JPH0818238B2 - Polishing tool manufacturing method - Google Patents

Polishing tool manufacturing method

Info

Publication number
JPH0818238B2
JPH0818238B2 JP6260487A JP6260487A JPH0818238B2 JP H0818238 B2 JPH0818238 B2 JP H0818238B2 JP 6260487 A JP6260487 A JP 6260487A JP 6260487 A JP6260487 A JP 6260487A JP H0818238 B2 JPH0818238 B2 JP H0818238B2
Authority
JP
Japan
Prior art keywords
abrasive grains
polishing
reference surface
abrasive
polishing tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP6260487A
Other languages
Japanese (ja)
Other versions
JPS63232947A (en
Inventor
徹 今成
宣夫 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP6260487A priority Critical patent/JPH0818238B2/en
Publication of JPS63232947A publication Critical patent/JPS63232947A/en
Publication of JPH0818238B2 publication Critical patent/JPH0818238B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)
  • Polishing Bodies And Polishing Tools (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は研磨工具の製作方法に関し、特に磁性研磨砥
粒を用いて高い面精度で研磨加工を行なうことの可能な
研磨工具の製作方法に関する。この様な研磨工具は、た
とえばレンズ、プリズム及びミラー等の光学素子の研磨
に用いられる。
Description: TECHNICAL FIELD The present invention relates to a method for manufacturing a polishing tool, and more particularly to a method for manufacturing a polishing tool capable of performing polishing processing with high surface accuracy using magnetic polishing abrasive grains. . Such a polishing tool is used for polishing optical elements such as lenses, prisms and mirrors.

[従来の技術及びその問題点] 一般に、レンズ、プリズム及びミラー等の光学素子
は、ガラスまたは金属等の素材を所定の外形に整形した
後に、機能面即ち光が透過及び/または反射する面を研
磨して表面粗さを次第に小さくし且つ同時に所定の面精
度とすることにより製造されている。
[Prior Art and Problems Thereof] In general, an optical element such as a lens, a prism and a mirror has a functional surface, that is, a surface through which light is transmitted and / or reflected after shaping a material such as glass or metal into a predetermined outer shape. It is manufactured by polishing to gradually reduce the surface roughness and at the same time to a predetermined surface accuracy.

研磨工程においては、遊離砥粒を用いた研磨方法また
は固定砥粒を用いた研磨方法が採用される。
In the polishing step, a polishing method using free abrasive grains or a polishing method using fixed abrasive grains is adopted.

遊離砥粒を用いた研磨は、所定の面精度の表面を有す
る研磨工具を遊離の研磨砥粒を媒介として被研磨物に対
し押圧しながら主として砥粒のころがりに基づき研磨を
行なうものである。この遊離砥粒を用いた研磨方法で
は、研磨工具の表面精度が比較的低くても研磨条件を適
宜設定することにより被研磨物の表面精度を比較的良好
なものとすることができるという利点があるが、適正な
研磨条件の設定には作業者の熟練を要するという困難性
がある。
The polishing using loose abrasive grains is performed mainly by rolling the abrasive grains while pressing a polishing tool having a surface with a predetermined surface accuracy against the object to be polished with the free abrasive grains as a medium. In the polishing method using the loose abrasive grains, even if the surface accuracy of the polishing tool is relatively low, there is an advantage that the surface accuracy of the object to be polished can be made relatively good by appropriately setting the polishing conditions. However, there is a difficulty that it requires the skill of an operator to set appropriate polishing conditions.

これに対し、固定砥粒を用いた研磨は、所定の面精度
を有する研磨工具の少なくとも表面に砥粒を固定させて
おき、該工具を被研磨物に対し押圧しながら主として砥
粒のひっかきに基づき研磨を行なうものである。この固
定砥粒を用いた研磨方法では、研磨工具の表面精度が被
研磨物の表面精度に比較的忠実に反映されるので、研磨
工具の製作は遊離砥粒を用いた研磨の場合と比べて多少
面倒であるが、一旦工具を製作した後は容易に被加工物
を所定の表面精度に研磨できるという利点を有する。
On the other hand, the polishing using the fixed abrasive grains has the abrasive grains fixed to at least the surface of a polishing tool having a predetermined surface accuracy, and is mainly used for scratching the abrasive grains while pressing the tool against an object to be polished. Based on this, polishing is performed. In this polishing method using fixed abrasive grains, the surface precision of the polishing tool is reflected in the surface precision of the object to be polished relatively faithfully, so the production of polishing tools is more difficult than the case of polishing using loose abrasive grains. Although somewhat troublesome, it has an advantage that the work piece can be easily polished to a predetermined surface accuracy once the tool is manufactured.

