JPH10228996A - Device for measuring plasma space electric potential - Google Patents

Device for measuring plasma space electric potential

Info

Publication number
JPH10228996A
JPH10228996A JP9028645A JP2864597A JPH10228996A JP H10228996 A JPH10228996 A JP H10228996A JP 9028645 A JP9028645 A JP 9028645A JP 2864597 A JP2864597 A JP 2864597A JP H10228996 A JPH10228996 A JP H10228996A
Authority
JP
Japan
Prior art keywords
potential
electrode
plate
plasma space
electric potential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9028645A
Other languages
Japanese (ja)
Other versions
JP3739511B2 (en
Inventor
Takeshi Kamata
剛 鎌田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP02864597A priority Critical patent/JP3739511B2/en
Publication of JPH10228996A publication Critical patent/JPH10228996A/en
Application granted granted Critical
Publication of JP3739511B2 publication Critical patent/JP3739511B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Plasma Technology (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To easily measure the electric potential of a plasma space by forming pores at a fine inner diameter opened in one surface of an insulating plate, and providing an electrode under the pores so as to seal the pores, and providing a means for measuring the electric potential of the electrode. SOLUTION: A capillary plate 11 is formed of a disc-like insulating material, and multiple pores 11a are densely formed at a central part thereof. A top surface of the plate 11 is opened to a plasma generating chamber, and a lower surface thereof is covered with a copper plate 12 over the whole surface thereof, and sealed by a teflon packing or the like. The copper plate 12 and a board electrode 16 are insulated from each other by an aluminum film 15, and electric potential of the copper plate 12 is measured by a first high voltage probe 17. Electric potential of a fine electrode 13 fitted to a surface of the plate 11 is measured by a second high voltage probe 18. With this structure, at the time of measuring electric potential of the copper plate 12, in the case where an aspect ratio (a value obtained by dividing depth of a pore with inner diameter thereof) of the pore 11a more than 2 is detected, a result close to a result of a Langmiur probe method can be obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、プラズマ空間電位
の測定装置に関する。プラズマ(※)応用加工は、荷電
粒子(電子または正イオン)のエネルギーを利用したナ
ノミクロンオーダの超微細加工技術であり、たとえば、
超LSIをはじめとする電子部品や光ディスク等の光学
部品の製造分野に欠かせない技術である。スパッタ等の
力学的なものから拡散等の熱的なもの及び気相成長等の
反応的(化学的・電気化学的)なものなどに幅広く用い
られている。※:プラズマとは、体系の中に正・負の荷
電粒子が同数存在し、それらの粒子は不規則に飛び回っ
ているが、全体としては電気的に中性となっている状態
のことを言う。
The present invention relates to an apparatus for measuring a plasma space potential. Plasma (*) applied processing is a nano-micron-order ultra-fine processing technology that uses the energy of charged particles (electrons or positive ions).
This technology is indispensable in the field of manufacturing electronic components such as VLSI and optical components such as optical disks. It is widely used from a mechanical type such as sputtering to a thermal type such as diffusion and a reactive (chemical / electrochemical) type such as vapor phase growth. *: Plasma refers to a state in which the same number of positive and negative charged particles exist in the system, and these particles are flying around irregularly, but are electrically neutral as a whole. .

【0002】プラズマ加工では“プラズマ空間電位”の
均一性が求められる。不均一であると加工対象物(以
下、試料と言う)の表面に電位分布が生じ、試料上の素
子破壊を招くからである。あるいは、力学的な加工では
荷電物質粒子のエネルギーを正確に把握しなければなら
ず、同エネルギーは“プラズマ空間電位”と試料の表面
電位との電位差で決まるからである。
[0002] In plasma processing, uniformity of "plasma space potential" is required. This is because non-uniformity causes a potential distribution on the surface of an object to be processed (hereinafter, referred to as a sample), which causes element destruction on the sample. Alternatively, in mechanical processing, the energy of charged material particles must be accurately grasped, and the energy is determined by the potential difference between the “plasma space potential” and the surface potential of the sample.

【0003】[0003]

【従来の技術】プラズマ空間電位の測定法として、従来
より、ラングミュアプローブ法に代表される探針を用い
た評価法が知られている。この方法はプラズマ空間に晒
した探針に直流電位を印加し、同空間から探針に流入す
る電流の特異変化点(電流−電圧特性曲線における電子
電流飽和領域の変曲点)を見つけ出してプラズマ空間電
位を求めるというものであり、探針を移動させることに
よってプラズマ空間電位の均一性も評価できるというも
のである。
2. Description of the Related Art As a method for measuring a plasma space potential, an evaluation method using a probe typified by the Langmuir probe method has been conventionally known. In this method, a DC potential is applied to a probe exposed to a plasma space, and a unique change point of an electric current flowing into the probe from the space (an inflection point of an electron current saturation region in a current-voltage characteristic curve) is detected. This is to determine the space potential, and the uniformity of the plasma space potential can be evaluated by moving the probe.

【0004】図6は、ラングミュアプローブ法における
電圧−電流特性曲線の一例である。横軸は探針に印加す
る直流電位、縦軸は探針に流れ込む電流の大きさであ
る。直流電位を高めていくと、ある電位で急激に電流が
流れ出す。このときの電位がプラズマ空間電位に相当
し、図ではおよそ10.5V付近である。浮遊電位は電
流ゼロのときの電位(図では−1.5V)であり、この
浮遊電位を基準とした場合のプラズマ空間電位は約12
Vになる。また、プラズマ空間の電子温度は電流−電圧
特性曲線の傾きから約2.7eVとなり、電子温度から
計算した理論値は13.5Vになる。
FIG. 6 shows an example of a voltage-current characteristic curve in the Langmuir probe method. The horizontal axis represents the DC potential applied to the probe, and the vertical axis represents the magnitude of the current flowing into the probe. As the DC potential increases, a current suddenly starts flowing at a certain potential. The potential at this time corresponds to the plasma space potential, which is about 10.5 V in the figure. The floating potential is a potential when the current is zero (-1.5 V in the figure), and the plasma space potential based on this floating potential is about 12
V. The electron temperature in the plasma space is approximately 2.7 eV from the slope of the current-voltage characteristic curve, and the theoretical value calculated from the electron temperature is 13.5 V.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、ラング
ミュアプローブ法にあっては、探針に流入する電流の特
異変化点を見つけ出す必要があり、たとえば、図6に破
線で示すように、電流−電圧特性曲線の一次微分値をプ
ロットしてそのピーク位置(イ)を検出しなければなら
ないから、複雑なデータ処理を要するという不都合があ
る。しかも、超LSI製造用プラズマ発生装置のように
高周波電力源を備えるものにあっては、電流−電圧特性
曲線に重畳された高周波ノイズを除去するための処理も
必要となるから、かかる不都合はますます顕在化すると
いう問題点がある。
However, in the Langmuir probe method, it is necessary to find a singular change point of the current flowing into the probe. For example, as shown by a broken line in FIG. Since it is necessary to detect the peak position (a) by plotting the first derivative of the curve, there is an inconvenience that complicated data processing is required. In addition, in the case of a device having a high-frequency power source such as a plasma generator for VLSI manufacturing, a process for removing high-frequency noise superimposed on the current-voltage characteristic curve is also required, so this disadvantage is alleviated. There is a problem that it becomes more apparent.

【0006】そこで、本発明は、複雑なデータ処理を要
することなくプラズマ空間電位を測定することを目的と
する。
Therefore, an object of the present invention is to measure a plasma space potential without requiring complicated data processing.

【0007】[0007]

【課題を解決するための手段】請求項1に係る発明は、
少なくとも一面をプラズマ空間に晒す絶縁性プレート
に、前記一面に開口する微小内径の細孔を形成し、且
つ、前記細孔の底部に電極を設けて閉鎖すると共に、該
電極の電位を測定する測定手段を具備することを特徴と
するものである。
The invention according to claim 1 is
A measurement in which an insulative plate having at least one surface exposed to a plasma space has pores with a small inner diameter opened to the one surface, and an electrode is provided at the bottom of the pores to close the electrode, and the potential of the electrode is measured. Means are provided.

【0008】または、請求項2に係る発明は、請求項1
に係る発明において、前記一面に第2の電極を設けると
共に、該第2の電極の電位を測定する第2の測定手段を
備えることを特徴とし、請求項3に係る発明は、請求項
1に係る発明において、前記細孔のアスペクト比を2ま
たは2を超える値にすることを特徴とし、請求項4に係
る発明は、請求項1に係る発明において、前記細孔の内
径を前記プラズマ空間のプラズマのデバイ長を上回らな
いようにすることを特徴とするものである。
[0008] The invention according to claim 2 is based on claim 1.
The invention according to claim 3, further comprising a second electrode provided on the one surface and a second measuring means for measuring a potential of the second electrode, wherein the invention according to claim 3 is based on claim 1. In the present invention, the aspect ratio of the pore is set to 2 or a value exceeding 2, and the invention according to claim 4 is the invention according to claim 1, wherein the inner diameter of the pore is set to It is characterized in that it does not exceed the Debye length of the plasma.

【0009】プラズマ中の正イオンは、絶縁性プレート
の一面とプラズマ空間との間に形成されるイオンシース
によって加速されるため、そのほとんどが細孔の底部に
達して電極を正にチャージアップするが、電子は逆に減
速されるため、電極には少量しか達せず、主に開口付近
を負にチャージアップして電位障壁を形成する。電極の
電位は、障壁を超えて電極に達する電子と、障壁には影
響されないが、プラズマ空間電位と電極電位の差に影響
されながら電極に達する正イオンとのバランスで決ま
り、また、電位障壁の高さは、プラズマ空間からの電子
と電極の電位とのバランスで決まるから、結局、電極の
電位はある時点で安定する。ここで、絶縁性プレートに
形成された細孔のアスペクト比が充分であれば、電極の
安定電位は、正イオンが細孔の底部に達することができ
ないような電位、すなわち、プラズマ空間電位にほぼ等
しくなる。したがって、電極の安定電位からプラズマ空
間電位を知ることができ、複雑なデータ処理を要するこ
となく容易にプラズマ空間の電位を測定することができ
Since positive ions in the plasma are accelerated by an ion sheath formed between one surface of the insulating plate and the plasma space, most of the ions reach the bottom of the pore and charge up the electrode positively. However, the electrons are conversely decelerated, so that only a small amount of the electrons reach the electrodes, and the vicinity of the openings is mainly charged up negatively to form a potential barrier. The potential of the electrode is determined by the balance between the electrons that reach the electrode over the barrier and the positive ions that are not affected by the barrier but reach the electrode while being affected by the difference between the plasma space potential and the electrode potential. Since the height is determined by the balance between the electrons from the plasma space and the potential of the electrode, the potential of the electrode eventually stabilizes at a certain point. Here, if the aspect ratio of the pores formed in the insulating plate is sufficient, the stable potential of the electrode is almost equal to the potential at which the positive ions cannot reach the bottom of the pores, that is, the plasma space potential. Become equal. Therefore, the plasma space potential can be known from the stable potential of the electrode, and the potential of the plasma space can be easily measured without requiring complicated data processing.

【0010】[0010]

【発明の実施の形態】以下、本発明の実施例を図面に基
づいて説明する。図1〜図5は本発明に係るプラズマ空
間電位の測定装置の一実施例を示す図である。図1にお
いて、1はプラズマ発生装置であり、このプラズマ発生
装置1は、特に限定しないが、周囲に高周波コイル2を
巻回した石英のベルジャー3の内部にプラズマ発生室4
を画成し、そのプラズマ発生室4の直下に試料5を載置
した基板電極6を有する誘導結合型(ICP)のプラズ
マエッチング装置である。なお、7は3.4MHzの高
周波電力発生源であり、また、ベルジャー3は高さ20
0mm、口径500mm、厚さ5mmであり、高周波コ
イル2は厚さ0.2mm、幅10mm、長さ10m、巻
回数5である。
Embodiments of the present invention will be described below with reference to the drawings. 1 to 5 are views showing an embodiment of a plasma space potential measuring apparatus according to the present invention. In FIG. 1, reference numeral 1 denotes a plasma generator, which is not particularly limited, and includes a plasma generation chamber 4 inside a quartz bell jar 3 around which a high-frequency coil 2 is wound.
And an inductively coupled (ICP) plasma etching apparatus having a substrate electrode 6 on which a sample 5 is placed immediately below the plasma generation chamber 4. Reference numeral 7 denotes a high-frequency power generation source of 3.4 MHz, and the bell jar 3 has a height of 20 MHz.
The high-frequency coil 2 has a thickness of 0.2 mm, a width of 10 mm, a length of 10 m, and the number of windings of 5 mm.

【0011】図2は試料5の一例構造図であり、5aは
シリコン基板、5bはパターン、5cはアルミナホルダ
ー、5dは基板電極、5eは高電圧プローブである。な
お、パターン5bは、たとえば、シリコン基板5aに厚
さ約0.5μmの酸化膜を形成し、この酸化膜をパター
ニングしてライン幅、スペース幅ともに1.0μm、
0.5μm、0.3μmのラインアンドスペース(L/
S)パターンを1mm2の範囲内に納めたものである。
FIG. 2 is a structural view of an example of the sample 5, wherein 5a is a silicon substrate, 5b is a pattern, 5c is an alumina holder, 5d is a substrate electrode, and 5e is a high voltage probe. The pattern 5b is formed, for example, by forming an oxide film having a thickness of about 0.5 μm on the silicon substrate 5a and patterning the oxide film to form a line width and a space width of 1.0 μm.
0.5 μm and 0.3 μm line and space (L /
S) The pattern is contained within a range of 1 mm 2 .

【0012】図3は、上記試料5の代わりにプラズマ発
生装置1の内部に取り付けられるプラズマ空間電位測定
治具10の一例構造図であり、11は多数の細孔11a
を形成したキャピラリプレート(絶縁性プレート)、1
2は銅板(電極)、13は微小電極(第2の電極)、1
4はアルミナホルダー、15はアルミナ膜、16は基板
電極、17は第1高電圧プローブ(測定手段)、18は
第2高電圧プローブ(第2の測定手段)である。
FIG. 3 is a structural view showing an example of a plasma space potential measuring jig 10 which is attached to the inside of the plasma generator 1 in place of the sample 5, and reference numeral 11 denotes a large number of fine holes 11a.
Capillary plate (insulating plate) with 1
2 is a copper plate (electrode), 13 is a microelectrode (second electrode), 1
4 is an alumina holder, 15 is an alumina film, 16 is a substrate electrode, 17 is a first high voltage probe (measuring means), and 18 is a second high voltage probe (second measuring means).

【0013】キャピラリプレート11は、円盤状の絶縁
材料(たとえばガラス板)からなり、図4に示すよう
に、その中央部付近に多数の細孔11aを密集して形成
したもので、ここでは、厚さ0.5mm、直径25mm
のキャピラリプレート11の中央部10mmの範囲に内
径25μmの細孔11aを開口率30%で形成した。キ
ャピラリプレート11の一面(図3では上面)は、プラ
ズマ発生室4(図1参照)に開放し、他面(図3では下
面)は、その全面が銅板12によって覆われ、且つ、テ
フロンパッキン等によって封止されている。
The capillary plate 11 is made of a disc-shaped insulating material (eg, a glass plate), and has a large number of fine pores 11a formed in the vicinity of the center thereof as shown in FIG. 0.5mm thick, 25mm diameter
The pores 11a having an inner diameter of 25 μm were formed at an opening ratio of 30% in a range of 10 mm in the central portion of the capillary plate 11 of FIG. One surface (upper surface in FIG. 3) of the capillary plate 11 is open to the plasma generation chamber 4 (see FIG. 1), and the other surface (lower surface in FIG. 3) is entirely covered with the copper plate 12, and is made of Teflon packing or the like. Is sealed by.

【0014】銅板12と基板電極16の間はアルミナ膜
15で絶縁されており、銅板12の電位は第1高電圧プ
ローブ17によって測定され、また、キャピラリプレー
ト11の一面に取り付けられた微小電極13の電位(浮
遊電位)は第2高電圧プローブ18によって測定される
ようになっている。このような構成において、プラズマ
発生装置1にプラズマ空間電位測定治具10をセットし
て銅板12の電位を測定すると、図5の破線のような結
果を得た。測定条件は、流量50sccm、圧力10m
TorrのArガス、高周波出力1.5kWであった。
同一条件におけるラングミュアプローブ法の結果を図5
に併記した。図5において、縦軸はプラズマ空間電位、
横軸は細孔11aのアスペクト比(穴の深さを内径で割
った値)である。この図によれば、アスペクト比20程
度のときにラングミュアプローブ法の結果と一致してい
るが、少なくともアスペクト比2以上であればラングミ
ュアプローブ法の結果に近づくことが認められる。
The copper plate 12 and the substrate electrode 16 are insulated by an alumina film 15, the potential of the copper plate 12 is measured by a first high-voltage probe 17, and the minute electrode 13 attached to one surface of the capillary plate 11 Is measured by the second high voltage probe 18. In such a configuration, when the plasma space potential measuring jig 10 was set in the plasma generator 1 and the potential of the copper plate 12 was measured, the result as indicated by the broken line in FIG. 5 was obtained. The measurement conditions were a flow rate of 50 sccm and a pressure of 10 m.
The Torr Ar gas was 1.5 kW in high frequency output.
Figure 5 shows the results of the Langmuir probe method under the same conditions.
It was also described in. In FIG. 5, the vertical axis is the plasma space potential,
The horizontal axis represents the aspect ratio of the pore 11a (the value obtained by dividing the depth of the hole by the inner diameter). According to this figure, the results agree with the results of the Langmuir probe method when the aspect ratio is about 20, but it is recognized that the results approach the results of the Langmuir probe method when the aspect ratio is at least 2 or more.

【0015】このような結果が得られる理由は、以下の
とおりである。 (1)プラズマ空間とキャピラリプレート11の一面と
の間にはイオンシースが形成される。 (2)プラズマ空間からの正イオンはイオンシースによ
って加速される。 (3)プラズマ空間からの電子はイオンシースによって
逆に減速される。 (4)加速された正イオンは細孔11aに勢いよく飛び
込み、そのほとんどが銅板12に達する。 (5)減速された電子のほとんどは細孔11aの開口付
近に捕捉される。 (6)(5)により、細孔11aの開口付近が負にチャ
ージアップされ、電子に対する電位障壁となる。 (7)電位障壁の高さは、銅板12の電位(正)の影響
を受ける。たとえば銅板12に達した正イオンの量が多
くなると、低くなる。 (8)(7)により、電位障壁が低くなると、一部の電
子が障壁を超えて銅板12に達し、銅板12の電位を
(負方向に)下げるように働く。 (9)(7)(8)により、銅板12の電位が(負方向
に)下がると、電位障壁が上がる。 (10)細孔11aのアスペクト比が2以下の場合、
(7)〜(9)を繰り返し、結局、銅板12の電位があ
る値に安定する。 (11)細孔11aの底部、すなわち、銅板12に向か
う正イオンは、銅板12の正のチャージによって減速さ
れる。このため、銅板12に達する正イオンの量は、銅
板12の電位とプラズマ空間の電位との差によって決ま
る。 (12)細孔11aのアスペクト比が2以上の場合、
(6)の電位障壁が極めて大きいため、(7)(8)の
効果は小さく、(6)の電位障壁を超えて銅板12に達
する電子の量は殆ど増加しない。その結果、銅板12の
電位は、(11)により、銅板12に達する正イオンが
銅板12に達する微量な電子の量と釣り合うような電
位、すなわち、プラズマ空間電位まで上昇するのであ
る。
The reason why such a result is obtained is as follows. (1) An ion sheath is formed between the plasma space and one surface of the capillary plate 11. (2) Positive ions from the plasma space are accelerated by the ion sheath. (3) Electrons from the plasma space are decelerated by the ion sheath. (4) The accelerated positive ions rush into the pores 11 a and most of them reach the copper plate 12. (5) Most of the decelerated electrons are trapped near the opening of the pore 11a. (6) Due to (5), the vicinity of the opening of the pore 11a is negatively charged up, and serves as a potential barrier for electrons. (7) The height of the potential barrier is affected by the potential (positive) of the copper plate 12. For example, as the amount of positive ions reaching the copper plate 12 increases, the amount decreases. (8) According to (7), when the potential barrier is lowered, some electrons reach the copper plate 12 across the barrier and act to lower the potential of the copper plate 12 (in the negative direction). (9) According to (7) and (8), when the potential of the copper plate 12 decreases (in the negative direction), the potential barrier increases. (10) When the aspect ratio of the pores 11a is 2 or less,
(7) to (9) are repeated, and eventually the potential of the copper plate 12 is stabilized at a certain value. (11) Positive ions toward the bottom of the pores 11a, that is, toward the copper plate 12, are decelerated by the positive charge of the copper plate 12. For this reason, the amount of positive ions reaching the copper plate 12 is determined by the difference between the potential of the copper plate 12 and the potential of the plasma space. (12) When the aspect ratio of the pores 11a is 2 or more,
Since the potential barrier of (6) is extremely large, the effects of (7) and (8) are small, and the amount of electrons reaching the copper plate 12 beyond the potential barrier of (6) hardly increases. As a result, the potential of the copper plate 12 rises to a potential at which the positive ions reaching the copper plate 12 are balanced with the amount of a small amount of electrons reaching the copper plate 12, ie, the plasma space potential, according to (11).

【0016】以上のとおり、本実施例では、銅板12の
電位と電位障壁(細孔11aの開口付近の負電位)が関
連して変化し、ある一定の値に安定するように動作する
ため、安定時点における銅板12の電位からプラズマ空
間電位を直接的に知ることができ、複雑なデータ処理を
不要にできるという格別有利な効果が得られる。なお、
既述したように、細孔11aのアスペクト比は2以上
(望ましくは20程度)であり、細孔11aの内径はそ
のアスペクト比を満足する値であればよいが、少なくと
もプラズマの侵入を許してはならず、そのためには、プ
ラズマのデバイ長(イオンシースの厚さ)よりも十分に
小さい内径にする必要がある。デバイ長λD は次式で与
えられる。
As described above, in this embodiment, since the potential of the copper plate 12 and the potential barrier (negative potential near the opening of the pore 11a) change in relation to each other, the copper plate 12 operates so as to be stabilized at a certain value. The plasma space potential can be directly known from the potential of the copper plate 12 at the stable point, and a particularly advantageous effect that complicated data processing can be eliminated is obtained. In addition,
As described above, the aspect ratio of the pores 11a is 2 or more (preferably about 20), and the inner diameter of the pores 11a may be any value that satisfies the aspect ratio. However, for that purpose, the inner diameter must be sufficiently smaller than the Debye length of the plasma (the thickness of the ion sheath). The Debye length λ D is given by the following equation.

【0017】[0017]

【数1】 (Equation 1)

【0018】但し、Te は電子温度、Ne は電子密度で
ある。また、細孔11aの深さは、正イオンの母ガスに
対する平均自由行程よりも十分短くする必要がある。銅
板12に達する途中で正イオンと母ガスが衝突すると、
正味の正イオンが減少し、測定誤差となるからである。
Here, Te is the electron temperature, and Ne is the electron density. Further, the depth of the pores 11a needs to be sufficiently shorter than the mean free path of the positive ions with respect to the mother gas. If positive ions collide with mother gas on the way to the copper plate 12,
This is because the net positive ions decrease, resulting in a measurement error.

【0019】[0019]

【発明の効果】本発明によれば、電極の安定電位からプ
ラズマ空間電位を知ることができ、複雑なデータ処理を
要することなく容易にプラズマ空間の電位を測定でき
る。
According to the present invention, the plasma space potential can be known from the stable potential of the electrode, and the potential of the plasma space can be easily measured without requiring complicated data processing.

【図面の簡単な説明】[Brief description of the drawings]

【図1】一実施例のプラズマ発生装置の概略構造図であ
る。
FIG. 1 is a schematic structural view of a plasma generator of one embodiment.

【図2】一実施例の試料の一例構造図である。FIG. 2 is a structural diagram of an example of a sample according to an embodiment.

【図3】一実施例のプラズマ空間電位測定治具の一例構
造図である。
FIG. 3 is a structural diagram of an example of a plasma space potential measuring jig of one embodiment.

【図4】一実施例のキャピラリプレートの平面図と側面
図である。
FIG. 4 is a plan view and a side view of a capillary plate according to one embodiment.

【図5】一実施例の測定グラフである。FIG. 5 is a measurement graph of one example.

【図6】ラングミュアプローブ法の測定グラフである。FIG. 6 is a measurement graph of the Langmuir probe method.

【符号の説明】[Explanation of symbols]

11:キャピラリプレート(絶縁性プレート) 11a:細孔 12:銅板(電極) 13:微小電極(第2の電極) 17:第1高電圧プローブ(測定手段) 18:第2高電圧プローブ(第2の測定手段) 11: Capillary plate (insulating plate) 11a: Pores 12: Copper plate (electrode) 13: Microelectrode (second electrode) 17: First high voltage probe (measuring means) 18: Second high voltage probe (second) Measuring means)

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】少なくとも一面をプラズマ空間に晒す絶縁
性プレートに、前記一面に開口する微小内径の細孔を形
成し、且つ、前記細孔の底部に電極を設けて閉鎖すると
共に、該電極の電位を測定する測定手段を具備すること
を特徴とするプラズマ空間電位の測定装置。
1. An insulating plate having at least one surface exposed to a plasma space, a fine hole having a small inner diameter opened to said one surface, an electrode is provided at a bottom portion of said fine hole, and said electrode is closed. An apparatus for measuring a plasma space potential, comprising a measuring means for measuring a potential.
【請求項2】前記一面に第2の電極を設けると共に、該
第2の電極の電位を測定する第2の測定手段を備えるこ
とを特徴とする請求項1記載のプラズマ空間電位の測定
装置。
2. A plasma space potential measuring apparatus according to claim 1, further comprising a second electrode provided on said one surface, and a second measuring means for measuring a potential of said second electrode.
【請求項3】前記細孔のアスペクト比を2または2を超
える値にすることを特徴とする請求項1記載のプラズマ
空間電位の測定装置。
3. An apparatus for measuring a plasma space potential according to claim 1, wherein the aspect ratio of said pores is set to 2 or a value exceeding 2.
【請求項4】前記細孔の内径を前記プラズマ空間のプラ
ズマのデバイ長を上回らないようにすることを特徴とす
る請求項1記載のプラズマ空間電位の測定装置。
4. The plasma space potential measuring apparatus according to claim 1, wherein an inner diameter of said pore is not set to exceed a Debye length of plasma in said plasma space.
JP02864597A 1997-02-13 1997-02-13 Plasma space potential measuring device Expired - Fee Related JP3739511B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02864597A JP3739511B2 (en) 1997-02-13 1997-02-13 Plasma space potential measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02864597A JP3739511B2 (en) 1997-02-13 1997-02-13 Plasma space potential measuring device

Publications (2)

Publication Number Publication Date
JPH10228996A true JPH10228996A (en) 1998-08-25
JP3739511B2 JP3739511B2 (en) 2006-01-25

Family

ID=12254259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02864597A Expired - Fee Related JP3739511B2 (en) 1997-02-13 1997-02-13 Plasma space potential measuring device

Country Status (1)

Country Link
JP (1) JP3739511B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001148374A (en) * 1999-07-27 2001-05-29 Applied Materials Inc Capacitive probe for in situ measuring dc bias voltage of wafer
JP2009283837A (en) * 2008-05-26 2009-12-03 Oki Semiconductor Co Ltd Plasma monitoring system
JP2013243418A (en) * 2013-09-12 2013-12-05 Lapis Semiconductor Co Ltd Monitoring method, plasma monitoring method, monitoring system, and plasma monitoring system
US9005461B2 (en) 2007-08-31 2015-04-14 Lapis Semiconductor Co., Ltd. Plasma monitoring method and plasma monitoring system
CN111540480A (en) * 2020-05-12 2020-08-14 中国科学院合肥物质科学研究院 Extremely fast electronic measurement probe system suitable for magnetic confinement plasma
CN113066591A (en) * 2021-03-26 2021-07-02 核工业西南物理研究院 Electrostatic probe array for measuring plasma polar velocity and turbulent flow transportation

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001148374A (en) * 1999-07-27 2001-05-29 Applied Materials Inc Capacitive probe for in situ measuring dc bias voltage of wafer
JP4681718B2 (en) * 1999-07-27 2011-05-11 アプライド マテリアルズ インコーポレイテッド Capacitive probe for in-situ measurement of DC bias voltage of wafer
US9005461B2 (en) 2007-08-31 2015-04-14 Lapis Semiconductor Co., Ltd. Plasma monitoring method and plasma monitoring system
US9412567B2 (en) 2007-08-31 2016-08-09 Lapis Semiconductor Co., Ltd. Plasma monitoring method and plasma monitoring system
JP2009283837A (en) * 2008-05-26 2009-12-03 Oki Semiconductor Co Ltd Plasma monitoring system
JP2013243418A (en) * 2013-09-12 2013-12-05 Lapis Semiconductor Co Ltd Monitoring method, plasma monitoring method, monitoring system, and plasma monitoring system
CN111540480A (en) * 2020-05-12 2020-08-14 中国科学院合肥物质科学研究院 Extremely fast electronic measurement probe system suitable for magnetic confinement plasma
CN113066591A (en) * 2021-03-26 2021-07-02 核工业西南物理研究院 Electrostatic probe array for measuring plasma polar velocity and turbulent flow transportation

Also Published As

Publication number Publication date
JP3739511B2 (en) 2006-01-25

Similar Documents

Publication Publication Date Title
JP3937453B2 (en) Method and apparatus for measuring ion flow in plasma
US6436304B1 (en) Plasma processing method
US4795529A (en) Plasma treating method and apparatus therefor
US6361644B1 (en) Parallel-plate electrode reactor having an inductive antenna coupling power through a parallel plate electrode
JP5432119B2 (en) Plasma processing system and substrate processing method
JPH0527244B2 (en)
GB2056919A (en) Chemical dry etching of integrated circuits
Woodworth et al. Ion energy and angular distributions in inductively driven radio frequency discharges in chlorine
JPS6214429A (en) Bias impression etching and device thereof
US4962461A (en) Method for the reproducable formation of material layers and/or the treatment of semiconductor materials layers
US6153068A (en) Parallel plate sputtering device with RF powered auxiliary electrodes and applied external magnetic field
JPH09120957A (en) Plasma device and plasma treatment method
JPS6136589B2 (en)
JP3739511B2 (en) Plasma space potential measuring device
JPH0927395A (en) Plasma treatment device, and plasma treatment method using this device
JPH0850998A (en) Plasma processing device
JP2003224112A (en) Plasma treatment device and plasma treatment method
CN108074787A (en) Lower electrode arrangement and semiconductor processing equipment
GB2262649A (en) Energy analyser
JP2000124204A (en) Method for measuring anions in plasma, and method and device for plasma treatment
JP2015032779A (en) Plasma processing apparatus
JPS6248759B2 (en)
JPS59214281A (en) Method of producing oxide barrier junction for josephson junction element
JP3077144B2 (en) Sample holding device
JP2893391B2 (en) Plasma parameter measurement device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051102

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081111

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081111

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081111

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101111

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101111

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111111

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111111

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111111

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111111

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121111

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121111

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131111

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees