JP3739511B2 - Plasma space potential measuring device - Google Patents

Plasma space potential measuring device Download PDF

Info

Publication number
JP3739511B2
JP3739511B2 JP02864597A JP2864597A JP3739511B2 JP 3739511 B2 JP3739511 B2 JP 3739511B2 JP 02864597 A JP02864597 A JP 02864597A JP 2864597 A JP2864597 A JP 2864597A JP 3739511 B2 JP3739511 B2 JP 3739511B2
Authority
JP
Japan
Prior art keywords
potential
plasma space
plasma
electrode
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP02864597A
Other languages
Japanese (ja)
Other versions
JPH10228996A (en
Inventor
剛 鎌田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP02864597A priority Critical patent/JP3739511B2/en
Publication of JPH10228996A publication Critical patent/JPH10228996A/en
Application granted granted Critical
Publication of JP3739511B2 publication Critical patent/JP3739511B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、プラズマ空間電位の測定装置に関する。
プラズマ(※)応用加工は、荷電粒子(電子または正イオン)のエネルギーを利用したナノミクロンオーダの超微細加工技術であり、たとえば、超LSIをはじめとする電子部品や光ディスク等の光学部品の製造分野に欠かせない技術である。スパッタ等の力学的なものから拡散等の熱的なもの及び気相成長等の反応的(化学的・電気化学的)なものなどに幅広く用いられている。※:プラズマとは、体系の中に正・負の荷電粒子が同数存在し、それらの粒子は不規則に飛び回っているが、全体としては電気的に中性となっている状態のことを言う。
【0002】
プラズマ加工では“プラズマ空間電位”の均一性が求められる。不均一であると加工対象物(以下、試料と言う)の表面に電位分布が生じ、試料上の素子破壊を招くからである。あるいは、力学的な加工では荷電物質粒子のエネルギーを正確に把握しなければならず、同エネルギーは“プラズマ空間電位”と試料の表面電位との電位差で決まるからである。
【0003】
【従来の技術】
プラズマ空間電位の測定法として、従来より、ラングミュアプローブ法に代表される探針を用いた評価法が知られている。この方法はプラズマ空間に晒した探針に直流電位を印加し、同空間から探針に流入する電流の特異変化点(電流−電圧特性曲線における電子電流飽和領域の変曲点)を見つけ出してプラズマ空間電位を求めるというものであり、探針を移動させることによってプラズマ空間電位の均一性も評価できるというものである。
【0004】
図6は、ラングミュアプローブ法における電圧−電流特性曲線の一例である。横軸は探針に印加する直流電位、縦軸は探針に流れ込む電流の大きさである。直流電位を高めていくと、ある電位で急激に電流が流れ出す。このときの電位がプラズマ空間電位に相当し、図ではおよそ10.5V付近である。浮遊電位は電流ゼロのときの電位(図では−1.5V)であり、この浮遊電位を基準とした場合のプラズマ空間電位は約12Vになる。また、プラズマ空間の電子温度は電流−電圧特性曲線の傾きから約2.7eVとなり、電子温度から計算した理論値は13.5Vになる。
【0005】
【発明が解決しようとする課題】
しかしながら、ラングミュアプローブ法にあっては、探針に流入する電流の特異変化点を見つけ出す必要があり、たとえば、図6に破線で示すように、電流−電圧特性曲線の一次微分値をプロットしてそのピーク位置(イ)を検出しなければならないから、複雑なデータ処理を要するという不都合がある。しかも、超LSI製造用プラズマ発生装置のように高周波電力源を備えるものにあっては、電流−電圧特性曲線に重畳された高周波ノイズを除去するための処理も必要となるから、かかる不都合はますます顕在化するという問題点がある。
【0006】
そこで、本発明は、複雑なデータ処理を要することなくプラズマ空間電位を測定することを目的とする。
【0007】
【課題を解決するための手段】
請求項1に係る発明は、少なくとも一面をプラズマ空間に晒す絶縁性プレートに、前記一面に開口する微小内径の細孔を形成し、且つ、前記細孔の底部に電極を設けて閉鎖すると共に、該電極の電位を測定する測定手段を具備することを特徴とするものである。
【0008】
または、請求項2に係る発明は、請求項1に係る発明において、前記一面に第2の電極を設けると共に、該第2の電極の電位を測定する第2の測定手段を備えることを特徴とし、請求項3に係る発明は、請求項1に係る発明において、前記細孔のアスペクト比を2または2を超える値にすることを特徴とし、請求項4に係る発明は、請求項1に係る発明において、前記細孔の内径を前記プラズマ空間のプラズマのデバイ長を上回らないようにすることを特徴とするものである。
【0009】
プラズマ中の正イオンは、絶縁性プレートの一面とプラズマ空間との間に形成されるイオンシースによって加速されるため、そのほとんどが細孔の底部に達して電極を正にチャージアップするが、電子は逆に減速されるため、電極には少量しか達せず、主に開口付近を負にチャージアップして電位障壁を形成する。
電極の電位は、障壁を超えて電極に達する電子と、障壁には影響されないが、プラズマ空間電位と電極電位の差に影響されながら電極に達する正イオンとのバランスで決まり、また、電位障壁の高さは、プラズマ空間からの電子と電極の電位とのバランスで決まるから、結局、電極の電位はある時点で安定する。ここで、絶縁性プレートに形成された細孔のアスペクト比が充分であれば、電極の安定電位は、正イオンが細孔の底部に達することができないような電位、すなわち、プラズマ空間電位にほぼ等しくなる。したがって、電極の安定電位からプラズマ空間電位を知ることができ、複雑なデータ処理を要することなく容易にプラズマ空間の電位を測定することができる
【0010】
【発明の実施の形態】
以下、本発明の実施例を図面に基づいて説明する。
図1〜図5は本発明に係るプラズマ空間電位の測定装置の一実施例を示す図である。
図1において、1はプラズマ発生装置であり、このプラズマ発生装置1は、特に限定しないが、周囲に高周波コイル2を巻回した石英のベルジャー3の内部にプラズマ発生室4を画成し、そのプラズマ発生室4の直下に試料5を載置した基板電極6を有する誘導結合型(ICP)のプラズマエッチング装置である。なお、7は3.4MHzの高周波電力発生源であり、また、ベルジャー3は高さ200mm、口径500mm、厚さ5mmであり、高周波コイル2は厚さ0.2mm、幅10mm、長さ10m、巻回数5である。
【0011】
図2は試料5の一例構造図であり、5aはシリコン基板、5bはパターン、5cはアルミナホルダー、5dは基板電極、5eは高電圧プローブである。なお、パターン5bは、たとえば、シリコン基板5aに厚さ約0.5μmの酸化膜を形成し、この酸化膜をパターニングしてライン幅、スペース幅ともに1.0μm、0.5μm、0.3μmのラインアンドスペース(L/S)パターンを1mm2 の範囲内に納めたものである。
【0012】
図3は、上記試料5の代わりにプラズマ発生装置1の内部に取り付けられるプラズマ空間電位測定治具10の一例構造図であり、11は多数の細孔11aを形成したキャピラリプレート(絶縁性プレート)、12は銅板(電極)、13は微小電極(第2の電極)、14はアルミナホルダー、15はアルミナ膜、16は基板電極、17は第1高電圧プローブ(測定手段)、18は第2高電圧プローブ(第2の測定手段)である。
【0013】
キャピラリプレート11は、円盤状の絶縁材料(たとえばガラス板)からなり、図4に示すように、その中央部付近に多数の細孔11aを密集して形成したもので、ここでは、厚さ0.5mm、直径25mmのキャピラリプレート11の中央部10mmの範囲に内径25μmの細孔11aを開口率30%で形成した。
キャピラリプレート11の一面(図3では上面)は、プラズマ発生室4(図1参照)に開放し、他面(図3では下面)は、その全面が銅板12によって覆われ、且つ、テフロンパッキン等によって封止されている。
【0014】
銅板12と基板電極16の間はアルミナ膜15で絶縁されており、銅板12の電位は第1高電圧プローブ17によって測定され、また、キャピラリプレート11の一面に取り付けられた微小電極13の電位(浮遊電位)は第2高電圧プローブ18によって測定されるようになっている。
このような構成において、プラズマ発生装置1にプラズマ空間電位測定治具10をセットして銅板12の電位を測定すると、図5の破線のような結果を得た。測定条件は、流量50sccm、圧力10mTorrのArガス、高周波出力1.5kWであった。同一条件におけるラングミュアプローブ法の結果を図5に併記した。図5において、縦軸はプラズマ空間電位、横軸は細孔11aのアスペクト比(穴の深さを内径で割った値)である。この図によれば、アスペクト比20程度のときにラングミュアプローブ法の結果と一致しているが、少なくともアスペクト比2以上であればラングミュアプローブ法の結果に近づくことが認められる。
【0015】
このような結果が得られる理由は、以下のとおりである。
(1)プラズマ空間とキャピラリプレート11の一面との間にはイオンシースが形成される。
(2)プラズマ空間からの正イオンはイオンシースによって加速される。
(3)プラズマ空間からの電子はイオンシースによって逆に減速される。
(4)加速された正イオンは細孔11aに勢いよく飛び込み、そのほとんどが銅板12に達する。
(5)減速された電子のほとんどは細孔11aの開口付近に捕捉される。
(6)(5)により、細孔11aの開口付近が負にチャージアップされ、電子に対する電位障壁となる。
(7)電位障壁の高さは、銅板12の電位(正)の影響を受ける。たとえば銅板12に達した正イオンの量が多くなると、低くなる。
(8)(7)により、電位障壁が低くなると、一部の電子が障壁を超えて銅板12に達し、銅板12の電位を(負方向に)下げるように働く。
(9)(7)(8)により、銅板12の電位が(負方向に)下がると、電位障壁が上がる。
(10)細孔11aのアスペクト比が2以下の場合、(7)〜(9)を繰り返し、結局、銅板12の電位がある値に安定する。
(11)細孔11aの底部、すなわち、銅板12に向かう正イオンは、銅板12の正のチャージによって減速される。このため、銅板12に達する正イオンの量は、銅板12の電位とプラズマ空間の電位との差によって決まる。
(12)細孔11aのアスペクト比が2以上の場合、(6)の電位障壁が極めて大きいため、(7)(8)の効果は小さく、(6)の電位障壁を超えて銅板12に達する電子の量は殆ど増加しない。その結果、銅板12の電位は、(11)により、銅板12に達する正イオンが銅板12に達する微量な電子の量と釣り合うような電位、すなわち、プラズマ空間電位まで上昇するのである。
【0016】
以上のとおり、本実施例では、銅板12の電位と電位障壁(細孔11aの開口付近の負電位)が関連して変化し、ある一定の値に安定するように動作するため、安定時点における銅板12の電位からプラズマ空間電位を直接的に知ることができ、複雑なデータ処理を不要にできるという格別有利な効果が得られる。
なお、既述したように、細孔11aのアスペクト比は2以上(望ましくは20程度)であり、細孔11aの内径はそのアスペクト比を満足する値であればよいが、少なくともプラズマの侵入を許してはならず、そのためには、プラズマのデバイ長(イオンシースの厚さ)よりも十分に小さい内径にする必要がある。デバイ長λD は次式で与えられる。
【0017】
【数1】

Figure 0003739511
【0018】
但し、Te は電子温度、Ne は電子密度である。
また、細孔11aの深さは、正イオンの母ガスに対する平均自由行程よりも十分短くする必要がある。銅板12に達する途中で正イオンと母ガスが衝突すると、正味の正イオンが減少し、測定誤差となるからである。
【0019】
【発明の効果】
本発明によれば、電極の安定電位からプラズマ空間電位を知ることができ、複雑なデータ処理を要することなく容易にプラズマ空間の電位を測定できる。
【図面の簡単な説明】
【図1】一実施例のプラズマ発生装置の概略構造図である。
【図2】一実施例の試料の一例構造図である。
【図3】一実施例のプラズマ空間電位測定治具の一例構造図である。
【図4】一実施例のキャピラリプレートの平面図と側面図である。
【図5】一実施例の測定グラフである。
【図6】ラングミュアプローブ法の測定グラフである。
【符号の説明】
11:キャピラリプレート(絶縁性プレート)
11a:細孔
12:銅板(電極)
13:微小電極(第2の電極)
17:第1高電圧プローブ(測定手段)
18:第2高電圧プローブ(第2の測定手段)[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an apparatus for measuring plasma space potential.
Plasma (*) applied processing is nano-micron ultra-fine processing technology using the energy of charged particles (electrons or positive ions). For example, manufacturing of electronic components such as VLSI and optical components such as optical disks. This technology is indispensable for the field. It is widely used from dynamic materials such as sputtering to thermal materials such as diffusion and reactive (chemical / electrochemical) materials such as vapor phase growth. *: Plasma refers to a state in which the same number of positive and negative charged particles exist in the system, and these particles fly around irregularly, but are electrically neutral as a whole. .
[0002]
In plasma processing, uniformity of “plasma space potential” is required. This is because if it is not uniform, a potential distribution is generated on the surface of the object to be processed (hereinafter referred to as a sample), resulting in element destruction on the sample. Alternatively, the mechanical processing must accurately grasp the energy of charged substance particles, and the energy is determined by the potential difference between the “plasma space potential” and the surface potential of the sample.
[0003]
[Prior art]
Conventionally, an evaluation method using a probe typified by the Langmuir probe method is known as a method for measuring the plasma space potential. In this method, a DC potential is applied to the probe exposed to the plasma space, and a singular change point of the current flowing into the probe from the space (the inflection point of the electron current saturation region in the current-voltage characteristic curve) is found and the plasma is detected. The space potential is obtained, and the uniformity of the plasma space potential can be evaluated by moving the probe.
[0004]
FIG. 6 is an example of a voltage-current characteristic curve in the Langmuir probe method. The horizontal axis represents the DC potential applied to the probe, and the vertical axis represents the magnitude of the current flowing into the probe. As the DC potential is increased, current starts to flow rapidly at a certain potential. The potential at this time corresponds to the plasma space potential, which is about 10.5 V in the figure. The floating potential is a potential when the current is zero (-1.5 V in the figure), and the plasma space potential when this floating potential is used as a reference is about 12 V. The electron temperature in the plasma space is about 2.7 eV from the slope of the current-voltage characteristic curve, and the theoretical value calculated from the electron temperature is 13.5 V.
[0005]
[Problems to be solved by the invention]
However, in the Langmuir probe method, it is necessary to find a singular change point of the current flowing into the probe. For example, as shown by a broken line in FIG. 6, the first derivative value of the current-voltage characteristic curve is plotted. Since the peak position (A) must be detected, there is a disadvantage that complicated data processing is required. Moreover, in the case of a device equipped with a high-frequency power source such as a plasma generator for VLSI manufacturing, processing for removing the high-frequency noise superimposed on the current-voltage characteristic curve is also required, so this inconvenience is caused. There is a problem of becoming more and more obvious.
[0006]
Therefore, an object of the present invention is to measure a plasma space potential without requiring complicated data processing.
[0007]
[Means for Solving the Problems]
In the invention according to claim 1, an insulative plate that exposes at least one surface to a plasma space is formed with a minute inner diameter pore that opens to the one surface, and an electrode is provided at the bottom of the pore to close it, A measuring means for measuring the potential of the electrode is provided.
[0008]
Alternatively, the invention according to claim 2 is characterized in that, in the invention according to claim 1, a second electrode is provided on the one surface, and second measuring means for measuring the potential of the second electrode is provided. The invention according to claim 3 is characterized in that, in the invention according to claim 1, the aspect ratio of the pores is 2 or more than 2, and the invention according to claim 4 is related to claim 1. The invention is characterized in that the inner diameter of the pores does not exceed the Debye length of the plasma in the plasma space.
[0009]
Since positive ions in the plasma are accelerated by an ion sheath formed between one surface of the insulating plate and the plasma space, most of them reach the bottom of the pores and charge up the electrodes positively. On the other hand, since the speed is reduced, the electrode reaches only a small amount, and the potential barrier is formed mainly by negatively charging the vicinity of the opening.
The potential of the electrode is determined by the balance between the electrons that reach the electrode across the barrier and the positive ions that are not affected by the barrier but are affected by the difference between the plasma space potential and the electrode potential, and that reach the electrode. Since the height is determined by the balance between the electrons from the plasma space and the potential of the electrode, the potential of the electrode eventually becomes stable at a certain point. Here, if the aspect ratio of the pores formed in the insulating plate is sufficient, the stable potential of the electrode is almost equal to the potential at which positive ions cannot reach the bottom of the pores, that is, the plasma space potential. Will be equal. Therefore, the plasma space potential can be known from the stable potential of the electrode, and the plasma space potential can be easily measured without requiring complicated data processing.
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
1 to 5 are views showing an embodiment of a plasma space potential measuring apparatus according to the present invention.
In FIG. 1, reference numeral 1 denotes a plasma generator. The plasma generator 1 is not particularly limited, and a plasma generation chamber 4 is defined inside a quartz bell jar 3 around which a high-frequency coil 2 is wound. This is an inductively coupled (ICP) plasma etching apparatus having a substrate electrode 6 on which a sample 5 is placed directly under a plasma generation chamber 4. In addition, 7 is a high frequency power generation source of 3.4 MHz, the bell jar 3 has a height of 200 mm, a diameter of 500 mm, and a thickness of 5 mm, and the high frequency coil 2 has a thickness of 0.2 mm, a width of 10 mm, a length of 10 m, The number of windings is 5.
[0011]
FIG. 2 shows an example of the structure of the sample 5. 5a is a silicon substrate, 5b is a pattern, 5c is an alumina holder, 5d is a substrate electrode, and 5e is a high voltage probe. The pattern 5b is formed, for example, by forming an oxide film having a thickness of about 0.5 μm on the silicon substrate 5a, and patterning this oxide film so that the line width and space width are 1.0 μm, 0.5 μm, and 0.3 μm. A line and space (L / S) pattern is contained within a range of 1 mm 2 .
[0012]
FIG. 3 is a structural diagram of an example of a plasma space potential measuring jig 10 attached inside the plasma generator 1 in place of the sample 5. Reference numeral 11 denotes a capillary plate (insulating plate) in which a large number of pores 11a are formed. , 12 is a copper plate (electrode), 13 is a microelectrode (second electrode), 14 is an alumina holder, 15 is an alumina film, 16 is a substrate electrode, 17 is a first high voltage probe (measuring means), and 18 is a second electrode. This is a high voltage probe (second measuring means).
[0013]
The capillary plate 11 is made of a disk-shaped insulating material (for example, a glass plate) and has a large number of pores 11a formed close to the center as shown in FIG. A pore 11a having an inner diameter of 25 μm was formed at an opening ratio of 30% in the central portion of the capillary plate 11 having a diameter of 0.5 mm and a diameter of 25 mm.
One surface (upper surface in FIG. 3) of the capillary plate 11 is open to the plasma generation chamber 4 (see FIG. 1), and the other surface (lower surface in FIG. 3) is entirely covered with the copper plate 12, and Teflon packing, etc. It is sealed by.
[0014]
The copper plate 12 and the substrate electrode 16 are insulated by an alumina film 15. The potential of the copper plate 12 is measured by the first high voltage probe 17, and the potential of the microelectrode 13 attached to one surface of the capillary plate 11 ( The floating potential) is measured by the second high voltage probe 18.
In such a configuration, when the plasma space potential measuring jig 10 was set in the plasma generator 1 and the potential of the copper plate 12 was measured, the result shown by the broken line in FIG. 5 was obtained. The measurement conditions were a flow rate of 50 sccm, an Ar gas with a pressure of 10 mTorr, and a high frequency output of 1.5 kW. The results of the Langmuir probe method under the same conditions are also shown in FIG. In FIG. 5, the vertical axis represents the plasma space potential, and the horizontal axis represents the aspect ratio of the pore 11a (the value obtained by dividing the depth of the hole by the inner diameter). According to this figure, it agrees with the result of the Langmuir probe method when the aspect ratio is about 20, but when the aspect ratio is at least 2, the result of the Langmuir probe method approaches.