しかして、上記固定砥粒による研磨において用いられ
る研磨工具は、従来、砥粒保持部材(結合材)中に砥粒
を分散させた後に該結合材を硬化させ砥粒を固定するこ
とにより製作されることが多く、該工具の被研磨物に当
接し研磨加工に関与する面は、高い表面精度が要求され
る場合には後加工により所定の精度とすることが多かっ
た。
Therefore, the polishing tool used in polishing with the fixed abrasive is conventionally manufactured by dispersing the abrasive in the abrasive holding member (bonding material) and then hardening the binder to fix the abrasive. In many cases, the surface of the tool that comes into contact with the object to be polished and is involved in the polishing process is often given a predetermined accuracy by post-processing if high surface accuracy is required.

しかし、結合材硬化後の工具表面の加工は砥粒含有体
の加工であるので相当の困難性がある。また、この様な
後加工により全体的には所望の形状に近づけたとして
も、ミクロ的にはある砥粒の先端は所望の面から突出し
ていたり、またある砥粒の先端は所望の面より引込んで
いたりすることがあり、十分に高い精度は得られない。
However, since the processing of the tool surface after the binder is hardened is the processing of the abrasive grain containing body, there is considerable difficulty. In addition, even if the post-processing like this makes the shape as a whole closer to the desired shape, the tip of a certain abrasive grain is microscopically protruded from the desired surface, or the tip of a certain abrasive grain is more than the desired surface. It may be retracted, and a sufficiently high precision cannot be obtained.

この様な従来の固定砥粒研磨工具を使用して研磨加工
を行なうと、十分に高い表面精度の実現が困難であるば
かりか、被研磨物表面に傷を生ぜしめることが多いとい
う問題点がある。
When polishing is performed using such a conventional fixed-abrasive polishing tool, it is difficult to achieve sufficiently high surface accuracy, and in addition, it often causes scratches on the surface of the object to be polished. is there.

そこで、本発明は、傷等の表面欠陥を生ぜしめること
なしに良好な表面精度の研磨加工を行なうことができる
研磨工具を提供することを目的とする。
Therefore, it is an object of the present invention to provide a polishing tool capable of performing polishing processing with good surface accuracy without causing surface defects such as scratches.

[問題点を解決するための手段] 本発明によれば、以上の如き目的は、 磁性を有する研磨砥粒を基準面に配し、該基準面側か
ら磁力を作用させ上記研磨砥粒を基準面に吸引しながら
磁力以外の外力を与えて上記基準面上での砥粒分布を均
一化させ、しかる後に該基準面上の砥粒を保持体に転写
移行させることを特徴とする、研磨工具の製作方法、 により達成される。
[Means for Solving the Problems] According to the present invention, the above-described object is to arrange abrasive grains having magnetism on a reference surface, and to apply a magnetic force from the reference surface side so that the abrasive grains are used as a reference. A polishing tool, characterized in that an external force other than a magnetic force is applied to the surface while making the abrasive grain distribution on the reference surface uniform, and thereafter the abrasive grains on the reference surface are transferred to a holder. It is achieved by the manufacturing method of.

[実施例] 以下、図面を参照しながら本発明の具体的実施例を説
明する。
[Examples] Specific examples of the present invention will be described below with reference to the drawings.

第1図〜第4図は本発明による研磨工具製作方法の第
1の実施例を示す概略工程図である。これらの図におい
て、同一の部材には同一符号が付されている。
1 to 4 are schematic process diagrams showing a first embodiment of a polishing tool manufacturing method according to the present invention. In these drawings, the same members are designated by the same reference numerals.

第1図において、2は基準体である。該基準体は上側
表面がラッピング等により十分に高い精度の平面(基準
面)に加工され且つ十分細かい表面粗さとされている。
該基準体2は磁性体からなり、その下部にはコイル4が
上下方向のまわりに巻回されていて、これにより基準体
2をヨークとして電磁石が構成されている。6はコイル
のカバーであり、上記基準体2に取付けられている。
In FIG. 1, 2 is a reference body. An upper surface of the reference body is processed into a plane (reference plane) with sufficiently high accuracy by lapping or the like and has a sufficiently fine surface roughness.
The reference body 2 is made of a magnetic material, and a coil 4 is wound around the lower portion of the reference body 2 in the up-down direction, whereby an electromagnet is formed by using the reference body 2 as a yoke. Reference numeral 6 denotes a coil cover, which is attached to the reference body 2.

