JPH0818373A - Manufacture of piezoelectric resonance element - Google Patents

Manufacture of piezoelectric resonance element

Info

Publication number
JPH0818373A
JPH0818373A JP14918294A JP14918294A JPH0818373A JP H0818373 A JPH0818373 A JP H0818373A JP 14918294 A JP14918294 A JP 14918294A JP 14918294 A JP14918294 A JP 14918294A JP H0818373 A JPH0818373 A JP H0818373A
Authority
JP
Japan
Prior art keywords
temperature
piezoelectric ceramic
piezoelectric
resonance
curie temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14918294A
Other languages
Japanese (ja)
Inventor
Yuji Fujinaka
祐司 藤中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP14918294A priority Critical patent/JPH0818373A/en
Publication of JPH0818373A publication Critical patent/JPH0818373A/en
Pending legal-status Critical Current

Links

Landscapes

  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

PURPOSE:To obtain the piezoelectric resonance element which varies a little in resonance frequency and resonance impedance owing to a thermal shock by heating piezoelectric ceramic up to specific temperature after baking, and then annealing it at a necessary temperature drop speed. CONSTITUTION:A piezoelectric composition is used and the piezoelectric ceramic is baked and heated up to higher Curie temperature and lower than grain growth start temperature. Then the temperature area including the Curie temperature is annealed at the drop speed of -50 deg.C/Hr--10 deg.C/Hr. Then a polarization electrode 2 is formed. This method relaxes thermodynamic unstableness generated in the crystal phase of the piezoelectric ceramic and the internal strain is also reduced. Even when a thermal shock is applied to the piezoelectric ceramic after polarization, variation in piezoelectric characteristics are suppressed small and the piezoelectric element which varies a little in resonance frequency and resonance impedance owing to the thermal shock is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、圧電共振素子の製造方
法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a piezoelectric resonance element.

【0002】[0002]

【従来の技術】圧電共振素子は圧電磁器を焼成して形成
するものであり、従来はこの焼成後炉内にて自然冷却を
行わせていた。また、分極後の意図的な熱処理も行われ
ていなかった(共振装置組立時の熱処理は除く。)。
2. Description of the Related Art A piezoelectric resonance element is formed by firing a piezoelectric ceramic, and conventionally, natural firing is performed in a furnace after firing. In addition, no intentional heat treatment was performed after polarization (excluding heat treatment when assembling the resonator).

【0003】[0003]

【発明が解決しようとする課題】代表的な圧電磁器であ
るチタン酸ジルコン酸鉛系磁器の内、圧電共振子に適し
ている電気的機械的結合係数の大きな正方晶と菱面体晶
の相境界近傍の組成では、結晶層の構成比率が不安定で
ある。
Among lead zirconic acid titanate porcelains, which are typical piezoelectric ceramics, a phase boundary between a tetragonal crystal and a rhombohedral crystal having a large electromechanical coupling coefficient suitable for a piezoelectric resonator. In the vicinity composition, the composition ratio of the crystal layer is unstable.

【0004】上記従来の自然冷却では、焼成降温時、熱
力学的に平衡に達する前に冷却されてしまい、その結果
結晶相は熱力学的に非常に不安定で内部歪も大きなもの
となる。このため、熱衝撃が加わったときに、結晶相の
構成比率および内部歪の分布が容易に変わり、これにと
もない共振特性の変化も大きいものとなる。
In the above-mentioned conventional natural cooling, the temperature is lowered before the thermodynamic equilibrium is reached when the temperature is lowered, and as a result, the crystal phase is thermodynamically unstable and the internal strain becomes large. Therefore, when the thermal shock is applied, the composition ratio of the crystal phase and the distribution of the internal strain are easily changed, and accordingly, the change of the resonance characteristic is also large.

【0005】本発明は、共振特性の熱衝撃による変動の
小さい圧電共振素子を提供することを目的とするもので
ある。
An object of the present invention is to provide a piezoelectric resonance element in which the fluctuation of resonance characteristics due to thermal shock is small.

【0006】[0006]

【課題を解決するための手段】この目的を達成するため
に、本発明は、圧電磁器焼成後、キュリー温度以上、粒
成長開始温度以下まで加熱し、次に、キュリー温度を含
む温度領域を−50℃/Hr〜−10℃/Hrの降温速度で
徐冷し、その後、分極、電極形成を行うものである。
To achieve this object, according to the present invention, after firing a piezoelectric ceramic, heating is performed to a temperature above the Curie temperature and below a grain growth start temperature, and then a temperature range including the Curie temperature is The film is annealed at a temperature lowering rate of 50 ° C./Hr to −10 ° C./Hr, after which polarization and electrode formation are performed.

【0007】[0007]

【作用】この構成により、焼成時に、圧電磁器の結晶相
に生じた熱力学的不安定性が緩和され、内部歪も減少す
る。その結果、分極後の圧電磁器に熱衝撃が加わったと
しても、圧電特性の変化は小さく抑えることができる。
With this structure, the thermodynamic instability generated in the crystal phase of the piezoelectric ceramic during firing is relaxed, and the internal strain is also reduced. As a result, even if a thermal shock is applied to the piezoelectric ceramic after polarization, the change in piezoelectric characteristics can be suppressed to a small level.

【0008】[0008]

【実施例】以下、本発明の実施例について図1,図2を
参照しながら説明する。
Embodiments of the present invention will be described below with reference to FIGS.

【0009】共振子を作製した場合、良好な特性を示す
圧電磁器としてPb(Mg1/3Nb2 /3)Ti0.01Zr
0.463+0.1wt%MnO2+0.1wt%NiO組成の
ものが特公昭45−14935号公報に開示されてい
る。この磁器組成物を用いて、説明する。
[0009] When producing a resonator, Pb (Mg 1/3 Nb 2/ 3) as a piezoelectric ceramic having good characteristics Ti 0.01 Zr
A composition of 0.46 O 3 +0.1 wt% MnO 2 +0.1 wt% NiO is disclosed in Japanese Patent Publication No. 45-14935. This porcelain composition will be described.

【0010】まず、原料としてPbO,TiO2,Zr
2,MgO,Nb25,MnCO3、および、NiOを
上記組成となるように、正確に秤量し、ボールミルによ
りよく混合した。次に、前記混合物を850℃で仮焼
し、さらにボールミルでよく粉砕した。これを乾燥した
後、結合剤としてポリビニルアルコール水溶液を加え、
造粒した。その後、1ton/cm2の圧力で20*20*7
mmの角柱状成形体に、加圧成形し、これを閉炉中で12
30℃の温度で1時間焼成し、圧電磁器1を得た。次
に、この圧電磁器1を、厚み方向にラッピングし、厚さ
を5.0mmとし、ラッピングした上、下両面に、蒸着銀
電極を形成した後、100℃のシリコンオイル中で4kV
/mmの直流電界を30分間印加し、分極処理を行った。
次に、これを分極方向に切出して分極方向にラッピング
した後、共振電極(銀電極)2を上下両面に蒸着して切
断し、図1に示す厚みすべり振動共振子(5.0*0.
5*0.5mm)を作製した。
First, as raw materials, PbO, TiO 2 , Zr
O 2, MgO, Nb 2 O 5, MnCO 3, and, NiO and so that the above composition was accurately weighed and mixed well in a ball mill. Next, the mixture was calcined at 850 ° C., and further pulverized with a ball mill. After drying this, add a polyvinyl alcohol aqueous solution as a binder,
Granulated. Then, 20 * 20 * 7 at a pressure of 1 ton / cm 2.
It is pressed into a rectangular columnar shaped body of mm and it is placed in a closed furnace for 12
The piezoelectric ceramic 1 was obtained by firing at a temperature of 30 ° C. for 1 hour. Next, this piezoelectric ceramic 1 was lapped in the thickness direction to a thickness of 5.0 mm, and after lapping, vapor-deposited silver electrodes were formed on both lower surfaces, and then 4 kV in 100 ° C. silicon oil.
A direct current electric field of / mm was applied for 30 minutes to perform polarization treatment.
Next, after cutting this in the polarization direction and lapping in the polarization direction, the resonance electrode (silver electrode) 2 is vapor-deposited on both upper and lower surfaces and cut, and the thickness shear vibration resonator (5.0 * 0.
5 * 0.5 mm) was prepared.

【0011】この圧電磁器1のキュリー温度は熱膨張係
数の測定によると、318℃であった。このことから、
この圧電磁器1の熱処理温度プロファイルを決定し、
(表1)に示す条件で分極前処理および分極後のアニー
ルをそれぞれ行い、上記のようにして共振子を作製し
た。
The Curie temperature of the piezoelectric ceramic 1 was 318 ° C. according to the measurement of the coefficient of thermal expansion. From this,
Determine the heat treatment temperature profile of this piezoelectric ceramic 1,
Pre-polarization treatment and post-polarization annealing were performed under the conditions shown in (Table 1) to fabricate a resonator as described above.

【0012】[0012]

【表1】 [Table 1]

【0013】次に、これらの共振子を250℃のホット
プレート上で1分間耐熱処理前後の厚みすべりモード共
振基本波の共振周波数frの変化率、共振インピーダン
スZrの変化率および電気機械結合係数k15の変化率を
測定し(表2)に示す。
Next, these resonators were placed on a hot plate at 250 ° C. for 1 minute before and after heat treatment for 1 minute. The rate of change of the resonant frequency f r of the thickness shear mode resonant fundamental wave, the rate of change of the resonant impedance Z r , and the electromechanical coupling. The rate of change of the coefficient k 15 was measured and is shown in (Table 2).

【0014】[0014]

【表2】 [Table 2]

【0015】なお、耐熱処理後の共振特性は、耐熱処理
30分後に測定した。ここで、共振周波数frの変化
率、共振インピーダンスZrの変化率および電気機械結
合係数k15の変化率は次式により計算した。
The resonance characteristic after the heat treatment was measured 30 minutes after the heat treatment. Here, the rate of change of the resonance frequency f r, the rate of change and the rate of change of the electromechanical coupling factor k 15 of the resonant impedance Z r was calculated by the following equation.

【0016】 X(%)=100*(X1−X0)/X0 X………変化率 X0 ……耐熱処理前の値 X1 ……耐熱処理後の値 (表2)によると、共振子の実装熱衝撃を模擬的に行っ
た250℃、1分間の耐熱処理による共振周波数特性の
変化率が0.1%以内となっているものは、本発明の請
求の範囲内のものである試料1,7,10,12である
ことがわかる。また、これらの試料は、共振インピーダ
ンスおよび電気機械結合係数の変化率にも小さくなって
いることがわかる。
X (%) = 100 * (X 1 −X 0 ) / X 0 X ... Rate of change X 0 …… Value before heat treatment X 1 …… Value after heat treatment (Table 2) The one in which the change rate of the resonance frequency characteristic due to the heat treatment for one minute at 250 ° C. that simulates the mounting thermal shock of the resonator is within 0.1% is within the scope of the claims of the present invention. It can be seen that these are Samples 1, 7, 10, and 12. Further, it can be seen that these samples also have small rates of change in resonance impedance and electromechanical coupling coefficient.

【0017】このように本発明の圧電共振素子は実装時
の熱衝撃による共振特性の変化がきわめて小さいもので
ある。
As described above, the piezoelectric resonance element of the present invention has an extremely small change in resonance characteristics due to thermal shock during mounting.

【0018】なお、本実施例においては、圧電磁器1と
してPb(Mg1/3Nb2/3)O3−PbTiO3−PbZ
rO3系のPb(Mg1/3Nb2/3)Ti0.01Zr0.463
+0.1wt%MnO2+0.1wt%NiOのPb(Mg
1/3Nb2/3)O3−PbTiO3−PbZrO3の磁器組
成物を用いたが、他のチタン酸ジルコン酸鉛系のものを
用いても、同様の効果が得られる。
In this embodiment, Pb (Mg 1/3 Nb 2/3 ) O 3 -PbTiO 3 -PbZ is used as the piezoelectric ceramic 1.
rO 3 system Pb (Mg 1/3 Nb 2/3 ) Ti 0.01 Zr 0.46 O 3
+ 0.1wt% MnO 2 + 0.1wt% NiO Pb (Mg
The porcelain composition of 1/3 Nb 2/3 ) O 3 —PbTiO 3 —PbZrO 3 was used, but the same effect can be obtained by using another lead zirconate titanate-based material.

【0019】また、圧電磁器1を焼成後加熱し、徐冷す
る際の降温速度を−10℃/Hrとしたが、−50℃/Hr
〜−10℃/Hrであれば構わない。圧電磁器1を焼成
後、アニールした温度はキュリー温度(Tc)+5℃で
あったが、キュリー温度(Tc)±10℃で、2時間以
上アニールすればよい。さらに、分極後の圧電磁器1の
アニールは、キュリー温度の0.63倍と0.4倍の温
度で1時間行ったが、キュリー温度の0.4倍以上0.
8倍以下の温度で30分以上アニールすればよい。ま
た、常温で48時間以上放置するのは、図2を見るとわ
かるように、周波数定数(素子厚み*共振周波数)が安
定化するのを待つためである。ここで、アニール実施後
48時間未満で共振周波数を合わせるために、圧電磁器
1の厚みを研磨した場合、研磨後に共振周波数が変化
し、目標とする共振周波数からはずれてしまう。
Further, the temperature-decreasing rate when the piezoelectric ceramic 1 is heated after firing and gradually cooled is set to -10 ° C / Hr.
It may be from -10 ° C / Hr. The temperature after annealing the piezoelectric ceramic 1 was Curie temperature (T c ) + 5 ° C., but it may be annealed at the Curie temperature (T c ) ± 10 ° C. for 2 hours or more. Furthermore, the piezoelectric ceramic 1 after polarization was annealed at a temperature of 0.63 times and 0.4 times the Curie temperature for 1 hour, but 0.4 times or more of the Curie temperature and 0.1.
Annealing may be performed at a temperature of 8 times or less for 30 minutes or more. The reason for leaving it at room temperature for 48 hours or more is to wait for the frequency constant (element thickness * resonance frequency) to stabilize, as can be seen from FIG. Here, when the thickness of the piezoelectric ceramic 1 is polished in order to adjust the resonance frequency within 48 hours after the annealing is performed, the resonance frequency changes after polishing and deviates from the target resonance frequency.

【0020】[0020]

【発明の効果】以上、本発明は圧電磁器焼成後、キュリ
ー温度以上、粒成長開始温度以下まで加熱し、次に、キ
ュリー温度を含む温度領域を−50℃/Hr〜−10℃/
Hrの降温速度で徐冷するか、あるいは、キュリー温度±
10℃の温度範囲で2時間以上アニールし、その後、分
極、電極形成を行い電極を形成して圧電共振素子を得る
ものである。その結果、焼成時に、圧電磁器の結晶相に
生じた熱力学的不安定性が緩和され、内部歪も減少す
る。その結果、分極後の圧電磁器に熱衝撃が加わったと
しても、圧電特性の変化は小さく抑えることができる。
As described above, according to the present invention, after firing the piezoelectric ceramic, the temperature is heated to the Curie temperature or higher and the grain growth start temperature or lower, and then the temperature range including the Curie temperature is -50 ° C / Hr to -10 ° C /
Gradually cool at the Hr cooling rate, or use the Curie temperature ±
Annealing is performed for 2 hours or more in a temperature range of 10 ° C., and then polarization and electrode formation are performed to form electrodes to obtain a piezoelectric resonance element. As a result, the thermodynamic instability generated in the crystal phase of the piezoelectric ceramic is relaxed during firing, and the internal strain is also reduced. As a result, even if a thermal shock is applied to the piezoelectric ceramic after polarization, the change in piezoelectric characteristics can be suppressed to a small level.

【0021】また、圧電磁器を分極後、キュリー温度の
0.4倍以上0.8倍以下の温度で30分以上アニール
すると、分極成分のうちで実装熱による消極分の大部分
を除去することができ、実際使用する際に、熱処理によ
る脱分極を少なくすることができる。その後、常温で4
8時間以上放置することにより、圧電共振素子の共振周
波数の周波数定数が安定化する。
When the piezoelectric ceramic is polarized and then annealed at a temperature of 0.4 to 0.8 times the Curie temperature for 30 minutes or more, most of the polarization component due to mounting heat of the polarization component is removed. It is possible to reduce the depolarization due to the heat treatment when actually used. Then, at room temperature, 4
By leaving it for 8 hours or more, the frequency constant of the resonance frequency of the piezoelectric resonance element is stabilized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例における厚みすべり振動共振
子の斜視図
FIG. 1 is a perspective view of a thickness shear vibration resonator according to an embodiment of the present invention.

【図2】分極後のアニールの経過時間による周波数定数
の特性曲線図
FIG. 2 is a characteristic curve diagram of a frequency constant depending on the elapsed time of annealing after polarization.

【符号の説明】 1 圧電磁器 2 共振電極[Explanation of symbols] 1 Piezoelectric ceramic 2 Resonance electrode

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 まず、圧電磁器組成物を用いて形成した
圧電磁器を焼成し、次に、キュリー温度以上、粒成長開
始温度以下まで加熱し、その後、キュリー温度を含む温
度領域を−50℃/Hr〜−10℃/Hrの降温速度で徐冷
し、次に、分極、電極形成を行う圧電共振素子の製造方
法。
1. A piezoelectric ceramic formed by using a piezoelectric ceramic composition is fired, and then heated to a temperature above the Curie temperature and below a grain growth start temperature, and thereafter, a temperature region including the Curie temperature is −50 ° C. / Hr to −10 ° C./Hr, which is a method for manufacturing a piezoelectric resonance element in which the material is gradually cooled at a temperature lowering rate, and then polarization and electrode formation are performed.
【請求項2】 圧電磁器を分極後、キュリー温度の0.
4倍以上0.8倍以下の温度で30分以上アニールし、
次に、前記圧電磁器を周波数定数が安定するまで、常温
で放置する請求項1記載の圧電共振素子の製造方法。
2. After the piezoelectric ceramic is polarized, the Curie temperature of 0.
Anneal at a temperature of 4 times or more and 0.8 times or less for 30 minutes or more,
Next, the method for manufacturing a piezoelectric resonant element according to claim 1, wherein the piezoelectric ceramic is left at room temperature until the frequency constant becomes stable.
【請求項3】 圧電磁器を分極後、キュリー温度の0.
4倍以上0.8倍以下の温度で30分以上アニールし、
次に、前記圧電磁器を常温で48時間以上放置する請求
項1記載の圧電共振素子の製造方法。
3. After the piezoelectric ceramic is polarized, the Curie temperature of 0.
Anneal at a temperature of 4 times or more and 0.8 times or less for 30 minutes or more,
Next, the method for manufacturing a piezoelectric resonant element according to claim 1, wherein the piezoelectric ceramic is left at room temperature for 48 hours or more.
【請求項4】 まず、圧電磁器組成物を用いて形成した
圧電磁器を焼成し、次に、キュリー温度±10℃の温度
範囲で2時間以上アニールし、その後、分極、電極形成
を行う圧電共振素子の製造方法。
4. A piezoelectric resonance in which a piezoelectric ceramic formed by using the piezoelectric ceramic composition is fired, and then annealed in a temperature range of Curie temperature ± 10 ° C. for 2 hours or more, after which polarization and electrode formation are performed. Device manufacturing method.
【請求項5】 圧電磁器を分極後、キュリー温度の0.
4倍以上0.8倍以下の温度で30分以上アニールし、
次に、前記圧電磁器を周波数定数が安定するまで、常温
で放置する請求項4記載の圧電共振素子の製造方法。
5. After the piezoelectric ceramic is polarized, the Curie temperature of 0.
Anneal at a temperature of 4 times or more and 0.8 times or less for 30 minutes or more,
5. The method for manufacturing a piezoelectric resonant element according to claim 4, wherein the piezoelectric ceramic is left at room temperature until the frequency constant becomes stable.
【請求項6】 圧電磁器を分極後、キュリー温度の0.
4倍以上0.8倍以下の温度で30分以上アニールし、
次に、前記圧電磁器を常温で48時間以上放置する請求
項4記載の圧電共振素子の製造方法。
6. After the piezoelectric ceramic is polarized, the Curie temperature of 0.
Anneal at a temperature of 4 times or more and 0.8 times or less for 30 minutes or more,
Next, the method for manufacturing a piezoelectric resonant element according to claim 4, wherein the piezoelectric ceramic is left at room temperature for 48 hours or more.
JP14918294A 1994-06-30 1994-06-30 Manufacture of piezoelectric resonance element Pending JPH0818373A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14918294A JPH0818373A (en) 1994-06-30 1994-06-30 Manufacture of piezoelectric resonance element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14918294A JPH0818373A (en) 1994-06-30 1994-06-30 Manufacture of piezoelectric resonance element

Publications (1)

Publication Number Publication Date
JPH0818373A true JPH0818373A (en) 1996-01-19

Family

ID=15469598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14918294A Pending JPH0818373A (en) 1994-06-30 1994-06-30 Manufacture of piezoelectric resonance element

Country Status (1)

Country Link
JP (1) JPH0818373A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112313808A (en) * 2018-06-21 2021-02-02 爱奥尼克斯先进科技有限公司 Method for annealing polarized ceramics

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112313808A (en) * 2018-06-21 2021-02-02 爱奥尼克斯先进科技有限公司 Method for annealing polarized ceramics

Similar Documents

Publication Publication Date Title
USRE24191E (en) Piezoelectric transducers using lead
KR100200180B1 (en) Piezoelectric ceramics and manufacturing method thereof
KR100685327B1 (en) Piezoelectric ceramic composition and piezoelectric device
JP4169202B2 (en) Method for producing piezoelectric ceramic composition
JP4169203B2 (en) Piezoelectric ceramic composition
JP2000103674A (en) Piezoelectric ceramic composition and its production
US9255033B2 (en) Piezoelectric glass ceramic compositions and piezoelectric devices made therefrom
JPH0818373A (en) Manufacture of piezoelectric resonance element
JP3125624B2 (en) Piezoelectric ceramic
JP2003081675A (en) Piezoelectric porcelain
US20050075235A1 (en) Piezoelectric ceramic composition and manufacturing the same, and piezoelectric element
JPH06224486A (en) Polarizing method for piezoelectric ceramics
JP3830345B2 (en) Piezoelectric ceramic
JP2007258597A (en) Method for polarizing piezoelectric element
JPH11209176A (en) Piezoelectric porcelain composition and its production
JPH11322420A (en) Piezoelectric porcelain composition and its production
JP2910339B2 (en) Piezoelectric ceramic composition
JPH08333158A (en) Piezoelectric ceramic composition and production of piezoelectric resonator using the same
JP3550918B2 (en) Piezoelectric ceramic composition
JPH09165261A (en) Piezoelectric porcelain composition
JP2874495B2 (en) Piezoelectric material
JP3189380B2 (en) Piezoelectric ceramic composition
JPH05221717A (en) Piezoelectric porcelain composition
KR20010067819A (en) Piezoelectric transformer having of good piezo effect and calcinating method of the same
JPH11100264A (en) Piezoelectric ceramic composition and its production