
(1)焼結原料に赤外線を照射した場合における反射光の赤外分光スペクトルを詳細に検討した結果、水の吸収波長として2.78μm近傍の波長を選択すると、従来使用されていた波長に比べて、焼結原料に含まれる水分量の内、原料粒子間水の水分量の変化に対する検出感度が高いということ、
(2)水の吸収波長として2.78μm近傍の波長を選択して水分量を計測すると、焼結原料の配合比率や粒度等の影響を受け難く、原料粒子間水の水分量との相関が強くなるという知見である。
In order to solve the above problems, the inventors of the present invention have made various studies on the infrared moisture meter, and as a result, have found the following new findings (1) and (2). That is,
(1) As a result of examining the infrared spectrum of the reflected light in detail when the sintered raw material is irradiated with infrared rays, when a wavelength near 2.78 μm is selected as the water absorption wavelength, it is compared with the wavelength used conventionally. The detection sensitivity to the change in the moisture content of the water between the raw material particles among the moisture content contained in the sintering material is high.
(2) When the water content is measured by selecting a wavelength in the vicinity of 2.78 μm as the water absorption wavelength, it is hardly affected by the mixing ratio and particle size of the sintered raw material, and there is a correlation with the water content between the raw material particles. It is the knowledge that it will become stronger.

本発明は、上記発明者らが見出した新しい知見に基づいて完成されたものである。すなわち、本発明は、照射した赤外線の水による吸収を利用して焼結原料に含まれる水分量を計測する方法であって、含水前の焼結原料に対して照射した赤外線の2.78μm近傍の波長についての反射光強度を測定するステップと、含水後の焼結原料に対して照射した赤外線の2.78μm近傍の波長についての反射光強度を測定するステップと、前記測定した含水前の焼結原料の反射光強度と前記測定した含水後の焼結原料の反射光強度との差に基づいて、前記含水後の焼結原料に含まれる水分量を算出するステップとを含むことを特徴とする焼結原料の水分計測方法を提供するものである。 The present invention has been completed based on the new findings found by the inventors. That is, the present invention is a method for measuring the amount of moisture contained in a sintering raw material by utilizing the absorption of irradiated infrared water by water, and is in the vicinity of 2.78 μm of the infrared ray irradiated on the sintering raw material before water inclusion. The step of measuring the reflected light intensity for the wavelength of the sample, the step of measuring the reflected light intensity for the wavelength in the vicinity of 2.78 μm of the infrared rays irradiated to the sintered raw material after the moisture treatment, Calculating the amount of water contained in the sintered raw material after the moisture content, based on the difference between the reflected light intensity of the binder material and the measured reflected light intensity of the sintered raw material after the moisture content. A method for measuring the moisture content of a sintered raw material is provided.

斯かる発明によれば、水の吸収波長として2.78μm近傍の波長を選択することになり、従来使用されていた波長に比べて、焼結原料の配合比率や粒度等の影響を受け難く、しかも造粒への寄与が大きいと考えられる原料粒子間に存在する原料粒子間水の水分量を精度良く連続的に測定することが可能である。   According to such an invention, a wavelength in the vicinity of 2.78 μm is selected as the water absorption wavelength, and is less affected by the blending ratio, particle size, and the like of the sintering raw material compared to the conventionally used wavelength. Moreover, it is possible to continuously and accurately measure the water content of the water between the raw material particles existing between the raw material particles considered to have a large contribution to granulation.

また、本発明によれば、含水前の焼結原料(原料粒子間水が存在しないと考えられる焼結原料)と含水後の焼結原料(原料粒子間水が存在する焼結原料)との反射光強度の差(本発明における反射光強度の差とは、文字通り反射光強度の差を意味するのみならず、反射光強度に対応する指標である吸光度等の差も含む広い概念である)に基づいて、含水後の焼結原料に含まれる水分量(原料粒子間水の水分量)を算出するため、いったん反射光強度の差(吸光度の差)と水分量との検量線を絶乾式水分測定法等によって作成しさえすれば、その後に検量線を修正する必要がない或いは検量線の修正頻度を著しく低減できるという利点を有する。 In addition, according to the present invention , the sintering raw material before hydration (sintering raw material considered to be free of interparticle water) and the sinterd raw material after sintering (sintering raw material having interparticle water) Difference in reflected light intensity (difference in reflected light intensity in the present invention is not only literally a difference in reflected light intensity but also a broad concept including a difference in absorbance, etc., which is an index corresponding to the reflected light intensity) In order to calculate the moisture content (moisture content of raw material water) contained in the sintered raw material after hydration, once the calibration curve between the difference in reflected light intensity (difference in absorbance) and the moisture content is completely dry As long as it is created by a moisture measurement method or the like, there is an advantage that the calibration curve need not be corrected thereafter, or the calibration frequency can be remarkably reduced.

本発明に係る焼結原料の水分計測方によれば、焼結鉱の焼結原料に含まれる水分、特に造粒への寄与が大きいと考えられる原料粒子間に存在する原料粒子間水の水分量を精度良く連続的に測定することが可能である。
According to the moisture measuring how the sintering material according to the present invention, moisture contained in the sintering raw material sintered ore, between the raw material particles water especially existing between the raw material particles that are considered to be large contribution to granulation It is possible to measure the moisture content continuously with high accuracy.

以下、添付図面を適宜参照しつつ、本発明に係る焼結原料の水分計測方法の実施形態について説明する。   Hereinafter, an embodiment of a moisture measuring method for a sintering raw material according to the present invention will be described with reference to the accompanying drawings as appropriate.

<第1実施形態>
本発明の第1実施形態に係る焼結原料の水分計測方法は、照射した赤外線の水による吸収を利用して焼結原料に含まれる水分量を計測する方法であって、焼結原料に対して照射した赤外線の2.78μm近傍の波長についての反射光強度を測定するステップと、前記測定した反射光強度に基づいて前記焼結原料に含まれる水分量を算出するステップとを含むことを特徴としている。
<First Embodiment>
The moisture measurement method for a sintered raw material according to the first embodiment of the present invention is a method for measuring the amount of moisture contained in a sintered raw material by utilizing the absorption of irradiated infrared water by water. And measuring the reflected light intensity for a wavelength near 2.78 μm of the infrared ray irradiated and calculating the amount of water contained in the sintering raw material based on the measured reflected light intensity. It is said.

より具体的に説明すれば、本実施形態に係る水分計測方法は、2.78μm近傍の波長についての反射光強度を測定し吸光度を算出する。そして、絶乾式水分測定法等を用いて測定した焼結原料に含まれる水分量(原料粒子間水の水分量)と、前記算出した吸光度との関係に基づいて予め検量線を作成しておき、この検量線と前記算出した吸光度とに基づいて、焼結原料に含まれる水分量を算出する方法である。以下、本実施形態に係る計測方法によって、焼結鉱の焼結原料に含まれる水分、特に造粒への寄与が大きいと考えられる原料粒子間に存在する原料粒子間水の水分量を精度良く計測できる理由について説明する。   If it demonstrates more concretely, the moisture measuring method concerning this embodiment will measure the reflected light intensity about the wavelength of 2.78 micrometer vicinity, and will calculate a light absorbency. A calibration curve is prepared in advance based on the relationship between the amount of moisture contained in the sintering raw material (the amount of water between the raw material particles) measured using an absolutely dry moisture measurement method and the like and the calculated absorbance. This is a method of calculating the amount of water contained in the sintered raw material based on this calibration curve and the calculated absorbance. Hereinafter, by the measurement method according to the present embodiment, moisture contained in the sintered raw material of the sintered ore, in particular, the moisture content of the water between the raw material particles existing between the raw material particles considered to have a large contribution to granulation is accurately determined. The reason why it can be measured will be described.

図1は、所定の焼結原料についての含水前サンプル(造粒前の焼結原料をサンプリングし、100℃のオーブンで十分乾燥させたもの)と、含水後サンプル(焼結原料に造粒機において水分を添加し造粒した後にサンプリングしたもの)との赤外分光スペクトルの一例を示す。図1の横軸は波長を、縦軸は分光反射強度を示す。図1に示すように、含水後サンプルの分光スペクトルは、非特許文献1の第1図に示された水の分光吸収特性に酷似しており、1.43μm、1.94μm及び2.95μmにおいて吸収スペクトルが観測された。   FIG. 1 shows a pre-hydrated sample of a predetermined sintered raw material (sampled sintered raw material before granulation and sufficiently dried in an oven at 100 ° C.), and a post-hydrated sample (granulator for sintered raw material). An example of an infrared spectrum obtained by sampling after adding water and granulating in FIG. In FIG. 1, the horizontal axis indicates the wavelength, and the vertical axis indicates the spectral reflection intensity. As shown in FIG. 1, the spectral spectrum of the water-containing sample is very similar to the spectral absorption characteristic of water shown in FIG. 1 of Non-Patent Document 1, and is 1.43 μm, 1.94 μm and 2.95 μm. An absorption spectrum was observed.

図1のみから判断すると、水の吸収波長として従来から用いられている波長を使用することが適当であると考えることが可能である。しかしながら、含水前サンプルのスペクトルにおいても、2.9μm近傍に強い吸収が観測されており、これは、含水前サンプルにおいて乾燥せずに残留していると共に含水後サンプルにおいても存在する、いわゆる結晶水のOH基等による吸収が生じているものと考えられる。   Judging from FIG. 1 alone, it can be considered appropriate to use a conventionally used wavelength as the absorption wavelength of water. However, in the spectrum of the pre-hydrated sample, strong absorption is observed in the vicinity of 2.9 μm, which is a so-called crystal water that remains in the pre-hydrated sample without being dried and is also present in the post-hydrated sample. It is considered that absorption due to OH groups and the like occurs.

そこで、図1の測定結果から、含水後サンプル及び含水前サンプルの各波長毎の吸光度を算出すると共に、各サンプルの吸光度の差(差分吸光度)を算出した。図2(a)は含水後サンプル及び含水前サンプルの各波長毎の吸光度を、図2(b)は差分吸光度(含水後サンプルの吸光度−含水前サンプルの吸光度)を示す。なお、吸光度は、各サンプルへの赤外線の照射光量をI0とし、各サンプルでの反射光量をIとした場合、下記の式(1)で表される値であり、反射率rの逆数の対数値に相当する値である。
吸光度=ln(I/I0)=ln(1/r) ・・・(1)
Therefore, from the measurement results in FIG. 1, the absorbance for each wavelength of the post-hydrated sample and the pre-hydrated sample was calculated, and the difference in absorbance (differential absorbance) of each sample was calculated. FIG. 2 (a) shows the absorbance for each wavelength of the hydrated sample and the sample before hydrated, and FIG. 2 (b) shows the differential absorbance (absorbance of the sample after hydrate-absorbance of the sample before hydrated). The absorbance is a value represented by the following formula (1), where I0 is the amount of infrared irradiation on each sample and I is the amount of reflected light on each sample. A value corresponding to a numerical value.
Absorbance = ln (I / I0) = ln (1 / r) (1)

図2(b)に示す差分吸光度には、焼結原料に存在する結晶水ではなく、含水後サンプルに存在する原料粒子間水の水分量が反映されていると考えられる。図2(b)に示すように、差分吸光度には2.78μmに最も強い吸収ピークが存在している。すなわち、この波長の光を吸収波長として用いれば、従来使用されていた波長に比べて、原料粒子間水の水分量の変化に対する検出感度が高くなることを示している。この点から、本発明の発明者らは、赤外線水分計において、水の吸収波長を2.78μm近傍とすることが有効であると想到するに至った。   It is considered that the differential absorbance shown in FIG. 2 (b) reflects the amount of water between the raw material particles present in the post-water-containing sample, not the crystal water present in the sintered raw material. As shown in FIG. 2B, the strongest absorption peak at 2.78 μm exists in the differential absorbance. That is, when light having this wavelength is used as the absorption wavelength, the detection sensitivity with respect to the change in the amount of water between the raw material particles is higher than that of a conventionally used wavelength. From this point, the inventors of the present invention have come to think that it is effective to make the absorption wavelength of water around 2.78 μm in the infrared moisture meter.

さらに、本発明の発明者らは、赤外線水分計における水の吸収波長として、従来から使用されている波長である1.94μmや2.95μmを用いた場合と、2.78μmを用いた場合とについて、種々の焼結原料(鉄鉱石A〜Eの5種類、及びそれらの配合比や粒度を適宜変更して配合したもの4種類の計9種類の焼結原料)を造粒した際の粒子間水分の水分量と、反射強度(具体的には吸光度)との相関を調査した。   Furthermore, the inventors of the present invention use the conventionally used wavelengths of 1.94 μm and 2.95 μm as the water absorption wavelength in the infrared moisture meter, and the case of using 2.78 μm. Particles obtained by granulating various sintered raw materials (5 types of iron ores A to E and 4 types of those mixed by changing their mixing ratio and particle size as appropriate) The correlation between the moisture content of the interstitial water and the reflection intensity (specifically, absorbance) was investigated.

図3に調査結果の一例を示す。図3(a)は水の吸収波長として2.78μmを用いた場合の粒子間水分の水分量と吸光度(差分吸光度)との相関を、図3(b)は水の吸収波長として1.94μmを用いた場合の粒子間水分の水分量と吸光度(差分吸光度)との相関を示す。図3の横軸は、原料粒子間水分の水分量を意味し、造粒前後での水分添加に伴う重量増分として求めた。なお、造粒前原料は、図1や図2に示す結果を得た場合と同様に、100℃のオーブンで十分乾燥させたものを用いた。   FIG. 3 shows an example of the survey result. FIG. 3 (a) shows the correlation between the amount of moisture between particles and the absorbance (difference absorbance) when 2.78 μm is used as the water absorption wavelength, and FIG. 3 (b) shows 1.94 μm as the water absorption wavelength. The correlation between the water content of the interparticle water | moisture content and the light absorbency (differential light absorbency) at the time of using is shown. The horizontal axis in FIG. 3 means the moisture content of the moisture between the raw material particles, and was obtained as a weight increment accompanying the addition of moisture before and after granulation. In addition, the raw material before granulation used what was fully dried with 100 degreeC oven similarly to the case where the result shown in FIG.1 and FIG.2 was obtained.

図3(a)と(b)との相関係数(R)を比較すると、波長2.78μm(図3(a))では、R=0.819であるのに対し、波長1.96μm(図3(b))ではR=0.49と相関が弱くなっている。また、図示を省略しているが、波長2.95μmでも、R=0.47と相関が弱くなっている。以上の点より、赤外線水分計における水の吸収波長として2.78μm近傍の波長を用いれば、従来使用していた波長に比べ、焼結原料の配合比率や粒度等の影響を受け難く、原料粒子間水の水分量と強い相関を示すことが分かる。 Comparing the correlation coefficient (R 2 ) between FIGS. 3 (a) and 3 (b), R 2 = 0.819 in the wavelength 2.78 μm (FIG. 3 (a)), whereas the wavelength 1. At 96 μm (FIG. 3B), the correlation is weak with R 2 = 0.49. Although not shown, the correlation is weak with R 2 = 0.47 even at a wavelength of 2.95 μm. From the above points, if a wavelength near 2.78 μm is used as the absorption wavelength of water in the infrared moisture meter, it is less affected by the blending ratio and particle size of the sintered raw material than the conventionally used wavelength, and the raw material particles It can be seen that there is a strong correlation with the amount of interstitial water.

以上の検討結果より、赤外線水分計における水の吸収波長として2.78μm近傍の波長を用いれば、反射光の吸光度自体は、従来と同様に原料粒子間水以外の影響因子(結晶水や焼結原料の配合比率や粒度等)によって変動するものの、原料粒子間水の水分量の変動に伴う吸光度の増分は、上記影響因子に依存せず比較的近い値が得られるといえる。換言すれば、横軸に絶乾式水分測定法等を用いて測定した原料粒子間水の水分量を、縦軸に吸光度をプロットして得られる検量線の定数分(Y切片)は焼結原料に依存するが、その勾配は略一定であるため、少なくとも定数分について適宜検量線を校正しさえすれば、原料粒子間水の水分量を精度良く測定可能である。   From the above examination results, if a wavelength near 2.78 μm is used as the water absorption wavelength in the infrared moisture meter, the absorbance of the reflected light itself is an influencing factor (crystal water and sintered water) other than the raw material interparticle water as in the prior art. Although it varies depending on the mixing ratio and particle size of the raw materials, it can be said that the increase in absorbance accompanying the variation in the water content between the raw material particles does not depend on the influencing factors, and a relatively close value can be obtained. In other words, the constant amount (Y-intercept) of the calibration curve obtained by plotting the water content of raw material interparticle water measured using the absolute dry moisture measurement method on the horizontal axis and the absorbance on the vertical axis is the sintered raw material. However, since the gradient is substantially constant, the amount of water between the raw material particles can be accurately measured as long as the calibration curve is appropriately calibrated for at least a constant amount.

これに対して、従来の吸収波長を用いた赤外線水分計においては、焼結原料の配合比率や粒度等によって、検量線の定数分のみならず勾配も変動する。そして、絶乾式水分測定法を用いて一度に測定できるのは、サンプリングした一点の水分量である。従って、絶乾式水分測定法によって一度に測定した水分量を用いて検量線を校正する場合、検量線の定数分又は勾配の何れか一方のみを修正することになり、自ずと十分な校正精度が得られないことになる。検量線の定数分及び勾配の双方を修正するには、水分量の異なる2点以上の絶乾式水分測定法の測定結果が必要であり、測定頻度を高める等の煩雑さが発生することになる。   On the other hand, in an infrared moisture meter using a conventional absorption wavelength, not only the constant of the calibration curve but also the gradient varies depending on the blending ratio and particle size of the sintered raw material. And it is a sampled water content that can be measured at once using the absolutely dry moisture measurement method. Therefore, when the calibration curve is calibrated using the moisture content measured at once by the absolute dry moisture measurement method, only one of the constant or the gradient of the calibration curve is corrected, and sufficient calibration accuracy is naturally obtained. It will not be possible. In order to correct both the constant and the slope of the calibration curve, it is necessary to obtain the measurement results of two or more absolute dry moisture measuring methods with different moisture contents, which causes troubles such as increasing the measurement frequency. .

以上に説明した理由により、前述のように、本実施形態に係る水分計測方法は、焼結原料に対して照射した赤外線の2.78μm近傍の波長についての反射光強度を測定するステップと、前記測定した反射光強度に基づいて前記焼結原料に含まれる水分量を算出するステップとを含む構成としている。   For the reason described above, as described above, the moisture measuring method according to the present embodiment measures the reflected light intensity at a wavelength in the vicinity of 2.78 μm of the infrared ray irradiated to the sintering raw material, And a step of calculating the amount of water contained in the sintered raw material based on the measured reflected light intensity.

なお、以上に説明した本実施形態に係る水分計測方法を実施するための水分計測装置としては、焼結原料に対して赤外線を照射する光源と、前記光源から照射された赤外線の前記焼結原料での反射光を検出する検出素子と、前記光源と前記焼結原料との間、及び/又は、前記焼結原料と前記検出素子との間に配置され、2.78μm近傍の波長の赤外線を選択的に透過させる光学フィルタとを備える構成を採用することが可能である。換言すれば、本実施形態に係る水分計測装置は、例えば特許文献1に開示されているような従来の赤外線水分計(従来装置)と主たる構成要素に変わりはなく、従来装置における光学フィルタを2.78μm近傍の波長の赤外線を選択的に透過させる光学フィルタに置き換える点、反射光を検出する検出素子として2.78μm近傍の波長を検出するのに好ましい素子を用いる点、2.78μm近傍の波長に適した光源やレンズ等を用いる点が従来装置と相違している。   The moisture measuring apparatus for carrying out the moisture measuring method according to the present embodiment described above includes a light source that irradiates the sintering material with infrared light, and the infrared sintering material that is irradiated from the light source. Between the light source and the sintering raw material and / or between the sintering raw material and the detecting element and detecting an infrared ray having a wavelength in the vicinity of 2.78 μm. It is possible to employ a configuration including an optical filter that selectively transmits light. In other words, the moisture measuring device according to the present embodiment is the same as a conventional infrared moisture meter (conventional device) as disclosed in, for example, Patent Document 1, and the main components are the same. The point is that it is replaced with an optical filter that selectively transmits infrared light having a wavelength in the vicinity of .78 μm, the point that a preferable element is used to detect the wavelength in the vicinity of 2.78 μm, and the wavelength in the vicinity of 2.78 μm. This is different from the conventional apparatus in that a light source, a lens and the like suitable for the above are used.

より具体的に説明すれば、本実施形態に係る水分計測装置は、2.78μm近傍の波長を含む赤外線を焼結原料に照射するための光源及びレンズやミラー等の投光光学系と、照射した光の内、焼結原料で反射された光を検出するための検出素子及び検出素子上に反射光を集光するためのレンズやミラー等の検出光学系と、投光光学系又は検出光学系のいずれか一方或いは両方において、投光した光又は反射光の内、少なくとも2.78μm近傍の波長の光を選択的に透過させるフィルタを含むフィルタ機構とを備える。なお、上記フィルタの中心波長は約2.78μmとし、その通過帯域幅は300nm以下とするのが好ましく、図1に示す2.78μm近傍のスペクトルのピークの半値幅程度である100nm程度とするのが特に好ましい。   More specifically, the moisture measuring device according to the present embodiment includes a light source for irradiating the sintering raw material with infrared light including a wavelength in the vicinity of 2.78 μm, a light projecting optical system such as a lens and a mirror, and irradiation. Detection element for detecting the light reflected by the sintering material, a detection optical system such as a lens and a mirror for condensing the reflected light on the detection element, and a projection optical system or detection optical Either or both of the systems include a filter mechanism including a filter that selectively transmits at least a light having a wavelength in the vicinity of 2.78 μm out of the projected light or reflected light. The center wavelength of the filter is preferably about 2.78 μm, and the passband width is preferably 300 nm or less, and is about 100 nm, which is about the half-value width of the spectrum near 2.78 μm shown in FIG. Is particularly preferred.

上記フィルタ機構は、2.78μm近傍の波長の光を選択的に透過させるフィルタと、好ましい構成として3.2μm近傍の波長の光を選択的に透過させるフィルタとを備え、これらのフィルタを時系列的に順次切り替える構成とされている。上記2種類のフィルタを時系列的に順次切り替えるには、例えば、回転円盤の特定半径の円周上に上記2種類のフィルターを配し、この円盤を回転させて、投光光学系又は検出光学系の光軸上を両フィルターが横切る構成を採用すれば良い。なお、3.2μm近傍の波長の光を選択的に透過させるフィルタは、光源から出射される赤外線光量の経時変化、検出素子からの出力信号を増幅するアンプの劣化、レンズやミラー等に付着する汚れなどに伴って、検出される反射光の光量(ひいては吸光度)が変動する影響を補正するために好適に用いられる。より具体的に説明すれば、3.2μm近傍の波長の光についての吸光度を基準として、2.78μm近傍の波長の光についての吸光度を算出(例えば、2.78μm近傍の波長の光の吸光度と3.2μm近傍の波長の光の吸光度との差を、2.78μm近傍の波長の光の吸光度として算出する)すれば、上記のような変動要因は、2.78μm近傍の波長の光と3.2μm近傍の波長の光の双方に生じるため、その影響を低減することが可能である。   The filter mechanism includes a filter that selectively transmits light having a wavelength near 2.78 μm, and a filter that selectively transmits light having a wavelength near 3.2 μm as a preferred configuration. It is set as the structure switched sequentially. In order to sequentially switch the two types of filters in time series, for example, the two types of filters are arranged on the circumference of a specific radius of a rotating disc, and the projection optical system or the detection optics is rotated by rotating the disc. A configuration in which both filters cross the optical axis of the system may be employed. A filter that selectively transmits light having a wavelength in the vicinity of 3.2 μm is attached to a lens, a mirror, or the like, a change in the amount of infrared light emitted from the light source with time, deterioration of an amplifier that amplifies an output signal from the detection element. It is preferably used to correct the influence of fluctuations in the amount of reflected light (and thus the absorbance) detected due to contamination. More specifically, the absorbance for light having a wavelength near 2.78 μm is calculated based on the absorbance for light having a wavelength near 3.2 μm (for example, the absorbance of light having a wavelength near 2.78 μm). If the difference from the absorbance of light having a wavelength in the vicinity of 3.2 μm is calculated as the absorbance of light having a wavelength in the vicinity of 2.78 μm), the variation factor as described above can be obtained by comparing the light having the wavelength in the vicinity of 2.78 μm with the light having a wavelength of 3 in the vicinity of 2.78 μm. Since it occurs in both light having a wavelength in the vicinity of 2 μm, the influence can be reduced.

また、本実施形態に係る水分計測装置を構成する光源としては、ヒーター線や石英ガラスで封じたハロゲンランプを用いることができる。検出素子としては、PbS又はPbSeであって温度を低温安定に制御したものを用いることができる。   Moreover, as a light source which comprises the moisture measuring device which concerns on this embodiment, the halogen lamp sealed with the heater wire or quartz glass can be used. As the detection element, PbS or PbSe whose temperature is controlled stably at a low temperature can be used.

以上に説明したように、本実施形態に係る水分計測方法によれば、水の吸収波長として2.78μm近傍の波長を選択することになり、従来使用されていた波長に比べて、焼結原料の配合比率や粒度等の影響を受け難く、しかも造粒への寄与が大きいと考えられる原料粒子間に存在する原料粒子間水の水分量を精度良く連続的に測定することが可能である。   As described above, according to the moisture measuring method according to the present embodiment, a wavelength in the vicinity of 2.78 μm is selected as the absorption wavelength of water, and compared with the conventionally used wavelength, the sintering raw material is selected. Therefore, it is possible to measure the moisture content of the water between the raw material particles existing between the raw material particles which are hardly affected by the blending ratio and particle size of the raw material and are considered to have a large contribution to granulation with high accuracy.

<第2実施形態>
本発明の第2実施形態に係る焼結原料の水分計測方法は、含水前の焼結原料に対して照射した赤外線の2.78μm近傍の波長についての反射光強度を測定するステップと、含水後の焼結原料に対して照射した赤外線の2.78μm近傍の波長についての反射光強度を測定するステップと、前記測定した含水前の焼結原料の反射光強度と前記測定した含水後の焼結原料の反射光強度との差に基づいて、前記含水後の焼結原料に含まれる水分量を算出するステップとを含むことを特徴としている。
<Second Embodiment>
The method for measuring moisture content of a sintered raw material according to the second embodiment of the present invention includes a step of measuring reflected light intensity at a wavelength in the vicinity of 2.78 μm of infrared rays irradiated to the sintered raw material before water inclusion, The step of measuring the reflected light intensity at a wavelength in the vicinity of 2.78 μm of the infrared ray irradiated to the sintered raw material, the measured reflected light intensity of the sintered raw material before water content, and the measured sintering after water content And a step of calculating the amount of water contained in the sintered raw material after the water content based on the difference from the reflected light intensity of the raw material.

より具体的に説明すれば、本実施形態に係る水分計測方法は、造粒前の焼結原料(含水前の焼結原料)をサンプリングして所定の温度で乾燥させた後に、2.78μm近傍の波長についての反射光強度を測定し吸光度を算出する。次に、造粒後の焼結原料(含水後の焼結原料)について2.78μm近傍の波長についての反射光強度を測定し吸光度を算出する。次に、両者の吸光度の差(差分吸光度)を算出する。そして、絶乾式水分測定法等を用いて測定した焼結原料に含まれる水分量(原料粒子間水の水分量)と、前記算出した差分吸光度との関係に基づいて予め検量線を作成しておき、この検量線と前記算出した差分吸光度とに基づいて、造粒後の焼結原料に含まれる水分量を算出する方法である。   More specifically, in the moisture measuring method according to the present embodiment, the sintering raw material before granulation (sintering raw material before water content) is sampled and dried at a predetermined temperature, and then the vicinity of 2.78 μm. The absorbance is calculated by measuring the intensity of reflected light for each wavelength. Next, with respect to the sintered raw material after granulation (sintered raw material after hydration), the reflected light intensity at a wavelength near 2.78 μm is measured, and the absorbance is calculated. Next, the difference in absorbance between the two (difference absorbance) is calculated. Then, a calibration curve is prepared in advance based on the relationship between the moisture content (moisture content of raw material water) contained in the sintered raw material measured using an absolutely dry moisture measurement method and the calculated differential absorbance. In other words, the moisture content contained in the sintered raw material after granulation is calculated based on the calibration curve and the calculated differential absorbance.

本実施形態に係る方法は、含水前後の焼結原料の吸光度の差(差分吸光度)を用いて水分量を算出する構成であるため、第1実施形態と異なり、焼結原料に依存する検量線の定数分(Y切片)が吸光度の差を算出することによって略割愛されることになる。従って、最初に差分吸光度と水分量との検量線を絶乾式水分測定法等によって作成しておきさえすれば、第1実施形態のように、焼結原料の変更に応じて検量線の定数分を修正する必要がない或いは検量線の修正頻度を著しく低減できるという利点を有する。   Since the method according to the present embodiment is configured to calculate the amount of water using the difference in absorbance (difference absorbance) between the sintered raw materials before and after water inclusion, unlike the first embodiment, a calibration curve that depends on the sintered raw materials. The constant (Y intercept) is substantially omitted by calculating the difference in absorbance. Therefore, as long as a calibration curve between the differential absorbance and the moisture content is first prepared by an absolute dry moisture measurement method or the like, a constant component of the calibration curve can be obtained according to the change of the sintering raw material as in the first embodiment. There is an advantage that the correction frequency of the calibration curve can be significantly reduced.

なお、本実施形態に係る水分計測方法を実施するには、第1実施形態で説明したのと同様の構成を有する水分計測装置を造粒前後の工程にそれぞれ配置すればよく、水分計測装置の構成自体は第1実施形態と同様であるため、その詳細な説明は省略する。また、本実施形態において、2.78μm近傍の波長についての反射光強度を測定する含水前の焼結原料としては、造粒前の焼結原料をサンプリングして所定の温度で乾燥させたものに限るものではなく、造粒前のベルトコンベアで搬送される焼結原料を用いることができる他、造粒後に絶乾式水分計で水分量を測定した後のサンプルを用いることも可能である。   In addition, in order to implement the moisture measuring method according to the present embodiment, a moisture measuring device having the same configuration as that described in the first embodiment may be disposed in each of the steps before and after granulation. Since the configuration itself is the same as that of the first embodiment, a detailed description thereof is omitted. Moreover, in this embodiment, as a sintering raw material before water containing which measures the reflected light intensity about the wavelength of 2.78 μm, the sintered raw material before granulation is sampled and dried at a predetermined temperature. It is not limited, and a sintered raw material conveyed by a belt conveyor before granulation can be used, and a sample after measuring moisture content with an absolutely dry moisture meter after granulation can also be used.

図1は、所定の焼結原料についての含水前サンプルと、含水後サンプルとの赤外分光スペクトルの一例を示す。FIG. 1 shows an example of infrared spectroscopic spectra of a pre-hydrated sample and a post-hydrated sample for a predetermined sintering raw material. 図2(a)は、図1に示す含水後サンプル及び含水前サンプルの各波長毎の吸光度を、図2(b)は差分吸光度(含水後サンプルの吸光度−含水前サンプルの吸光度)を示す。FIG. 2A shows the absorbance for each wavelength of the water-containing sample and the water-containing sample shown in FIG. 1, and FIG. 2B shows the differential absorbance (absorbance of the sample after water-absorbance of the sample before water-containing). 図3(a)は水の吸収波長として2.78μmを用いた場合の粒子間水分の水分量と吸光度(差分吸光度)との相関を、図3(b)は水の吸収波長として1.94μmを用いた場合の粒子間水分の水分量と吸光度(差分吸光度)との相関を示す。FIG. 3 (a) shows the correlation between the amount of moisture between particles and the absorbance (difference absorbance) when 2.78 μm is used as the water absorption wavelength, and FIG. 3 (b) shows 1.94 μm as the water absorption wavelength. The correlation between the water content of the interparticle water | moisture content and the light absorbency (differential light absorbency) at the time of using is shown.

Claims (1)

照射した赤外線の水による吸収を利用して焼結原料に含まれる水分量を計測する方法であって、
含水前の焼結原料に対して照射した赤外線の2.78μm近傍の波長についての反射光強度を測定するステップと、
含水後の焼結原料に対して照射した赤外線の2.78μm近傍の波長についての反射光強度を測定するステップと、
前記測定した含水前の焼結原料の反射光強度と前記測定した含水後の焼結原料の反射光強度との差に基づいて、前記含水後の焼結原料に含まれる水分量を算出するステップとを含むことを特徴とする焼結原料の水分計測方法。
A method for measuring the amount of moisture contained in a sintering raw material by utilizing absorption of irradiated infrared water by water,
Measuring the reflected light intensity at a wavelength in the vicinity of 2.78 μm of infrared rays irradiated to the sintered raw material before water content;
Measuring the reflected light intensity at a wavelength near 2.78 μm of infrared rays irradiated to the sintered raw material after water inclusion;
A step of calculating the amount of water contained in the sintered raw material after moisture content based on the difference between the measured reflected light intensity of the sintered raw material before moisture content and the measured reflected light intensity of the sintered raw material after moisture content. The moisture measuring method of the sintering raw material characterized by including these.
JP2005308350A 2005-10-24 2005-10-24 Moisture measurement method for sintered raw materials Active JP4678593B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005308350A JP4678593B2 (en) 2005-10-24 2005-10-24 Moisture measurement method for sintered raw materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005308350A JP4678593B2 (en) 2005-10-24 2005-10-24 Moisture measurement method for sintered raw materials

Publications (2)

Publication Number Publication Date
JP2007114143A JP2007114143A (en) 2007-05-10
JP4678593B2 true JP4678593B2 (en) 2011-04-27

Family

ID=38096462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005308350A Active JP4678593B2 (en) 2005-10-24 2005-10-24 Moisture measurement method for sintered raw materials

Country Status (1)

Country Link
JP (1) JP4678593B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010004999A1 (en) * 2008-07-07 2010-01-14 新日本製鐵株式会社 Method for measuring water content in a compound and water content measuring device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6363948A (en) * 1986-09-04 1988-03-22 Kawasaki Steel Corp Moisture measurement of sintered mixed material with infrared moisture meter
JPS63103939A (en) * 1986-10-22 1988-05-09 Teijin Ltd Infrared moisture meter
JPH03199942A (en) * 1989-12-27 1991-08-30 Chino Corp Coating-amount measuring apparatus
JPH03231140A (en) * 1990-02-06 1991-10-15 Japan Tobacco Inc Infrared moisture measuring apparatus
JPH08110298A (en) * 1994-10-12 1996-04-30 Mitsubishi Chem Corp Method for measuring moisture content of coke
JP2000248321A (en) * 1999-02-26 2000-09-12 Nkk Corp Method for controlling moisture in sintering raw material
WO2005047872A1 (en) * 2003-10-16 2005-05-26 Spectrasensors, Inc. Method and device for detecting water vapor within natural gas

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6363948A (en) * 1986-09-04 1988-03-22 Kawasaki Steel Corp Moisture measurement of sintered mixed material with infrared moisture meter
JPS63103939A (en) * 1986-10-22 1988-05-09 Teijin Ltd Infrared moisture meter
JPH03199942A (en) * 1989-12-27 1991-08-30 Chino Corp Coating-amount measuring apparatus
JPH03231140A (en) * 1990-02-06 1991-10-15 Japan Tobacco Inc Infrared moisture measuring apparatus
JPH08110298A (en) * 1994-10-12 1996-04-30 Mitsubishi Chem Corp Method for measuring moisture content of coke
JP2000248321A (en) * 1999-02-26 2000-09-12 Nkk Corp Method for controlling moisture in sintering raw material
WO2005047872A1 (en) * 2003-10-16 2005-05-26 Spectrasensors, Inc. Method and device for detecting water vapor within natural gas
JP2007509318A (en) * 2003-10-16 2007-04-12 スペクトラセンサーズ, インコーポレイテッド Method and apparatus for detecting water vapor in natural gas

Also Published As

Publication number Publication date
JP2007114143A (en) 2007-05-10

Similar Documents

Publication Publication Date Title
EP2309252B1 (en) Method for measuring water content in a compound and water content measuring device
US9599557B2 (en) Dust line with optical sensor, and method for measuring the composition of dust
US8077309B2 (en) Chemical analyzer for industrial process control
JPH08304282A (en) Gas analyzer
JP5596995B2 (en) Mercury atomic absorption spectrometer and mercury analysis system
Norris et al. 4. Direct spectrophotometric determination of moisture content of grain and seeds
RU2395073C2 (en) Method and equipment for quantitative analysis of solutions and dispersions using near-infrared spectroscopy
CA2758757A1 (en) Saturation filtering ndir gas sensing methodology
JP4678593B2 (en) Moisture measurement method for sintered raw materials
EP2213999A1 (en) Calculation method for absorbance via spectroscopic analysis apparatus
JP2010107223A (en) Method and apparatus for measuring moisture content of sintering material
US6710347B1 (en) Device for measuring gas concentration
CN111829971A (en) Method for reducing measurement error of wide spectrum transmittance
JP2001516016A (en) NDIR photometer for measuring multiple components
KR101714651B1 (en) Plate type NDIR gas analyzer
JP2001194297A (en) Method and apparatus for measuring environment
JPH07301598A (en) Optical sensor probe
JPH0222687Y2 (en)
KR102085612B1 (en) Method of analyzing silicon reducer using fourier transform infrared spectroscopy
JP5481752B2 (en) X-ray fluorescence analyzer
JPS62278436A (en) Fluorescence light measuring method and apparatus
JP4176535B2 (en) Infrared analyzer
IE49064B1 (en) Graphite tube temperature measurement
JPS58103646A (en) Method and device for calibrating measurement of radiation
Arzamastsev et al. Current state of IR spectroscopy applied to pharmaceutical analysis

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100312

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100730

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101027

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20101104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110107

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110120

R150 Certificate of patent or registration of utility model

Ref document number: 4678593

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350