[0015]
The reason why such a result is obtained is as follows.
(1) An ion sheath is formed between the plasma space and one surface of the capillary plate 11.
(2) Positive ions from the plasma space are accelerated by the ion sheath.
(3) Electrons from the plasma space are decelerated by the ion sheath.
(4) The accelerated positive ions jump into the pores 11 a vigorously, and most of them reach the copper plate 12.
(5) Most of the decelerated electrons are captured in the vicinity of the opening of the pore 11a.
(6) Due to (5), the vicinity of the opening of the pore 11a is negatively charged up and becomes a potential barrier against electrons.
(7) The height of the potential barrier is affected by the potential (positive) of the copper plate 12. For example, as the amount of positive ions reaching the copper plate 12 increases, the amount decreases.
(8) When the potential barrier is lowered according to (7), some electrons reach the copper plate 12 through the barrier and work to lower the potential of the copper plate 12 (in the negative direction).
(9) When the potential of the copper plate 12 is lowered (in the negative direction) by (7) and (8), the potential barrier is raised.
(10) When the aspect ratio of the pores 11a is 2 or less, (7) to (9) are repeated, and eventually the potential of the copper plate 12 is stabilized at a certain value.
(11) The positive ions heading to the bottom of the pores 11 a, that is, the copper plate 12 are decelerated by the positive charge of the copper plate 12. For this reason, the amount of positive ions reaching the copper plate 12 is determined by the difference between the potential of the copper plate 12 and the potential of the plasma space.
(12) When the aspect ratio of the pore 11a is 2 or more, the potential barrier of (6) is extremely large, so the effects of (7) and (8) are small and reach the copper plate 12 beyond the potential barrier of (6). The amount of electrons hardly increases. As a result, the potential of the copper plate 12 rises to a potential at which the positive ions reaching the copper plate 12 are balanced with the amount of minute amounts of electrons reaching the copper plate 12, that is, the plasma space potential.
[0016]
As described above, in this embodiment, the potential of the copper plate 12 and the potential barrier (negative potential near the opening of the pore 11a) change in relation to each other and operate so as to be stabilized at a certain value. The plasma space potential can be directly known from the potential of the copper plate 12, and a particularly advantageous effect that complicated data processing can be eliminated is obtained.
As described above, the aspect ratio of the pores 11a is 2 or more (preferably about 20), and the inner diameter of the pores 11a may be a value that satisfies the aspect ratio, but at least plasma intrusion is caused. For this purpose, it is necessary to make the inner diameter sufficiently smaller than the Debye length of the plasma (the thickness of the ion sheath). The Debye length λ D is given by the following equation.
[0017]
[Expression 1]
Figure 0003739511
[0018]
However, Te is an electron temperature and Ne is an electron density.
Further, the depth of the pores 11a needs to be sufficiently shorter than the mean free path for the positive ion mother gas. This is because if positive ions collide with the mother gas on the way to the copper plate 12, the net positive ions are reduced, resulting in a measurement error.
[0019]
【The invention's effect】
According to the present invention, the plasma space potential can be known from the stable potential of the electrode, and the plasma space potential can be easily measured without requiring complicated data processing.
[Brief description of the drawings]
FIG. 1 is a schematic structural diagram of a plasma generator according to an embodiment.
FIG. 2 is an example structural diagram of a sample of one embodiment.
FIG. 3 is a structural diagram of an example of a plasma space potential measuring jig of one embodiment.
FIGS. 4A and 4B are a plan view and a side view of a capillary plate according to an embodiment. FIGS.
FIG. 5 is a measurement graph of one example.
FIG. 6 is a measurement graph of the Langmuir probe method.
[Explanation of symbols]
11: Capillary plate (insulating plate)
11a: pore 12: copper plate (electrode)
13: Microelectrode (second electrode)
17: First high voltage probe (measuring means)
18: Second high-voltage probe (second measuring means)

Claims (4)

少なくとも一面をプラズマ空間に晒す絶縁性プレートに、前記一面に開口する微小内径の細孔を形成し、且つ、前記細孔の底部に電極を設けて閉鎖すると共に、該電極の電位を測定する測定手段を具備することを特徴とするプラズマ空間電位の測定装置。Measurement in which at least one surface is exposed to the plasma space, a minute inner diameter pore that opens on the one surface is formed, and an electrode is provided at the bottom of the pore to close it, and the potential of the electrode is measured Means for Measuring Plasma Space Potential, characterized in that it comprises means. 前記一面に第2の電極を設けると共に、該第2の電極の電位を測定する第2の測定手段を備えることを特徴とする請求項1記載のプラズマ空間電位の測定装置。2. The apparatus for measuring plasma space potential according to claim 1, further comprising: a second electrode provided on the one surface, and second measuring means for measuring a potential of the second electrode. 前記細孔のアスペクト比を2または2を超える値にすることを特徴とする請求項1記載のプラズマ空間電位の測定装置。2. The plasma space potential measuring apparatus according to claim 1, wherein the aspect ratio of the pores is set to 2 or a value exceeding 2. 前記細孔の内径を前記プラズマ空間のプラズマのデバイ長を上回らないようにすることを特徴とする請求項1記載のプラズマ空間電位の測定装置。2. The apparatus for measuring plasma space potential according to claim 1, wherein the inner diameter of the pores is prevented from exceeding the Debye length of the plasma in the plasma space.
JP02864597A 1997-02-13 1997-02-13 Plasma space potential measuring device Expired - Fee Related JP3739511B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02864597A JP3739511B2 (en) 1997-02-13 1997-02-13 Plasma space potential measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02864597A JP3739511B2 (en) 1997-02-13 1997-02-13 Plasma space potential measuring device

Publications (2)

Publication Number Publication Date
JPH10228996A JPH10228996A (en) 1998-08-25
JP3739511B2 true JP3739511B2 (en) 2006-01-25

Family

ID=12254259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02864597A Expired - Fee Related JP3739511B2 (en) 1997-02-13 1997-02-13 Plasma space potential measuring device

Country Status (1)

Country Link
JP (1) JP3739511B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6356097B1 (en) * 1997-06-20 2002-03-12 Applied Materials, Inc. Capacitive probe for in situ measurement of wafer DC bias voltage
JP5407019B2 (en) 2007-08-31 2014-02-05 ラピスセミコンダクタ株式会社 Plasma monitoring method
JP5255907B2 (en) * 2008-05-26 2013-08-07 ラピスセミコンダクタ株式会社 Plasma monitoring system
JP5837012B2 (en) * 2013-09-12 2015-12-24 ラピスセミコンダクタ株式会社 MONITORING METHOD, PLASMA MONITORING METHOD, MONITORING SYSTEM, AND PLASMA MONITORING SYSTEM
CN111540480B (en) * 2020-05-12 2023-02-03 中国科学院合肥物质科学研究院 Extremely fast electronic measurement probe system suitable for magnetic confinement plasma
CN113066591B (en) * 2021-03-26 2022-05-20 核工业西南物理研究院 Electrostatic probe array for measuring plasma polar velocity and turbulent flow transportation

Also Published As

Publication number Publication date
JPH10228996A (en) 1998-08-25

Similar Documents

Publication Publication Date Title
JP3937453B2 (en) Method and apparatus for measuring ion flow in plasma
US3617459A (en) Rf sputtering method and apparatus for producing insulating films of varied physical properties
KR100225567B1 (en) Method for titanic electric conduction coating
US6436304B1 (en) Plasma processing method
EP1507281B1 (en) Arrangement, method and electrode for generating a plasma
JPH0527244B2 (en)
JPS6214429A (en) Bias impression etching and device thereof
JP3739511B2 (en) Plasma space potential measuring device
JPH09120957A (en) Plasma device and plasma treatment method
JPS6136589B2 (en)
KR100225571B1 (en) Disk reproducing apparatus
US6452400B1 (en) Method of measuring negative ion density of plasma and plasma processing method and apparatus for carrying out the same
Boussaad et al. Discrete tunneling current fluctuations in metal–water–metal tunnel junctions
GB2262649A (en) Energy analyser
JP2569019B2 (en) Etching method and apparatus
Perkins Conduction in metal oxide thin films formed by oxygen ion implantation
JPS6248759B2 (en)
JPS59214281A (en) Method of producing oxide barrier junction for josephson junction element
JP3038828B2 (en) Plasma processing method
JPH07335618A (en) Plasma processing method and plasma processing device
JPH02238626A (en) Formation apparatus of insulating film
JP4262455B2 (en) Semiconductor device manufacturing method and manufacturing apparatus
JPH05234697A (en) Microwave plasma treating device
JP2985230B2 (en) Plasma equipment
Leahy Superfine IC geometries: Gas-plasma etching may supplant chemical etching in manufacturing high-performance integrated circuits

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051102

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081111

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081111

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081111

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101111

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101111

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111111

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111111

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111111

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111111

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121111

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121111

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131111

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees