JPH0818374A - Surface wave device and its manufacture - Google Patents

Surface wave device and its manufacture

Info

Publication number
JPH0818374A
JPH0818374A JP14631994A JP14631994A JPH0818374A JP H0818374 A JPH0818374 A JP H0818374A JP 14631994 A JP14631994 A JP 14631994A JP 14631994 A JP14631994 A JP 14631994A JP H0818374 A JPH0818374 A JP H0818374A
Authority
JP
Japan
Prior art keywords
comb
frequency characteristic
shaped electrode
wave device
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14631994A
Other languages
Japanese (ja)
Inventor
Hideaki Yasui
秀明 安井
Akira Shiokawa
塩川  晃
Koichi Kodera
宏一 小寺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP14631994A priority Critical patent/JPH0818374A/en
Publication of JPH0818374A publication Critical patent/JPH0818374A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To form the surface wave device which has specific frequency characteristics by oxidizing or nitrifying the surfaces of comb-line electrodes on a piezoelectric substrate and adjusting the mass of the interdigital electrodes. CONSTITUTION:The interdigital electrodes 2 are formed of aluminum on the piezoelectric substrate 1 of crystal of the surface wave device. This substrate 1 is set on a substrate stage 6 and the frequency characteristics of the substrate 1 are detected in a vacuum state by using a probe 5 for frequency characteristic detection and a frequency characteristic detection device 7. When the frequency is high, it is decided that the thickness of the electrodes 2 is thin, the substrate 1 is mounted on a substrate stage 11, and while oxygen or nitrogen is fed through a gas intake 14, the laser light from a laser 12 sweeps the substrate 1 for a necessary time based upon the detected frequency. Then the surfaces of the electrodes 2 are oxidized or nitrified and the thickness of the electrodes 2 reaches necessary thickness because of the oxidized layers or nitrified layers, thereby obtaining the piezoelectric substrate of the surface wave device which has the specific frequency characteristics.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は移動体通信機器等に使用
される表面波デバイスの製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a surface wave device used in mobile communication equipment and the like.

【0002】[0002]

【従来の技術】近年、表面波デバイスは「ニュ−セラミ
ックス」(1993)No.4 35〜42ペ−ジに記
載のように移動体通信等に不可欠な電子部品として開発
されている。
2. Description of the Related Art In recent years, surface wave devices have been described in "New Ceramics" (1993) No. It has been developed as an indispensable electronic component for mobile communication and the like as described on pages 35-42.

【0003】その従来の例として表面波デバイスの概略
斜視図を図4に、製造工程のフロ−チャートを図5に示
す。
As a conventional example thereof, a schematic perspective view of a surface acoustic wave device is shown in FIG. 4 and a flow chart of a manufacturing process is shown in FIG.

【0004】図5で示した工程によって製造された表面
波デバイスは、中心周波数F0が、櫛形電極のピッチλ0
及び圧電体基板の弾性表面速度Vsとで(数1)によっ
て決定され、周波数フィルタとして機能する。
In the surface acoustic wave device manufactured by the process shown in FIG. 5, the center frequency F0 is the pitch λ0 of the comb electrodes.
And the elastic surface velocity Vs of the piezoelectric substrate are determined by (Equation 1) and function as a frequency filter.

【0005】[0005]

【数1】 [Equation 1]

【0006】[0006]

【発明が解決しようとする課題】しかし、櫛形電極は厚
さがますとその重量の効果により、周波数特性に影響を
およぼす。たとえば、図6に示した同一ロットの水晶の
圧電体基板に同一のパタ−ン形状でアルミの櫛形電極を
形成したときの、アルミの櫛形電極の膜厚と得られた中
心周波数の関係のような挙動を示す。
However, as the thickness of the comb-shaped electrode increases, the frequency characteristics are affected by the effect of its weight. For example, as shown in FIG. 6, the relationship between the film thickness of the aluminum comb-shaped electrode and the obtained center frequency when the aluminum comb-shaped electrodes are formed in the same pattern shape on the piezoelectric substrate of quartz of the same lot is shown. Behaves differently.

【0007】図6より、例えば、中心周波数15300
0kHz±50kHzの周波数特性を有する表面波デバ
イスを作成するためには、アルミの櫛形電極の膜厚を5
300±50オングストローム(絶対膜厚に対して±約
1%)に管理する必要があり、電極成膜時には高精度な
膜厚管理が必要である。
From FIG. 6, for example, a center frequency of 15300
In order to create a surface acoustic wave device having a frequency characteristic of 0 kHz ± 50 kHz, the thickness of the aluminum comb-shaped electrode should be 5
It is necessary to control the film thickness to 300 ± 50 Å (± about 1% with respect to the absolute film thickness), and it is necessary to control the film thickness with high accuracy when forming the electrode.

【0008】しかし、現在、成膜時の膜厚制御方法には
様々なものがあるがロットごとの膜厚再現性±5%が生
産において安定にできる限度で、また得られる絶対膜厚
の精度も±5%程度で、必要とされる高精度(±1%)
な膜厚制御は不可能である。
However, at present, there are various film thickness control methods at the time of film formation, but the film thickness reproducibility of each lot is ± 5% within the limit that can be stabilized in production, and the accuracy of the obtained absolute film thickness. Is about ± 5%, the required high accuracy (± 1%)
Film thickness control is impossible.

【0009】例えば膜厚制御方法の一例として水晶振動
子を用いた場合の膜厚制御方法を以下に説明する。
As an example of the film thickness control method, a film thickness control method using a crystal oscillator will be described below.

【0010】水晶振動子方式は基板近傍に設置した水晶
振動子表面にタ−ゲットからスパッタされた粒子が付着
すると、水晶振動子の共振周波数が変化するので、この
変化をモニタ−し、付着した膜の膜厚を求めて、この共
振周波数より求めた膜厚と基板上での膜厚との相関関係
をとり、膜厚を制御する方式である。しかし、この制御
方式は以下の問題を有する。
In the crystal oscillator system, when the particles sputtered from the target adhere to the surface of the crystal oscillator installed near the substrate, the resonance frequency of the crystal oscillator changes, so this change is monitored and adhered. This is a method of controlling the film thickness by calculating the film thickness of the film and obtaining the correlation between the film thickness obtained from the resonance frequency and the film thickness on the substrate. However, this control method has the following problems.

【0011】1.タ−ゲットからのスパッタ粒子の飛散
分布が経時変化するため、水晶振動子の設置場所での膜
厚と基板での膜厚との相関が一致しない。
1. Since the scattering distribution of sputtered particles from the target changes with time, the correlation between the film thickness at the installation location of the crystal oscillator and the film thickness at the substrate does not match.

【0012】2.水晶振動子がプラズマにさらされ、電
子衝撃を受け、温度が上昇するため周波数特性にずれが
生じる。
2. The crystal oscillator is exposed to plasma, receives an electron impact, and its temperature rises, causing a shift in frequency characteristics.

【0013】3.膜が厚く積層していくと剥離を生じて
しまうため、共振周波数の変化が乱れる。 以上の課題により水晶振動子方式では高精度な膜厚制御
を実現するのは難しく、また他の膜厚制御方式でも同様
な課題が存在する。
3. When the films are stacked thickly, peeling occurs, so that the change in the resonance frequency is disturbed. Due to the above problems, it is difficult to realize highly accurate film thickness control in the crystal oscillator method, and there are similar problems in other film thickness control methods.

【0014】以上の課題より所定の周波数特性を有する
表面波デバイスの製造は非常に難しく、生産現場におい
ては 1.図5の工程(9)周波数特性評価において、櫛形電
極に探針を接触させて表面波デバイスの周波数特性を検
知し、所定の周波数特性を有するならば良品として後工
程へ、それ以外は不良としていた。 2.または図5の工程(7)吸音剤印刷の終了後、圧電
体基板上に多数の表面波デバイスが形成された状態で探
針により多数の表面波デバイスの周波数特性を検知し、
所定の周波数特性を有するものの割合が高ければ後工程
へ、低ければ不良としていた。このため良品率が低いと
いう問題点を有していた。
Due to the above problems, it is very difficult to manufacture a surface acoustic wave device having a predetermined frequency characteristic. In the step (9) frequency characteristic evaluation of FIG. 5, the probe is brought into contact with the comb-shaped electrode to detect the frequency characteristic of the surface acoustic wave device. I was there. 2. Alternatively, after the step (7) of printing the sound absorbing agent in FIG. 5, the frequency characteristics of the large number of surface acoustic wave devices are detected by the probe with the large number of surface acoustic wave devices formed on the piezoelectric substrate.
If the ratio of those having a predetermined frequency characteristic is high, the process is post-processed, and if the ratio is low, the device is defective. Therefore, there is a problem that the non-defective rate is low.

【0015】本発明は上記課題に鑑み、所定の周波数特
性を有する高性能な表面波デバイスを高い良品率で得る
ことができる表面波デバイスの製造方法を提供すること
を目的とする。
In view of the above problems, it is an object of the present invention to provide a method of manufacturing a surface acoustic wave device capable of obtaining a high performance surface acoustic wave device having a predetermined frequency characteristic with a high yield rate.

【0016】[0016]

【課題を解決するための手段】上記問題点を解決するた
めに本発明は、圧電体基板上に設けた櫛形電極表面を酸
化もしくは窒化し、酸化層もしくは窒化層を設け表面波
デバイスを構成する。
In order to solve the above problems, the present invention constitutes a surface wave device by oxidizing or nitriding the surface of a comb-shaped electrode provided on a piezoelectric substrate and providing an oxide layer or a nitride layer. .

【0017】また、以下の工程を有する製造方法をと
る。 (1)圧電体基板上に櫛形電極を形成する工程 (2)櫛形電極形成後、表面波デバイスの周波数特性を
検知する工程 (3)前記(2)の工程の検知結果に従って、酸素ある
いは窒素の雰囲気中で櫛形電極上をレーザ掃引する、ま
たは酸素あるいは窒素を成分とするプラズマにより櫛形
電極を酸化あるいは窒化する、または櫛形電極を湿式法
により陽極酸化し、櫛形電極表面を酸化あるいは窒化す
る工程 さらに、工程(2)において、表面波デバイスの周波数
特性が所定の特性となったときに、工程(3)の酸化ま
たは窒化の工程を終了することを特徴とするものであ
る。
Further, a manufacturing method having the following steps is adopted. (1) Step of forming a comb-shaped electrode on the piezoelectric substrate (2) Step of detecting the frequency characteristic of the surface acoustic wave device after the formation of the comb-shaped electrode (3) According to the detection result of the step (2), oxygen or nitrogen Laser sweeping on the comb-shaped electrode in an atmosphere, or oxidizing or nitriding the comb-shaped electrode with plasma containing oxygen or nitrogen, or anodizing the comb-shaped electrode by a wet method to oxidize or nitride the surface of the comb-shaped electrode. In the step (2), when the frequency characteristic of the surface acoustic wave device reaches a predetermined characteristic, the step of oxidizing or nitriding the step (3) is finished.

【0018】[0018]

【作用】本発明は上記した手段により、例えば表面波デ
バイスが所定の中心周波数より高い特性が得られている
ならば、櫛形電極の膜厚が所定の膜厚より薄いため、つ
まり櫛形電極の質量が軽いためである。
According to the present invention, if the surface wave device has a characteristic higher than a predetermined center frequency by the above means, the film thickness of the comb electrode is smaller than the predetermined film thickness. Because it is light.

【0019】そこで、酸素もしくは窒素を成分とする雰
囲気中でレ−ザ−により櫛形電極上を掃引することによ
り、櫛形電極表面の酸化もしくは窒化を行う。これによ
り例えば櫛形電極の材質がアルミならば表面層は酸化ア
ルミもしくは窒化アルミとなり、櫛形電極の質量を増加
できる。質量を増加することにより、中心周波数が低く
なり、所定の周波数特性を得られる。
Therefore, the surface of the comb-shaped electrode is oxidized or nitrided by sweeping on the comb-shaped electrode with a laser in an atmosphere containing oxygen or nitrogen. Thus, for example, if the material of the comb-shaped electrode is aluminum, the surface layer becomes aluminum oxide or aluminum nitride, and the mass of the comb-shaped electrode can be increased. By increasing the mass, the center frequency becomes lower and a predetermined frequency characteristic can be obtained.

【0020】また、酸素もしくは窒素を成分とするプラ
ズマにより、櫛形電極表面の酸化もしくは窒化を行う。
または、湿式法による陽極酸化により、櫛形電極の酸化
を行う。これにより例えば櫛形電極の材質がアルミなら
ば表面層は酸化アルミもしくは窒化アルミとなるため櫛
形電極の質量を増加できる。よって中心周波数が低くで
き、所定の周波数特性を得ることができる。
Further, the surface of the comb-shaped electrodes is oxidized or nitrided by plasma containing oxygen or nitrogen as a component.
Alternatively, the comb-shaped electrodes are oxidized by anodic oxidation by a wet method. Thus, for example, if the material of the comb-shaped electrode is aluminum, the surface layer will be aluminum oxide or aluminum nitride, so that the mass of the comb-shaped electrode can be increased. Therefore, the center frequency can be lowered and a predetermined frequency characteristic can be obtained.

【0021】[0021]

【実施例】以下本発明の一実施例の表面波デバイスの製
造方法について、図面に基づき説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A method of manufacturing a surface acoustic wave device according to an embodiment of the present invention will be described below with reference to the drawings.

【0022】(実施例1)以下本発明の実施例について
図面に基づき説明する。
(Embodiment 1) An embodiment of the present invention will be described below with reference to the drawings.

【0023】図1に本発明の実施例における表面波デバ
イスの製造方法の周波数特性を検知する工程と酸素もし
くは窒素を成分とする雰囲気中でレ−ザ−により櫛形電
極上を掃引する工程を備えた装置を示す。
FIG. 1 is provided with a step of detecting frequency characteristics of a method of manufacturing a surface acoustic wave device according to an embodiment of the present invention and a step of sweeping on a comb-shaped electrode by a laser in an atmosphere containing oxygen or nitrogen as a component. Shown device.

【0024】水晶の圧電体基板1は、アルミの櫛形電極
2が形成され、図5に示した表面波デバイスの製造工程
のフロ−図の工程(9)周波数特性評価を行ったもので
ある。予備排気室3は真空排気装置4、周波数特性検知
用の探針5、基板ステ−ジ6を装備している。探針5よ
りの信号線は予備排気室3の気密性を壊さずに予備排気
室3外に引き出され周波数特性検知装置7に接続され
る。予備排気室3は外部との間でアルミの櫛形電極2が
形成された水晶の圧電体基板1を出し入れするためのゲ
−ト8を具備し、レ−ザ−照射室9は予備排気室3との
間でアルミの櫛形電極2が形成された水晶の圧電体基板
1を出し入れするためのゲ−ト10を具備している。
The piezoelectric substrate 1 made of quartz has the aluminum comb-shaped electrode 2 formed thereon, and the frequency characteristic is evaluated in step (9) of the flowchart of the manufacturing process of the surface acoustic wave device shown in FIG. The preliminary exhaust chamber 3 is equipped with a vacuum exhaust device 4, a probe 5 for detecting frequency characteristics, and a substrate stage 6. The signal line from the probe 5 is drawn out of the preliminary exhaust chamber 3 without breaking the airtightness of the preliminary exhaust chamber 3 and connected to the frequency characteristic detection device 7. The preliminary evacuation chamber 3 is provided with a gate 8 for taking in and out the quartz piezoelectric substrate 1 on which the aluminum comb-shaped electrode 2 is formed with the outside, and the laser irradiation chamber 9 is the preliminary evacuation chamber 3 A gate 10 is provided for inserting and removing the piezoelectric substrate 1 made of quartz crystal on which the aluminum comb-shaped electrode 2 is formed.

【0025】レ−ザ−照射室9には基板ステ−ジ11、
レ−ザ−12、レ−ザ−光を集光、また櫛形電極上を掃
引するための光学系13、雰囲気ガスの不活性ガスのア
ルゴン、また酸素、窒素を導入するためのガス導入口1
4、真空排気装置15を具備している。
In the laser irradiation chamber 9, a substrate stage 11,
Laser 12, optical system 13 for collecting laser light and sweeping on comb-shaped electrode, gas inlet 1 for introducing argon, which is an inert gas of atmospheric gas, and oxygen and nitrogen
4. Evacuation device 15 is provided.

【0026】以下図1、図5、図6に基づきその工程を
説明する。まず図5に示す工程(9)周波数特性評価ま
で終了した表面波デバイスの周波数特性を検知する。所
定の周波数特性のものであれば、良品として次の工程へ
すすむ。
The process will be described below with reference to FIGS. 1, 5, and 6. First, the frequency characteristic of the surface wave device which has been subjected to the step (9) frequency characteristic evaluation shown in FIG. 5 is detected. If it has a predetermined frequency characteristic, it is determined as a non-defective product and the process proceeds to the next step.

【0027】ここで、特性の評価の結果所定の周波数特
性より中心周波数が高ければ、図6より読みとられるよ
うアルミの櫛形電極の膜厚が所定の膜厚より薄い、つま
り櫛形電極の質量が小さいことになるので図1(a)に
示す以下の工程を行う。
Here, if the center frequency is higher than the predetermined frequency characteristic as a result of the characteristic evaluation, the film thickness of the aluminum comb-shaped electrode is smaller than the predetermined film thickness, that is, the mass of the comb-shaped electrode is large, as can be seen from FIG. Since it is small, the following steps shown in FIG.

【0028】ゲ−ト8よりアルミの櫛形電極2が形成さ
れた水晶の圧電体基板1を予備排気室3に投入し、基板
ステ−ジ6に搭載する。周波数特性検知用の探針5をア
ルミの櫛形電極2の端部に接触し、周波数特性検知装置
7で周波数特性の検知を行い、中心周波数が高いことを
確認する。
The quartz piezoelectric substrate 1 on which the aluminum comb-shaped electrode 2 is formed is put into the preliminary exhaust chamber 3 from the gate 8 and mounted on the substrate stage 6. The probe 5 for frequency characteristic detection is brought into contact with the end of the aluminum comb-shaped electrode 2, and the frequency characteristic detection device 7 detects the frequency characteristic, and confirms that the center frequency is high.

【0029】周波数特性の検知終了後、周波数特性検知
用の探針5をアルミの櫛形電極2の端部から離し、ゲ−
ト8を閉め、真空排気装置4により予備排気室3を真空
排気する。所定の真空度に到達した後、ゲ−ト10を開
けて、アルミの櫛形電極2が形成された水晶の圧電体基
板1を基板ステ−ジ11に搭載し、搭載後ゲ−ト10を
閉める。なお、レ−ザ−照射室9は、真空排気装置15
によりレ−ザ−掃引時以外は所定の真空度に保たれてい
る。
After the detection of the frequency characteristic, the probe 5 for detecting the frequency characteristic is separated from the end of the aluminum comb-shaped electrode 2 and the
The chamber 8 is closed, and the preliminary exhaust chamber 3 is vacuum-exhausted by the vacuum exhaust device 4. After reaching a predetermined degree of vacuum, the gate 10 is opened, the quartz piezoelectric substrate 1 having the aluminum comb-shaped electrode 2 formed thereon is mounted on the substrate stage 11, and after mounting, the gate 10 is closed. . The laser irradiation chamber 9 has a vacuum exhaust device 15
Therefore, the vacuum degree is kept at a predetermined level except when the laser is swept.

【0030】ガス導入口14よりアルゴンと酸素の混合
ガスを導入し、所定の真空度に設定した後、レ−ザ−1
2、および光学系13を作動させ、アルミの櫛形電極上
へのレ−ザ−掃引を開始する(図1(b))。なお、周
波数特性検知のため探針5が接触する部分はレ−ザ−掃
引しない。また、レ−ザ−掃引の処理時間は、あらかじ
めアルミの中心周波数変化の測定を行っておくことによ
り、現在の中心周波数の特性から掃引すべき時間を決定
する。
After introducing a mixed gas of argon and oxygen from the gas inlet 14 and setting a predetermined vacuum degree, laser-1
2 and the optical system 13 are activated to start laser sweeping on the aluminum comb-shaped electrodes (FIG. 1 (b)). Incidentally, the portion where the probe 5 comes into contact is not swept by the laser in order to detect the frequency characteristic. The processing time of the laser sweep is determined by measuring the change in the center frequency of aluminum in advance, and the time for sweeping is determined from the characteristics of the current center frequency.

【0031】所定の処理時間の経過後、レ−ザ−12、
光学系13、ガス導入を停止し、真空排気を行う。
After the lapse of a predetermined processing time, the laser 12,
The optical system 13 and the gas introduction are stopped, and vacuum exhaust is performed.

【0032】その後、ゲ−ト10を開けて、アルミの櫛
形電極2が形成された水晶の圧電体基板1を予備排気室
3の基板ステ−ジ6に搭載し、搭載後ゲ−ト10を閉め
る。周波数特性検知用の探針5をアルミの櫛形電極2の
端部に接触し、周波数特性検知装置7で周波数特性の検
知を行う(図1(a))。
After that, the gate 10 is opened, and the quartz piezoelectric substrate 1 on which the aluminum comb-shaped electrode 2 is formed is mounted on the substrate stage 6 of the preliminary exhaust chamber 3, and the mounted gate 10 is mounted. Close. The probe 5 for frequency characteristic detection is brought into contact with the end of the aluminum comb-shaped electrode 2, and the frequency characteristic detection device 7 detects the frequency characteristic (FIG. 1A).

【0033】レ−ザ−掃引によりアルミの櫛形電極表面
は酸化され酸化アルミとなり、櫛形電極の重さが増加し
中心周波数は低くなる。所定の周波数特性が得られてな
いならば、再度、上記工程を交互に実施し、所定の周波
数特性に到達した時点でレ−ザ−掃引を終了すれば所定
の特性のものがえられる。
The laser sweep oxidizes the aluminum comb-shaped electrode surface to aluminum oxide, which increases the weight of the comb-shaped electrode and lowers the center frequency. If the predetermined frequency characteristic is not obtained, the above steps are alternately performed again, and when the laser sweep is completed when the predetermined frequency characteristic is reached, the predetermined characteristic can be obtained.

【0034】以上の工程により不良品を削減でき、所定
の周波数特性を有する表面波デバイスが得られるため良
品率を大幅に向上することができる。
Through the above steps, defective products can be reduced, and a surface wave device having a predetermined frequency characteristic can be obtained, so that the yield rate can be greatly improved.

【0035】さらに、本実施例の表面波デバイスおよぼ
その製造方法ではアルミの櫛形電極表面は酸化してアル
ミの酸化物が形成されているため、アルミそのものの表
面に比べ、表面が硬質化するためデバイスとしてエレク
トロマイグレ−ション、ストレスマイグレ−ションに対
する信頼性が大幅に向上する。
Furthermore, in the surface acoustic wave device and the method for manufacturing the same of the present embodiment, the surface of the aluminum comb-shaped electrode is oxidized to form an aluminum oxide, so that the surface becomes harder than the surface of aluminum itself. As a result, the reliability of the device against electromigration and stress migration is greatly improved.

【0036】さらに、表面がアルミの酸化物が形成され
ており、櫛形電極が形成された基板をパッケ−ジングす
る際、金属異物の混入が生じても櫛形電極が電気的短絡
を生ぜず信頼性が大幅に向上できる。
Further, when a substrate having an aluminum oxide surface formed thereon and having a comb-shaped electrode formed thereon is packaged, the comb-shaped electrode does not cause an electrical short circuit even if a foreign metal is mixed in, and the reliability is improved. Can be greatly improved.

【0037】また、本実施例においては周波数特性の検
知を予備排気室3で、かつレ−ザ−掃引をレ−ザ−照射
室9で別々に行ったが、各工程を同一の処理室において
時間差を有して行ってもよい。
Further, in the present embodiment, the detection of the frequency characteristic is carried out separately in the pre-evacuation chamber 3 and the laser sweep is carried out in the laser irradiation chamber 9, but each step is carried out in the same processing chamber. You may go with a time lag.

【0038】また、本実施例においては予備排気室3で
周波数特性の検知工程を、レ−ザ−照射室9においてレ
−ザ−掃引を別々に時間差を有して行ったが、各工程を
同一の処理室において、同時に行ってもよい。
Further, in this embodiment, the step of detecting the frequency characteristic is performed in the preliminary exhaust chamber 3 and the laser sweep is performed in the laser irradiation chamber 9 separately with a time difference. You may perform simultaneously in the same process chamber.

【0039】また、本実施例において、図5の工程
(9)周波数特性評価を終了した状態のものを用いた
が、工程(10)ワイヤーボンド以降を終了した状態の
ものを用いてもよく、また圧電体基板上に櫛形電極が形
成され多数の表面波デバイスが存在する状態の工程
(7)以降の状態でもよい。
Further, in the present embodiment, the one after the step (9) frequency characteristic evaluation in FIG. 5 is used, but the one after the step (10) wire bonding may be used. Further, the state after the step (7) in which a comb-shaped electrode is formed on the piezoelectric substrate and many surface wave devices are present may be used.

【0040】また、本実施例においてアルゴンと酸素の
雰囲気中で実施したが、酸素もしくは窒素を成分とする
雰囲気中で実施してもよい。
Further, although the present embodiment was carried out in an atmosphere of argon and oxygen, it may be carried out in an atmosphere containing oxygen or nitrogen as a component.

【0041】また、本実施例においては周波数特性の高
いもののみ選択して処理を行ったが、櫛形電極用のアル
ミを成膜する際、所定の膜厚以下の膜厚を成膜し、全て
のデバイスに対して第1の実施例の処理を行い周波数特
性を調整してもよい。
Further, in the present embodiment, only those having high frequency characteristics were selected and processed. However, when forming aluminum for comb-shaped electrodes, a film having a film thickness equal to or less than a predetermined film thickness was formed, and The frequency characteristics may be adjusted by performing the processing of the first embodiment on the device.

【0042】また、本実施例においては櫛形電極の材料
としてアルミを使用したがシリコン、銅を含んだ合金の
アルミ、またタンタル、クロム等の他の材料でもよい。
Although aluminum is used as the material of the comb-shaped electrodes in this embodiment, other materials such as aluminum, an alloy of aluminum containing copper, tantalum and chromium may be used.

【0043】(実施例2)以下本発明の第2の実施例に
ついて図面に基づき説明する。
(Embodiment 2) A second embodiment of the present invention will be described below with reference to the drawings.

【0044】図2は本発明の実施例における表面波デバ
イスの製造方法の一工程を示すものである。図2は周波
数特性を検知する工程と酸素もしくは窒素を成分とする
プラズマにより櫛形電極を酸化もしくは窒化する工程を
備えた装置を示す。
FIG. 2 shows one step of a method of manufacturing a surface acoustic wave device according to an embodiment of the present invention. FIG. 2 shows an apparatus including a step of detecting a frequency characteristic and a step of oxidizing or nitriding a comb-shaped electrode by plasma containing oxygen or nitrogen as a component.

【0045】水晶の圧電体基板1は、アルミの櫛形電極
2が形成され、図5に示した表面波デバイスの製造工程
のフロ−図の工程(9)周波数特性評価を行ったもので
ある。予備排気室16には真空排気装置17、周波数特
性検知用の探針18、基板ステ−ジ19を装備する。探
針18よりの信号線は予備排気室16の気密性を壊さず
に予備排気室16外に引き出され周波数特性検知装置2
0に接続している。
The piezoelectric substrate 1 made of quartz has the aluminum comb-shaped electrode 2 formed thereon, and the frequency characteristic is evaluated in step (9) in the flowchart of the manufacturing process of the surface acoustic wave device shown in FIG. The preliminary evacuation chamber 16 is equipped with a vacuum evacuation device 17, a probe 18 for detecting frequency characteristics, and a substrate stage 19. The signal line from the probe 18 is drawn out of the preliminary exhaust chamber 16 without destroying the airtightness of the preliminary exhaust chamber 16, and the frequency characteristic detection device 2
Connected to 0.

【0046】予備排気室16は外部との間でアルミの櫛
形電極2が形成された水晶の圧電体基板1を出し入れす
るためのゲ−ト21を具備し、プラズマ処理室22は予
備排気室16との間でアルミの櫛形電極2が形成された
水晶の圧電体基板1を出し入れするためのゲ−ト23を
具備している。
The pre-evacuation chamber 16 is provided with a gate 21 for loading and unloading the piezoelectric substrate 1 of quartz having the aluminum comb-shaped electrode 2 formed between the pre-evacuation chamber 16 and the outside. And a gate 23 for inserting and removing the quartz crystal piezoelectric substrate 1 on which the aluminum comb-shaped electrode 2 is formed.

【0047】プラズマ処理室22には電極になる基板ス
テ−ジ24、RF電源25、不活性ガスのアルゴン、ま
た酸素、窒素を導入するためのガス導入口26、真空排
気装置27、絶縁物28を具備している。以下図2、図
5、図6に基づきその工程を説明する。
In the plasma processing chamber 22, a substrate stage 24 serving as an electrode, an RF power supply 25, a gas inlet 26 for introducing an inert gas of argon, oxygen and nitrogen, a vacuum exhaust device 27, and an insulator 28. It is equipped with. The process will be described below with reference to FIGS. 2, 5, and 6.

【0048】まず図5において工程(9)周波数特性評
価まで終了した表面波デバイスの周波数特性を検知す
る。所定の周波数特性のものであれば、良品として次の
工程へまわす。
First, in FIG. 5, the frequency characteristic of the surface wave device which has been subjected to the step (9) frequency characteristic evaluation is detected. If it has a predetermined frequency characteristic, it is passed to the next step as a non-defective product.

【0049】評価の結果、所定の周波数特性より中心周
波数が高ければ、図6より読みとられるようにアルミの
櫛形電極の膜厚が所定の膜厚より薄い、つまり櫛形電極
の質量が小さいためであり(図2(a))の工程を行
う。
As a result of the evaluation, if the center frequency is higher than the predetermined frequency characteristic, the thickness of the aluminum comb-shaped electrode is smaller than the predetermined film thickness, that is, the mass of the comb-shaped electrode is smaller, as can be seen from FIG. Yes (FIG. 2A) is performed.

【0050】ゲ−ト21よりアルミの櫛形電極2が形成
された水晶の圧電体基板1を予備排気室16に投入し、
基板ステ−ジ19に搭載する。周波数特性検知用の探針
18をアルミの櫛形電極2の端部に接触し、周波数特性
検知装置20で周波数特性の検知を行い、中心周波数が
高いことを確認する。周波数特性の検知終了後、周波数
特性検知用の探針18をアルミの櫛形電極2の端部から
離し、ゲ−ト21を閉め、真空排気装置17により予備
排気室16を真空排気する。所定の真空度に到達した
後、ゲ−ト23を開けて、アルミの櫛形電極2が形成さ
れた水晶の圧電体基板1を電極になる基板ステ−ジ24
に搭載し、搭載後ゲ−ト23を閉める。
The quartz piezoelectric substrate 1 on which the aluminum comb-shaped electrode 2 is formed is put into the preliminary exhaust chamber 16 from the gate 21.
It is mounted on the board stage 19. The probe 18 for detecting the frequency characteristic is brought into contact with the end of the aluminum comb-shaped electrode 2, and the frequency characteristic is detected by the frequency characteristic detecting device 20 to confirm that the center frequency is high. After the frequency characteristic detection is completed, the probe 18 for detecting the frequency characteristic is separated from the end of the aluminum comb-shaped electrode 2, the gate 21 is closed, and the preliminary exhaust chamber 16 is evacuated by the vacuum evacuation device 17. After reaching a predetermined degree of vacuum, the gate 23 is opened, and the quartz piezoelectric substrate 1 on which the aluminum comb-shaped electrode 2 is formed serves as an electrode.
After mounting, the gate 23 is closed.

【0051】なお、周波数特性検知のため探針18が接
触する部分は電極になる基板ステ−ジ24により覆わ
れ、プラズマ処理しても酸化もしくは窒化されない。ま
た、プラズマ処理室22は、真空排気装置27によりプ
ラズマ処理時以外は所定の真空度に保たれている。ガス
導入口26よりアルゴンと酸素の混合ガスを導入し、所
定の真空度に設定した後、RF電源25を作動させプラ
ズマを発生させる。(図2(b))。プラズマによる処
理時間は、あらかじめアルミの中心周波数変化の測定を
行っておくことにより、現在の中心周波数の特性から処
理すべき時間を決定する。
Incidentally, the portion in contact with the probe 18 for detecting the frequency characteristic is covered with the substrate stage 24 which becomes an electrode, and is not oxidized or nitrided even by the plasma treatment. Further, the plasma processing chamber 22 is maintained at a predetermined vacuum degree by a vacuum exhaust device 27 except during plasma processing. A mixed gas of argon and oxygen is introduced from the gas introduction port 26, and after setting a predetermined vacuum degree, the RF power source 25 is operated to generate plasma. (FIG.2 (b)). The plasma processing time is determined by measuring the change in the center frequency of aluminum in advance and determining the time to be processed from the characteristics of the current center frequency.

【0052】所定の処理時間の経過後、RF電源25、
ガス導入を停止し、真空排気を行う。その後、ゲ−ト2
3を開けて、アルミの櫛形電極2が形成された水晶の圧
電体基板1を予備排気室16の基板ステ−ジ19に搭載
し、搭載後ゲ−ト23を閉める。周波数特性検知用の探
針18をアルミの櫛形電極2の端部に接触し、周波数特
性検知装置20で周波数特性の検知を行う(図2
(a))。
After the lapse of a predetermined processing time, the RF power source 25,
Stop gas introduction and evacuate. Then gate 2
3 is opened, the piezoelectric substrate 1 made of quartz on which the aluminum comb-shaped electrode 2 is formed is mounted on the substrate stage 19 of the preliminary exhaust chamber 16, and the gate 23 is closed after mounting. The frequency characteristic detecting probe 18 is brought into contact with the end of the aluminum comb-shaped electrode 2, and the frequency characteristic detecting device 20 detects the frequency characteristic (FIG. 2).
(A)).

【0053】プラズマ処理によりアルミの櫛形電極表面
は酸化され酸化アルミとなり、櫛形電極の重さが増加し
中心周波数は低くなる。ここで所定の周波数特性が得ら
れてないならば、再度、上記工程を交互に実施し、所定
の周波数特性に到達した時点でプラズマ処理を終了す
る。
The plasma treatment oxidizes the surface of the aluminum comb-shaped electrode to form aluminum oxide, which increases the weight of the comb-shaped electrode and lowers the center frequency. If the predetermined frequency characteristic is not obtained here, the above steps are performed again alternately, and the plasma treatment is terminated when the predetermined frequency characteristic is reached.

【0054】以上の工程により、不良品を削減でき、所
定の周波数特性を有する表面波デバイスが得られるため
良品率を大幅に向上することができる。
Through the above steps, defective products can be reduced and a surface wave device having a predetermined frequency characteristic can be obtained, so that the yield rate can be greatly improved.

【0055】また、本実施例においては予備排気室16
で周波数特性の検知を、プラズマ処理室22においてプ
ラズマによる処理を別々に行ったが、各々の工程を同一
の処理室において時間差を有して行ってもよい。
Further, in this embodiment, the preliminary exhaust chamber 16
Although the frequency characteristics are detected in the plasma processing chamber 22 by the plasma processing separately, each process may be performed in the same processing chamber with a time difference.

【0056】また、本実施例においては予備排気室16
で周波数特性の検知を、プラズマ処理室22においてプ
ラズマによる処理を別々に時間差を有して行ったが、各
々の工程を同一の処理室において、同時に行ってもよ
い。
Further, in this embodiment, the preliminary exhaust chamber 16
Although the frequency characteristics are detected in the plasma processing chamber 22 separately with the time difference, the processes may be simultaneously performed in the same processing chamber.

【0057】また、本実施例において、図5の工程
(9)周波数特性評価を終了した状態のものを用いた
が、工程(10)以降を終了した状態のものを用いても
よく、また圧電体基板上に櫛形電極が形成され多数の表
面波デバイスが存在する状態の工程(7)以降の状態で
もよい。
Further, in the present embodiment, the one after the frequency characteristic evaluation of the step (9) of FIG. 5 is used, but the one after the steps (10) and after may be used, and the piezoelectric element may be used. The state after the step (7) in which the comb-shaped electrodes are formed on the body substrate and a large number of surface wave devices are present may be used.

【0058】また、本実施例においてアルゴンと酸素の
ガスで処理したが、酸素もしくは窒素を成分とするガス
で処理してもよい。
Further, although the treatment with argon and oxygen gas is carried out in the present embodiment, the treatment with a gas containing oxygen or nitrogen as a component is also possible.

【0059】また、本実施例においては周波数特性の高
いもののみ選択して処理を行ったが、櫛形電極用のアル
ミを成膜する際、所定の膜厚以下の膜厚を成膜し、全て
のデバイスに対して第2の実施例の処理を行い周波数特
性を調整してもよい。
Further, in the present embodiment, only those having high frequency characteristics were selected and processed. However, when forming aluminum for comb-shaped electrodes, a film having a film thickness equal to or smaller than a predetermined film thickness was formed, and The frequency characteristic may be adjusted by performing the process of the second embodiment on the device.

【0060】(実施例3)以下本発明の第3の実施例に
ついて図面に基づき説明する。
(Third Embodiment) A third embodiment of the present invention will be described below with reference to the drawings.

【0061】図3は本発明の実施例における表面波デバ
イスの製造方法の一工程を示すものである。図3は周波
数特性を検知する工程と湿式法による陽極酸化を行う工
程である。
FIG. 3 shows one step of a method of manufacturing a surface acoustic wave device according to an embodiment of the present invention. FIG. 3 shows a step of detecting frequency characteristics and a step of performing anodic oxidation by a wet method.

【0062】水晶の圧電体基板1は、アルミの櫛形電極
2が形成され、図5に示した表面波デバイスの製造工程
のフロ−図の工程(9)周波数特性評価を行ったもので
ある。周波数特性検知と陽極酸化のため櫛形電極に電圧
を印加するための探針29、30は櫛形電極が形成され
た基板1と探針29を固定する支持治具、31は陽極酸
化のためのクエン酸の水溶液の漕、32は陽極酸化処理
用の対向電極、33は陽極酸化用の電源、34はクエン
酸を洗い流すための洗浄漕、35は周波数特性検知装置
である。
The piezoelectric substrate 1 made of quartz has the aluminum comb-shaped electrode 2 formed thereon, and the frequency characteristic is evaluated in step (9) of the flowchart of the manufacturing process of the surface acoustic wave device shown in FIG. Probes 29 and 30 for applying a voltage to the comb-shaped electrodes for frequency characteristic detection and anodic oxidation are supporting jigs for fixing the probe 1 to the substrate 1 on which the comb-shaped electrodes are formed, and 31 is a quench for anodic oxidation. An acid aqueous solution tank, 32 is a counter electrode for anodizing treatment, 33 is a power source for anodizing, 34 is a washing tank for washing away citric acid, and 35 is a frequency characteristic detecting device.

【0063】以下、図3、図5、図6に基づきその工程
を説明する。まず図5において工程(9)周波数特性評
価まで終了した表面波デバイスの周波数特性を検知す
る。所定の周波数特性のものであれば、良品として後工
程へまわす。
The process will be described below with reference to FIGS. 3, 5 and 6. First, in FIG. 5, the frequency characteristic of the surface wave device that has been subjected to the step (9) frequency characteristic evaluation is detected. If it has a predetermined frequency characteristic, it is passed to the subsequent process as a non-defective product.

【0064】評価の結果、所定の周波数特性より中心周
波数が高ければ、図6より読みとられるようアルミの櫛
形電極の膜厚が所定の膜厚より薄い、つまり櫛形電極の
質量が小さいことになるので(図3(a))の工程を行
う。
As a result of the evaluation, if the center frequency is higher than the predetermined frequency characteristic, the film thickness of the aluminum comb-shaped electrode is smaller than the predetermined film thickness, that is, the mass of the comb-shaped electrode is small, as can be seen from FIG. Therefore, the step of FIG. 3A is performed.

【0065】支持治具30により電気的接触をしている
基板1と探針29をクエン酸の水溶液の漕31に浸漬
し、同様に浸漬させた対向電極32との間に電源33に
より電圧を印加し陽極酸化を行う(図3(a))。陽極
酸化の処理時間は、あらかじめアルミの中心周波数変化
の測定を行っておくことにより、現在の中心周波数の特
性から処理すべき時間を決定する。
The substrate 1 and the probe 29, which are in electrical contact with each other by the supporting jig 30, are immersed in a bath 31 of an aqueous solution of citric acid, and a voltage is applied by a power source 33 between the counter electrode 32 and the counter electrode 32. A voltage is applied to perform anodic oxidation (FIG. 3A). The anodizing treatment time is determined by measuring the change in the center frequency of aluminum in advance and determining the time to be treated from the characteristics of the current center frequency.

【0066】所定の処理時間の経過後、洗浄漕34に浸
漬しクエン酸を除去する(図3(b))。そして、周波
数特性検知装置35で周波数特性の検知を行う。陽極酸
化処理によりアルミの櫛形電極表面は酸化され酸化アル
ミとなり、櫛形電極の重さが増加し中心周波数は低くな
る。
After a predetermined processing time has elapsed, the citric acid is removed by immersing it in the cleaning bath 34 (FIG. 3 (b)). Then, the frequency characteristic detection device 35 detects the frequency characteristic. The surface of the aluminum comb-shaped electrode is oxidized by the anodic oxidation treatment to become aluminum oxide, and the weight of the comb-shaped electrode is increased and the center frequency is lowered.

【0067】所定の周波数特性が得られてないならば、
再度、上記工程を交互に実施し、所定の周波数特性に到
達した時点で陽極酸化を終了すればよい。
If the predetermined frequency characteristic is not obtained,
Again, the above steps may be performed alternately, and the anodic oxidation may be terminated when a predetermined frequency characteristic is reached.

【0068】以上の工程により、不良品が削減され所定
の周波数特性を有する表面波デバイスが得られるため良
品率を大幅に向上できる。
Through the above steps, defective products are reduced and a surface wave device having a predetermined frequency characteristic is obtained, so that the yield rate can be greatly improved.

【0069】また、本実施例においては陽極酸化と周波
数特性の検知を別々に行ったが、各々の工程を同一の処
理漕において時間差を有して行ってもよい。
Further, although the anodic oxidation and the detection of the frequency characteristic are performed separately in this embodiment, each step may be performed in the same processing bath with a time difference.

【0070】また、本実施例においては陽極酸化と周波
数特性の検知工程を別々に時間差を有して行ったが、各
々の工程を同一の処理漕において、同時に行ってもよ
い。
Further, in this embodiment, the steps of anodic oxidation and the detection of the frequency characteristic are carried out separately with a time difference, but each step may be carried out simultaneously in the same processing tank.

【0071】また、本実施例において、図5の工程
(9)周波数特性評価を終了した状態のものを用いた
が、工程(10)以降を終了した状態のものを用いても
よく、また圧電体基板上に櫛形電極が形成され多数の表
面波デバイスが存在する状態の工程(7)以降の状態で
もよい。
Further, in this embodiment, the one after the frequency characteristic evaluation in the step (9) of FIG. 5 is used, but the one after the steps (10) and after may be used, and the piezoelectric element may be used. The state after the step (7) in which the comb-shaped electrodes are formed on the body substrate and a large number of surface wave devices are present may be used.

【0072】また、本実施例においてクエン酸を用いて
陽極酸化したが、他の溶液を用いてもよい。
In this embodiment, citric acid was used for anodic oxidation, but other solutions may be used.

【0073】また、本実施例においては周波数特性の高
いもののみ選択して処理を行ったが、櫛形電極用のアル
ミを成膜する際、所定の膜厚以下の膜厚を成膜し、全て
のデバイスに対して第3の実施例の処理を行い周波数特
性を調整してもよい。
Further, in the present embodiment, only those having high frequency characteristics were selected and processed. However, when aluminum for a comb-shaped electrode is formed, a film having a film thickness equal to or less than a predetermined film thickness is formed, and The frequency characteristics may be adjusted by performing the processing of the third embodiment on the device.

【0074】[0074]

【発明の効果】以上のように本発明は、周波数特性が所
定のものでないときでも、所定の周波数特性を有する表
面波デバイスに調整し製造できるため、大幅な良品率の
向上がはかれるため、生産性の向上、コストダウンを図
れる。
As described above, according to the present invention, even when the frequency characteristic is not the predetermined one, the surface acoustic wave device having the predetermined frequency characteristic can be adjusted and manufactured. And cost can be reduced.

【0075】さらに、櫛形電極表面は酸化もしくは窒化
して酸化物もしくは窒化物が形成され硬質化するためデ
バイスとしてエレクトロマイグレ−ション、ストレスマ
イグレ−ションに対する信頼性を大幅に向上できる。さ
らに、櫛形電極が形成された基板をパッケ−ジングする
際、金属異物の混入が生じても櫛形電極が電気的短絡を
生じず、信頼性を大幅に向上できる。
Furthermore, since the surface of the comb-shaped electrode is oxidized or nitrided to form an oxide or a nitride, which hardens, the reliability of the device against electromigration and stress migration can be greatly improved. Furthermore, when packaging a substrate on which the comb-shaped electrode is formed, the comb-shaped electrode does not cause an electrical short circuit even if a foreign metal is mixed in, and the reliability can be greatly improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例の表面波デバイスの製造
方法の工程図
FIG. 1 is a process diagram of a method of manufacturing a surface acoustic wave device according to a first embodiment of the present invention.

【図2】本発明の第2の実施例の表面波デバイスの製造
方法の工程図
FIG. 2 is a process chart of a method of manufacturing a surface acoustic wave device according to a second embodiment of the present invention.

【図3】本発明の第3の実施例の表面波デバイスの製造
方法の工程図
FIG. 3 is a process chart of a method of manufacturing a surface acoustic wave device according to a third embodiment of the present invention.

【図4】従来の表面波デバイスの概略斜視図FIG. 4 is a schematic perspective view of a conventional surface acoustic wave device.

【図5】従来の表面波デバイスのアルミの櫛形電極の膜
厚と中心周波数の相関図
FIG. 5 is a correlation diagram of the film thickness of the aluminum comb-shaped electrode of the conventional surface acoustic wave device and the center frequency.

【図6】従来の表面波デバイス製造工程のフロ−チャー
FIG. 6 is a flowchart of a conventional surface wave device manufacturing process.

【符号の説明】[Explanation of symbols]

1 アルミの櫛形電極が形成された水晶の圧電体基板 2 アルミの櫛形電極 3 予備排気室 4 真空排気装置 5 周波数特性検知装用の探針 6 基板ステ−ジ 7 周波数特性検知装置 8 ゲ−ト 9 レ−ザ−照射室 10 ゲ−ト 11 基板ステ−ジ 12 レ−ザ− 13 レ−ザ−光を集光、また櫛形電極上を掃引するた
めの光学系 14 ガス導入口 15 真空排気装置 16 予備排気室 17 真空排気装置 18 周波数特性検知用の探針 19 基板ステ−ジ 20 周波数特性検知装置 21 ゲ−ト 22 プラズマ処理室 23 ゲ−ト 24 電極になる基板ステ−ジ 25 RF電源 26 ガス導入口 27 真空排気装置 28 絶縁物 29 探針 30 支持治具 31 クエン酸の水溶液の漕 32 対向電極 33 電源 34 洗浄漕 35 周波数特性検知装置
1 Crystal piezoelectric substrate on which aluminum comb-shaped electrode is formed 2 Aluminum comb-shaped electrode 3 Preliminary exhaust chamber 4 Vacuum exhaust device 5 Probe for frequency characteristic detection device 6 Substrate stage 7 Frequency characteristic detection device 8 Gate 9 Laser irradiation chamber 10 Gate 11 Substrate stage 12 Laser 13 Laser Optical system for collecting light and sweeping on comb-shaped electrode 14 Gas inlet 15 Vacuum exhaust device 16 Preliminary exhaust chamber 17 Vacuum exhaust device 18 Probe for frequency characteristic detection 19 Substrate stage 20 Frequency characteristic detection device 21 Gate 22 Plasma processing chamber 23 Gate 24 Substrate stage to be an electrode 25 RF power supply 26 Gas Inlet 27 Vacuum evacuation device 28 Insulator 29 Probe 30 Support jig 31 Aqueous citric acid solution bath 32 Counter electrode 33 Power supply 34 Cleaning bath 35 Frequency characteristic detection device

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】圧電体基板上の櫛形電極表面を酸化あるい
は窒化し、酸化層あるいは窒化層を設けた表面波デバイ
ス。
1. A surface wave device in which the surface of a comb-shaped electrode on a piezoelectric substrate is oxidized or nitrided to provide an oxide layer or a nitride layer.
【請求項2】以下の工程を有する表面波デバイスの製造
方法。 (1)圧電体基板上に櫛形電極を形成する工程 (2)櫛形電極形成後、表面波デバイスの周波数特性を
検知する工程 (3)前記(2)の工程の検知結果に従って、酸素ある
いは窒素の雰囲気中で櫛形電極上をレーザ掃引する、ま
たは酸素あるいは窒素を成分とするプラズマにより櫛形
電極を酸化あるいは窒化する、または櫛形電極を湿式法
により陽極酸化し、櫛形電極表面を酸化あるいは窒化す
る工程
2. A method of manufacturing a surface acoustic wave device having the following steps. (1) Step of forming a comb-shaped electrode on the piezoelectric substrate (2) Step of detecting the frequency characteristic of the surface acoustic wave device after the formation of the comb-shaped electrode (3) According to the detection result of the step (2), oxygen or nitrogen Laser sweeping on the comb electrode in the atmosphere, or oxidizing or nitriding the comb electrode by plasma containing oxygen or nitrogen, or anodizing the comb electrode by a wet method to oxidize or nitride the surface of the comb electrode
【請求項3】以下の工程を有し工程(2)において、表
面波デバイスの周波数特性が所定の特性となったとき
に、工程(3)の酸化または窒化の工程を終了すること
を特徴とする表面波デバイスの製造方法。 (1)圧電体基板上に櫛形電極を形成する工程 (2)櫛形電極形成後、表面波デバイスの周波数特性を
検知する工程 (3)前記(2)の工程の検知結果に従って、酸素ある
いは窒素の雰囲気中で櫛形電極上をレーザ掃引する、ま
たは酸素あるいは窒素を成分とするプラズマにより櫛形
電極を酸化あるいは窒化する、または櫛形電極を湿式法
により陽極酸化し、櫛形電極表面を酸化あるいは窒化す
る工程
3. A step (2) comprising the following steps, wherein the step of oxidizing or nitriding the step (3) is terminated when the frequency characteristic of the surface acoustic wave device reaches a predetermined characteristic. Method of manufacturing surface acoustic wave device. (1) Step of forming a comb-shaped electrode on the piezoelectric substrate (2) Step of detecting the frequency characteristic of the surface acoustic wave device after the formation of the comb-shaped electrode (3) According to the detection result of the step (2), oxygen or nitrogen Laser sweeping on the comb electrode in the atmosphere, or oxidizing or nitriding the comb electrode by plasma containing oxygen or nitrogen, or anodizing the comb electrode by a wet method to oxidize or nitride the surface of the comb electrode
JP14631994A 1994-06-28 1994-06-28 Surface wave device and its manufacture Pending JPH0818374A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14631994A JPH0818374A (en) 1994-06-28 1994-06-28 Surface wave device and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14631994A JPH0818374A (en) 1994-06-28 1994-06-28 Surface wave device and its manufacture

Publications (1)

Publication Number Publication Date
JPH0818374A true JPH0818374A (en) 1996-01-19

Family

ID=15404985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14631994A Pending JPH0818374A (en) 1994-06-28 1994-06-28 Surface wave device and its manufacture

Country Status (1)

Country Link
JP (1) JPH0818374A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6625855B1 (en) 1999-10-06 2003-09-30 Murata Manufacturing Co., Ltd. Method for producing surface acoustic wave device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6625855B1 (en) 1999-10-06 2003-09-30 Murata Manufacturing Co., Ltd. Method for producing surface acoustic wave device
DE10049508B4 (en) * 1999-10-06 2011-04-07 Murata Mfg. Co., Ltd., Nagaokakyo-shi Method for producing a surface acoustic wave device

Similar Documents

Publication Publication Date Title
US4767496A (en) Method for controlling and supervising etching processes
JP5709912B2 (en) Method and apparatus for determining an endpoint of a cleaning or conditioning process in a plasma processing system
Vellekoop et al. Compatibility of zinc oxide with silicon IC processing
US5348617A (en) Selective etching process
US4428796A (en) Adhesion bond-breaking of lift-off regions on semiconductor structures
GB2069277A (en) Prequency trimming of surface acoustic wave devices by dry-etching
JPH0818374A (en) Surface wave device and its manufacture
US6114182A (en) Measurement of electron shading damage
JPS58171821A (en) Detection of contamination and purification degree in plasma processing and apparatus thereof
JP4378887B2 (en) Plasma processing apparatus and plasma processing method
JP2515622B2 (en) Manufacturing method of surface acoustic wave sensor
JPH0837436A (en) Manufacture of surface wave device
JPS5840849B2 (en) Frequency adjustment method for surface acoustic wave transducer
JP4301628B2 (en) Dry etching method
JPH07170140A (en) Manufacture of surface wave device
JP3489494B2 (en) Semiconductor substrate manufacturing method
JPS6326537B2 (en)
JPH0758083A (en) Semiconductor manufacturing apparatus
JP3391003B2 (en) Method for manufacturing multilayer wiring board
JP4153654B2 (en) Conductive deposit monitor, plasma processing apparatus, and plasma processing method
JPH04127428A (en) Manufacture of semiconductor device
JPH03133101A (en) Platinum resistor and manufacture thereof
CN117607560A (en) Method for monitoring charges in PETEOS (PETEOS) film
JP2797351B2 (en) Method for manufacturing semiconductor integrated circuit
JP2001267870A (en) Method and device for manufacturing saw device having lithium piezoelectric substrate