上記電磁石は駆動部8により駆動される。該駆動部は
電池10、可変抵抗12及びスイッチ14を含んでおり、これ
により上記コイル4に流す電流を適宜調節することがで
きる。
The electromagnet is driven by the drive unit 8. The driving unit includes a battery 10, a variable resistor 12 and a switch 14, which allows the current flowing through the coil 4 to be adjusted appropriately.

16は振動発生部であり、上記基準体2及びカバー6に
対したとえば数十〜数百Hzの振動を付与するために用い
られる。
Reference numeral 16 is a vibration generator, which is used to apply a vibration of several tens to several hundreds Hz to the reference body 2 and the cover 6.

先ず、基準体2の基準面上に研磨砥粒20を散布する。
該研磨砥粒は磁性を有する。この様な磁性研磨砥粒とし
ては、たとえばダイヤモンド砥粒の表面にニッケルをコ
ーティングしたものが例示される。
First, the abrasive grains 20 are scattered on the reference surface of the reference body 2.
The abrasive grains have magnetism. Examples of such magnetic polishing abrasive grains include those in which the surface of diamond abrasive grains is coated with nickel.

次に、電磁石駆動部8の可変抵抗値を適宜設定し更に
スイッチ14をON状態とする。これにより電磁石が作用し
て、上記磁性研磨砥粒20は基準体2の基準面に吸引され
る。同時に、振動発生部16を作動させ、基準体2に対し
主として横方向の振動を付与する。これにより、基準面
2上の砥粒は分布が全面均一化され、特に細長い砥粒の
向きが上下方向にそろえられる。この分布均一化により
基準面上の砥粒が1層で且つ所望の分布密度が得られる
様に、上記散布の際の砥粒の量を定めておく。あるい
は、上記散布の際の砥粒量を過剰として、分布均一の際
に余分な砥粒を除去するため風力等の外力を均一に作用
させてもよい。また、駆動部8による電磁石の作用及び
振動発生部16による振動をそれぞれ適時のON−OFFする
ことにより、所望の均一分布とすることもできる。
Next, the variable resistance value of the electromagnet drive unit 8 is appropriately set, and the switch 14 is turned on. As a result, the electromagnet acts and the magnetic polishing abrasive grains 20 are attracted to the reference surface of the reference body 2. At the same time, the vibration generator 16 is activated to apply a vibration mainly in the lateral direction to the reference body 2. As a result, the distribution of the abrasive grains on the reference surface 2 is made uniform over the entire surface, and particularly the slender abrasive grains are aligned in the vertical direction. The amount of the abrasive grains at the time of spraying is determined so that the uniform distribution of the abrasive grains on the reference surface and the desired distribution density can be obtained by this uniform distribution. Alternatively, the amount of abrasive grains during the above-mentioned spraying may be excessive, and an external force such as a wind force may be uniformly applied to remove excess abrasive grains when the distribution is uniform. Further, by turning on and off the action of the electromagnet by the driving unit 8 and the vibration by the vibration generating unit 16 at appropriate times, a desired uniform distribution can be achieved.

次に、以上の様にして均一分布とされた砥粒の保持さ
れている基準体2を、第2図に示される様に、電磁石を
作用させたままで、上下逆向きとし、砥粒保持部材22に
対向させる。第2図において、砥粒保持部材22は台皿24
により支持されている。保持部材22はたとえばタールピ
ッチの様な粘弾性体である。該ピッチは50〜60℃に加熱
されて軟化状態とされている。
Next, as shown in FIG. 2, the reference body 2 holding the abrasive grains uniformly distributed as described above is turned upside down while the electromagnet is still operating, and the abrasive grain holding member is held. Opposite 22. In FIG. 2, the abrasive grain holding member 22 is a plate 24.
Supported by The holding member 22 is a viscoelastic body such as tar pitch. The pitch is heated to 50 to 60 ° C. to be in a softened state.

次に、第3図に示される様に、軟化した保持体22に対
し基準体2を当接させ、適宜の圧力で押圧する。この押
圧状態で自然冷却または強制冷却により保持体ピッチを
硬化させる。
Next, as shown in FIG. 3, the reference body 2 is brought into contact with the softened holding body 22 and pressed with an appropriate pressure. In this pressed state, the holder pitch is cured by natural cooling or forced cooling.

次に、駆動部8のスイッチ14をOFF状態として電磁石
の作用を停止した後に、基準体2を除去すると、第4図
に示される様に、保持体22の表面部に研磨砥粒20が転写
され固定保持されて、固定砥粒研磨工具が得られる。
Next, when the switch 14 of the drive unit 8 is turned off to stop the action of the electromagnet and the reference body 2 is removed, the abrasive grains 20 are transferred to the surface portion of the holding body 22 as shown in FIG. Then, it is fixedly held to obtain a fixed abrasive polishing tool.

本実施例において、上記第2〜4図の工程で、上下方
向を逆にして行なってもよい。
In this embodiment, the steps shown in FIGS. 2 to 4 may be performed with the vertical direction reversed.

以上の様にして得られた工具は、基準面の転写による
ため、砥粒20の先端部により形成される面は基準面の形
状に対応して正確な平面とされており、突出砥粒がない
ことはもちろんのこと、更に磁力により確実に位置決め
されているので、引込んだ砥粒も存在しない。その上、
研磨砥粒20は磁力の作用で表面に対し垂直の方向に配列
されているので、研磨効率は極めて良好である。
Since the tool obtained as described above is based on the transfer of the reference surface, the surface formed by the tip of the abrasive grain 20 is an accurate flat surface corresponding to the shape of the reference surface, and the protruding abrasive grain is Needless to say, there is no abrasive grain that has been drawn in because it is surely positioned by magnetic force. Moreover,
Since the abrasive grains 20 are arranged in the direction perpendicular to the surface by the action of magnetic force, the polishing efficiency is extremely good.

第5図は本発明による研磨工具製作方法の第2の実施
例を示す概略図である。
FIG. 5 is a schematic view showing a second embodiment of the polishing tool manufacturing method according to the present invention.

本実施例においては、上記第1実施例における第1図
の工程を、第5図に示される様に、基準体2を斜めに傾
けて行なう点のみが上記第1実施例と異なる。
This embodiment is different from the first embodiment only in that the step of FIG. 1 in the first embodiment is performed by inclining the reference body 2 as shown in FIG.

本実施例では、斜めにした状態で基準体2に対し振動
を付与することにより、重力の作用で余分の砥粒除去が
できる。砥粒除去の程度は傾き角度を適宜設定すること
により調節できる。
In this embodiment, vibration is applied to the reference body 2 in a slanted state, whereby excess abrasive grains can be removed by the action of gravity. The degree of removal of the abrasive grains can be adjusted by appropriately setting the tilt angle.

第6図は本発明による研磨工具製作方法の第3の実施
例を示す概略図である。
FIG. 6 is a schematic view showing a third embodiment of the polishing tool manufacturing method according to the present invention.

本実施例も、上記第1実施例における第1図の工程
を、第6図に示される様に、基準体2を上下逆にして行
なう点のみが上記第1実施例と異なる。
This embodiment is also different from the first embodiment only in that the reference body 2 is turned upside down as shown in FIG. 6 in the step of FIG. 1 in the first embodiment.

上記実施例においては研磨工具の研磨作用面が平面で
あり従って基準面が平面である場合が例示されている
が、本発明は研磨工具の研磨面が平面以外の凹または凸
の球面または非球面の場合にも適用できることはもちろ
んである。この場合には凹凸逆の対応する曲面の基準面
をもつ基準体2を用いればよい。
In the above-mentioned embodiment, the polishing surface of the polishing tool is a flat surface, and thus the reference surface is a flat surface.However, the present invention shows that the polishing surface of the polishing tool is a concave or convex spherical surface or an aspherical surface other than a flat surface. Of course, it can be applied to the case. In this case, it is sufficient to use the reference body 2 having the reference surface of the corresponding curved surface with the concavo-convex opposite.

上記実施例では砥粒保持部材22としてタールピッチを
例示したが、本発明においては、該保持部材としては、
その他のピッチや更にその他の適宜の結合材を利用でき
る。この様な結合材としてはたとえば塩化ビニロールや
ポリプロピレン等の熱可塑性プラスチックスが例示で
き、これらを用いる場合には、転写時にそれぞれ適宜の
温度に加熱して適度に軟化させる。
Although the tar pitch is exemplified as the abrasive grain holding member 22 in the above-mentioned embodiment, in the present invention, as the holding member,
Other pitches and even other suitable binders can be utilized. Examples of such a binder include thermoplastics such as vinylol chloride and polypropylene, and when these are used, they are appropriately softened by being heated to appropriate temperatures during transfer.

本発明における研磨砥粒の粒径は、所望の表面粗さの
程度に応じて適宜決めることができ、光学面を得るため
の微小粒径から艶消し面程度更には研削面と称される表
面粗さを得るための粒径までのいづれであってもよい。
The grain size of the polishing abrasive grains in the present invention can be appropriately determined according to the degree of desired surface roughness, and from the fine grain size for obtaining an optical surface to the matte surface degree and the surface referred to as the ground surface. It may be any one up to the particle size for obtaining the roughness.

[発明の効果] 以上の様な本発明によれば、砥粒先端が所望の形状の
面に正確に適合している固定砥粒研磨工具を製作するこ
とができ、従ってたとえ砥粒粒径の分級が不十分であっ
ても傷等の表面欠陥を生ぜしめることなしに良好な表面
精度の研磨加工を行なうことが可能となる。
EFFECTS OF THE INVENTION According to the present invention as described above, it is possible to manufacture a fixed-abrasive polishing tool in which the tips of the abrasive grains are precisely adapted to the surface of the desired shape, and therefore Even if the classification is insufficient, it is possible to carry out polishing with good surface accuracy without causing surface defects such as scratches.

また、本発明によれば、砥粒は磁力の作用により基準
面に対しほぼ直角に配置されるので、表面に対し研磨砥
粒がほぼ直角に配置された研磨効率の良好な研磨工具が
得られる。
Further, according to the present invention, since the abrasive grains are arranged substantially at right angles to the reference surface by the action of the magnetic force, it is possible to obtain the polishing tool having the polishing abrasive grains arranged substantially at right angles to the surface and having good polishing efficiency. .

更に、本発明によれば、基準面への砥粒吸引の際の磁
力及び/またはその他の外力を適宜調節することにより
砥粒の分布密度を適宜設定できるので、所望の集中度を
有する工具を容易に製作することができる。
Furthermore, according to the present invention, since the distribution density of the abrasive grains can be appropriately set by appropriately adjusting the magnetic force and / or other external force at the time of sucking the abrasive grains to the reference surface, a tool having a desired degree of concentration can be provided. It can be easily manufactured.

【図面の簡単な説明】[Brief description of drawings]

第1図〜第4図は本発明による研磨工具製作方法を示す
概略工程図である。 第5図及び第6図は本発明による研磨工具製作方法を示
す概略図である。 2:基準体、4:コイル、 6:カバー、8:駆動部、 16:振動発生部、20:研磨砥粒、 22:砥粒保持部材、24:台皿。
1 to 4 are schematic process diagrams showing a polishing tool manufacturing method according to the present invention. 5 and 6 are schematic views showing a polishing tool manufacturing method according to the present invention. 2: Reference body, 4: Coil, 6: Cover, 8: Drive part, 16: Vibration generating part, 20: Abrasive grain, 22: Abrasive grain holding member, 24: Plate.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】磁性を有する研磨砥粒を基準面上に配し、
該基準面側から磁力を作用させ上記研磨砥粒を基準面に
吸引しながら磁力以外の外力を与えて上記基準面上での
砥粒分布を均一化させ、しかる後に該基準面上の砥粒を
保持体に転写移行させることを特徴とする、研磨工具の
製作方法。
1. An abrasive grain having magnetism is arranged on a reference surface,
A magnetic force is applied from the reference surface side to apply an external force other than the magnetic force while attracting the polishing abrasive grains to the reference surface to make the abrasive grain distribution on the reference surface uniform, and thereafter, the abrasive grains on the reference surface. A method for manufacturing an abrasive tool, comprising transferring the particles to a holder.
【請求項2】基準面に対し振動を与えることにより磁力
以外の外力を発生させる、特許請求の範囲第1項の研磨
工具の製作方法。
2. The method for manufacturing a polishing tool according to claim 1, wherein an external force other than the magnetic force is generated by applying vibration to the reference surface.
【請求項3】保持体に対する砥粒の転写移行が、砥粒に
対し磁力を作用させた状態で軟化保持体を基準面に押圧
し、次いで該保持体を硬化させ、しかる後に砥粒に対す
る磁力の作用を停止して上記基準面を保持体から離隔さ
せることにより行なわれる、特許請求の範囲第1項の研
磨工具の製作方法。
3. Transfer transfer of abrasive grains to a holding body presses a softened holding body against a reference surface in a state where a magnetic force is applied to the abrasive grains, then hardens the holding body, and thereafter magnetic force to the abrasive grains. The method for producing a polishing tool according to claim 1, which is carried out by stopping the action of step 1) and separating the reference surface from the holder.
JP6260487A 1987-03-19 1987-03-19 Polishing tool manufacturing method Expired - Fee Related JPH0818238B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6260487A JPH0818238B2 (en) 1987-03-19 1987-03-19 Polishing tool manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6260487A JPH0818238B2 (en) 1987-03-19 1987-03-19 Polishing tool manufacturing method

Publications (2)

Publication Number Publication Date
JPS63232947A JPS63232947A (en) 1988-09-28
JPH0818238B2 true JPH0818238B2 (en) 1996-02-28

Family

ID=13205092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6260487A Expired - Fee Related JPH0818238B2 (en) 1987-03-19 1987-03-19 Polishing tool manufacturing method

Country Status (1)

Country Link
JP (1) JPH0818238B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003080457A (en) * 2001-09-07 2003-03-18 Ebara Corp Cutting tool and manufacturing method therefor
EP3532562B1 (en) 2016-10-25 2021-05-19 3M Innovative Properties Company Magnetizable abrasive particle and method of making the same
CN109862999B (en) 2016-10-25 2022-05-10 3M创新有限公司 Bonded grinding wheel and preparation method thereof
EP3533075A4 (en) 2016-10-25 2020-07-01 3M Innovative Properties Company Method of making magnetizable abrasive particles
EP3532560A4 (en) 2016-10-25 2020-04-01 3M Innovative Properties Company Functional abrasive particles, abrasive articles, and methods of making the same
US11072732B2 (en) 2016-10-25 2021-07-27 3M Innovative Properties Company Magnetizable abrasive particles and abrasive articles including them
CN109890565B (en) 2016-10-25 2021-05-18 3M创新有限公司 Magnetizable abrasive particles and method of making same
US11253972B2 (en) 2016-10-25 2022-02-22 3M Innovative Properties Company Structured abrasive articles and methods of making the same
CN106891211B (en) * 2017-02-20 2019-02-12 大连理工大学 A kind of production method and sheet type workpiece flat surface grinding method of viscoplasticity pad

Also Published As

Publication number Publication date
JPS63232947A (en) 1988-09-28

Similar Documents

Publication Publication Date Title
KR100641550B1 (en) Polishing pad conditioner
US3685216A (en) Slider bearing surface generation
JPH0818238B2 (en) Polishing tool manufacturing method
JPH0639729A (en) Precision grinding wheel and its manufacture
US5573447A (en) Method and apparatus for grinding brittle materials
JP3535411B2 (en) Polishing apparatus and polishing method for ferrule end face of optical connector
US3225497A (en) Method and apparatus for forming a lens surface
US4428165A (en) Flip-flop grinding method
JPH0818239B2 (en) Polishing tool manufacturing method
US4418500A (en) Grinding apparatus
JP4085643B2 (en) Method for manufacturing hemispherical lens
JPH08352B2 (en) Cutting tool polishing method and apparatus
JP3172203B2 (en) Polishing method for optical device
JP3779640B2 (en) Processing method and processing apparatus for wedge lens optical fiber
JP3847825B2 (en) Manufacturing method of optical transmitter array
JPS63109969A (en) End face forming and polishing method for optical fiber
JP2003266289A (en) Optical fiber end face polishing method and ferrule used therein
JPS6035579Y2 (en) spiral polishing plate
JP3667048B2 (en) Precision polishing equipment
JP2003025204A (en) Holding method for lens polishing work holding tool for lens polishing work and lens polishing work method
JPH046119A (en) Method for forming lens
JPH0661701B2 (en) Molding method for glass optical element
JP2004074332A (en) Abrasive, method for manufacturing the same, and method for manufacturing polishing tool
JPH01153277A (en) Polishing tool
JP2005052942A (en) Laser high concentration forming method and system

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees