JP3779640B2 - Processing method and processing apparatus for wedge lens optical fiber - Google Patents

Processing method and processing apparatus for wedge lens optical fiber Download PDF

Info

Publication number
JP3779640B2
JP3779640B2 JP2002121314A JP2002121314A JP3779640B2 JP 3779640 B2 JP3779640 B2 JP 3779640B2 JP 2002121314 A JP2002121314 A JP 2002121314A JP 2002121314 A JP2002121314 A JP 2002121314A JP 3779640 B2 JP3779640 B2 JP 3779640B2
Authority
JP
Japan
Prior art keywords
optical fiber
tip
polishing surface
polishing
wedge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002121314A
Other languages
Japanese (ja)
Other versions
JP2003315563A (en
Inventor
伸介 松井
光司 松永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2002121314A priority Critical patent/JP3779640B2/en
Priority to US10/420,425 priority patent/US6890243B2/en
Publication of JP2003315563A publication Critical patent/JP2003315563A/en
Application granted granted Critical
Publication of JP3779640B2 publication Critical patent/JP3779640B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、光ファイバの先端を研磨して、この先端に例えば所定の半径を持ったシリンドリカルレンズ機能を有する楔形に加工し楔形レンズ光ファイバを形成する楔形レンズ光ファイバの加工方法および加工装置に関する。
【0002】
【従来の技術】
楔形レンズ光ファイバは、図6に示すように、光ファイバ1の先端を両面から斜めにカットして楔形に形成したテーパ面11を有し、このテーパ面11の重なった楔形の先端の楔稜線12にRが付けられたシリンドリカルレンズの機能を備えている。また、この楔稜線12の中心にはファイバコア13の端面が露出している。このように先端が構成される楔形レンズ光ファイバは、扁平な開口を有するレーザダイオードなどとの結合に有効である。
【0003】
特に、長距離光ファイバ通信に必須であるファイバアンプの980nmの波長の励起用レーザは、GaAs系であるが、埋め込み構造が難しく、スポットサイズ変換が困難であり、980nmの波長のレーザを出力するレーザダイオードは例えば図7に示すように水平方向に扁平な開口を有する。このレーザダイオードからの光の出射パターンは例えば縦方向が27〜28°、横方向が4〜6°のように縦方向と横方向でレーザ光の広がり角が大きく異なって、垂直方向に大きく広がり、高性能なファイバアンプのためには楔形レンズ光ファイバによる高効率な光結合が必須である。
【0004】
しかしながら、この楔形レンズ光ファイバによる高効率結合には、レーザの開口が非常に薄いため楔形レンズ光ファイバの先端の半円筒面の半径として3〜6μmという非常に小さい形状が必要となる。また、図6に示す楔形レンズ光ファイバを例にとると、楔稜線12とファイバコア13の中心のずれもサブミクロンの精度が必要となる。すなわち、両テーパ面11は非常に高い対称性を有することが必要である。
【0005】
このような高い精度の精密加工は、従来、回転工具に熟練者が光ファイバの先端を押圧して加工した後、形状測定器または光学特性測定器で計測して修正加工を施すという処理を繰り返して行い、これにより光ファイバの先端を所望の形状に加工している。
【0006】
また、他の加工方法としては、光ファイバの先端を回転軸を有する多軸精密ステージに固定し、コンピュータで複雑な軌跡を精密に制御して所望の形状を加工するなどという方法も考えられる。
【0007】
【発明が解決しようとする課題】
上述した従来の加工方法のうち、回転工具に熟練者が光ファイバの先端を押圧して加工した後、計測および修正加工を行う第1の方法では、一定の熟練を持つ技術者を必要とするとともに、時間がかかるという問題があり、最近のWANなどの急速な展開で光ファイバアンプを取り込もうとする動きの中で光ファイバアンプに用いられる楔形レンズ光ファイバに要望される低コスト大量生産には適さない。
【0008】
また、光ファイバの先端を多軸精密ステージに固定し、コンピュータ制御を行う第2の方法では、非常に高価な装置を必要とするとともに、装置への光ファイバの設置および加工時の原点への設定などのような煩雑で高精度な操作が必要であるという問題があり、同様に低コスト大量生産には適さない。
【0009】
本発明は、上記に鑑みてなされたもので、その目的とするところは、煩雑で高精度な処理や設定を必要とせず、また熟練も必要とせず、操作が簡単で安価な設備を用いて、低コストで大量生産に適する楔形レンズ光ファイバの加工方法および加工装置を提供することにある。
【0010】
【課題を解決するための手段】
上記目的を達成するため、請求項1記載の本発明は、光ファイバの先端を研磨面に接触させて研磨して、この先端を楔形に加工し楔形レンズ光ファイバを形成する楔形レンズ光ファイバの加工方法であって、光ファイバの先端が自由端となるように光ファイバを保持し、光ファイバの先端を研磨面に接触させて研磨面上を摺動させる動作を第1の摺動方向および該第1の摺動方向と反対方向の第2の摺動方向に複数回繰り返し行う往復動作を、前記光ファイバの先端と研磨面との接触の度合いが連続的に変化するように、前記光ファイバを保持する位置と研磨面との間の距離を変化させる領域を少なくとも一部に設けた領域の間で行うと共に、摺動方向とは反対方向に光ファイバの先端を研磨面上で撓ませながら、研磨面と光ファイバの先端との間で相対的に行わせることを特徴とする楔形レンズ光ファイバの加工方法であることを要旨とする。
【0011】
請求項1記載の本発明にあっては、光ファイバの先端を研磨面に接触させて光ファイバの先端を研磨面上で撓ませながら、第1の摺動方向および第2の摺動方向に研磨面上で摺動させる往復動作を研磨面と光ファイバの先端との間で相対的に複数回繰り返し行って、光ファイバの先端を楔形に加工する際に、光ファイバを保持する位置と研磨面との間の距離が変化して、光ファイバの先端と研磨面との接触の度合いが連続的に変化するため、従来のように熟練を必要とせず、低コストで大量生産可能であるとともに、光ファイバの先端には対称性の高い非常に小さな半円筒形状の曲面を適確に形成でき、レーザダイオードとの高効率な結合が可能である高精度な楔形レンズ光ファイバを形成することができる。
請求項2記載の本発明は、光ファイバの先端を研磨面に接触させて研磨して、この先端を楔形に加工し楔形レンズ光ファイバを形成する楔形レンズ光ファイバの加工方法であって、光ファイバの先端が自由端となるように光ファイバを保持し、光ファイバの先端を研磨面に接触させて研磨面上を摺動させる動作を第1の摺動方向および該第1の摺動方向と反対方向の第2の摺動方向に複数回繰り返し行う往復動作を、前記光ファイバの先端と研磨面との接触の度合いが連続的に変化するように、前記光ファイバを研磨する研磨領域を上辺とし、該研磨領域の両側に設けた非研磨領域を斜辺とする台形状の、光ファイバを保持する位置と研磨面との間の距離を変化させる領域の間で行うと共に、摺動方向とは反対方向に光ファイバの先端を研磨面上で撓ませながら、研磨面と光ファイバの先端との間で相対的に行わせることを特徴とする楔形レンズ光ファイバの加工方法であることを要旨とする。
請求項2記載の本発明にあっては、光ファイバ1は1回の加工においては研磨面の両端側の加工能力のない斜面から研磨面領域に進入し、研磨面を撓みながら通過した後、研磨面から斜面に離脱するようになっている。この結果、台形状の斜めに下がった部分の研磨面の両端側から研磨面に入る場合には、直線状の光ファイバ1をストレスなく滑らかに撓ませることが可能になるとともに、また両端側での伸びた位置での前進および後退の切り替えも容易にしている。
請求項3記載の本発明は、光ファイバの先端を研磨面に接触させて研磨して、この先端を楔形に加工し楔形レンズ光ファイバを形成する楔形レンズ光ファイバの加工方法であって、光ファイバの先端が自由端となるように光ファイバを保持し、光ファイバの先端を研磨面に接触させて研磨面上を摺動させる動作を第1の摺動方向および該第1の摺動方向と反対方向の第2の摺動方向に複数回繰り返し行う往復動作を、前記光ファイバの先端と研磨面との接触の度合いが連続的に変化するように、前記光ファイバを研磨する研磨領域を傾斜させて配設して、光ファイバを保持する位置と研磨面との間の距離を変化させる領域の間で行うと共に、摺動方向とは反対方向に光ファイバの先端を研磨面上で撓ませながら、研磨面と光ファイバの先端との間で相対的に行わせることを特徴とする楔形レンズ光ファイバの加工方法であることを要旨とする。
請求項3記載の本発明にあっては、光ファイバの先端と研磨面との接触角は連続的に変化することができ、これにより光ファイバの先端の楔形状部の更に先の突端の稜線形成部は、曲面加工される。従って、この曲面加工を左右対称な斜面である例えば対称な「へ」の字状または凸形状に形成された研磨面を用いて光ファイバの先端に対して左右対称に行うことにより、対称性のある曲面、すなわち図6で説明するようなシリンドリカルレンズを形成することができる。
請求項4記載の本発明は、前記傾斜させた研磨領域が平面であることを特徴とする請求項3に記載の楔形レンズ光ファイバの加工方法であることを要旨とする。
請求項5記載の本発明は、前記傾斜させた研磨領域が曲面であることを特徴とする請求項3に記載の楔形レンズ光ファイバの加工方法であることを要旨とする。
請求項5¥18記載の本発明にあっては、半円筒でない形状などのようなレンズ形状の精密制御も可能となり、更に高い結合特性も期待することができる。
請求項6記載の本発明は、光ファイバの先端を研磨面に接触させて研磨して、この先端を楔形に加工し楔形レンズ光ファイバを形成する楔形レンズ光ファイバの加工方法であって、光ファイバの先端が自由端となるように光ファイバを保持し、光ファイバの先端を研磨面に接触させて研磨面上を摺動させる動作を第1の摺動方向および該第1の摺動方向と反対方向の第2の摺動方向に複数回繰り返し行う往復動作を、前記光ファイバの先端と研磨面との接触の度合いが連続的に変化するように、前記光ファイバを研磨する研磨領域を含む領域を中央が凸である三角形状に形成し、光ファイバを保持する位置と研磨面との間の距離を変化させる領域の間で行うと共に、摺動方向とは反対方向に光ファイバの先端を研磨面上で撓ませながら、研磨面と光ファイバの先端との間で相対的に行わせることを特徴とする楔形レンズ光ファイバの加工方法であることを要旨とする。
請求項6記載の本発明にあっては、光ファイバ1のテーパ状に加工された先端を鏡面仕上げ加工して、先端にR面を形成することができる。
請求項7記載の本発明は、前記三角形状の一方の側の斜面を研磨領域とすることを特徴とする請求項6に記載の楔形レンズ光ファイバの加工方法。であることを要旨とする。
請求項7記載の本発明にあっては、斜めシリンドリカルレンズの形成が可能とすることができる。
請求項8記載の本発明は、光ファイバの先端を研磨面に接触させて研磨して、この先端を楔形に加工し楔形レンズ光ファイバを形成する楔形レンズ光ファイバの加工方法であって、光ファイバの先端が自由端となるように光ファイバを保持し、光ファイバの先端を研磨面に接触させて研磨面上を摺動させる動作を第1の摺動方向および該第1の摺動方向と反対方向の第2の摺動方向に複数回繰り返し行う往復動作を、前記光ファイバの先端と研磨面との接触の度合いが連続的に変化するように、前記光ファイバを研磨する研磨領域を台形の上辺と斜辺に設けて、光ファイバを保持する位置と研磨面との間の距離を変化させる領域の間で行うと共に、摺動方向とは反対方向に光ファイバの先端を研磨面上で撓ませながら、研磨面と光ファイバの先端との間で相対的に行わせることを特徴とする楔形レンズ光ファイバの加工方法であることを要旨とする。
請求項8記載の本発明にあっては、テーパ加工と先球加工を同時に行うことが可能とすることができる。
【0012】
また、請求項記載の本発明は、請求項乃至記載の発明において、前記往復動作が、第1の摺動方向における研磨量と第2の摺動方向における研磨量が等しいように複数回繰り返すことを要旨とする。
【0013】
請求項記載の本発明にあっては、往復動作を第1の摺動方向における研磨量と第2の摺動方向における研磨量が等しいように複数回繰り返すため、光ファイバの先端に対称性の高い小さな半円筒形状の曲面を適確に形成することができる。
【0014】
更に、請求項10記載の本発明は、請求項1または記載の発明において、前記往復動作が、直線往復動作であることを要旨とする。
【0017】
また、請求項11記載の本発明は、請求項1乃至10のいずれか1項に記載の発明において、前記往復動作前において光ファイバに弾性素材をコートする前置工程を有することを要旨とする。
【0018】
更に、請求項12記載の本発明は、請求項1乃至11のいずれか1項に記載の発明において、前記研磨面が、前記往復動作の方向に対して所定の有限長を有することを要旨とする。
【0019】
請求項13記載の本発明は、請求項1乃至12のいずれか1項に記載の発明において、前記研磨面の前記往復動作方向の形状が往復動作の中心に対して対称であることを要旨とする。
【0021】
請求項14記載の本発明は、光ファイバの先端を研磨面に接触させて研磨して、この先端を楔形に加工し楔形レンズ光ファイバを形成する楔形レンズ光ファイバの加工装置であって、光ファイバの先端が自由端となるように光ファイバを保持する保持手段と、光ファイバの先端を研磨する研磨面と、光ファイバを研磨面に接触させる接触手段と、光ファイバの先端を研磨面に接触させて研磨面上を摺動させる動作を第1の摺動方向および該第1の摺動方向と反対方向の第2の摺動方向に複数回繰り返し行う往復動作を、前記光ファイバの先端と研磨面との接触の度合いが連続的に変化するように、光ファイバを保持する位置と研磨面との間の距離を変化させる領域を少なくとも一部に設けた領域の間で行うと共に、摺動方向とは反対方向に光ファイバの先端を研磨面上で撓ませながら、研磨面と光ファイバの先端との間で相対的に行わせるように前記保持手段および研磨面の動作を制御する往復動作手段とを特徴とする楔形レンズ光ファイバの加工装置であることを要旨とする。
【0022】
請求項14記載の本発明にあっては、光ファイバの先端を研磨面に接触させて光ファイバの先端を研磨面上で撓ませながら、第1の摺動方向および第2の摺動方向に研磨面上で摺動させる往復動作を研磨面と光ファイバの先端との間で相対的に複数回繰り返し行って、光ファイバの先端を楔形に加工する際に、光ファイバを保持する位置と研磨面との間の距離が変化して、光ファイバの先端と研磨面との接触の度合いが連続的に変化するため、従来のように熟練を必要とせず、低コストで大量生産可能であるとともに、光ファイバの先端には対称性の高い非常に小さな半円筒形状の曲面を適確に形成でき、レーザダイオードとの高効率な結合が可能である高精度な楔形レンズ光ファイバを形成することができる。
請求項15記載の本発明は、光ファイバの先端を研磨面に接触させて研磨して、この先端を楔形に加工し楔形レンズ光ファイバを形成する楔形レンズ光ファイバの加工装置であって、光ファイバの先端が自由端となるように光ファイバを保持する保持手段と、光ファイバの先端を研磨する研磨面と、光ファイバを研磨面に接触させる接触手段と、光ファイバの先端を研磨面に接触させて研磨面上を摺動させる動作を第1の摺動方向および該第1の摺動方向と反対方向の第2の摺動方向に複数回繰り返し行う往復動作を、前記光ファイバの先端と研磨面との接触の度合いが連続的に変化するように、前記光ファイバを研磨する研磨領域を上辺とし、該研磨領域の両側に設けた非研磨領域を斜辺とする台形状の、光ファイバを保持する位置と研磨面との間の距離を変化させる領域の間で行うと共に、摺動方向とは反対方向に光ファイバの先端を研磨面上で撓ませながら、研磨面と光ファイバの先端との間で相対的に行わせるように前記保持手段および研磨面の動作を制御する往復動作手段とを特徴とする楔形レンズ光ファイバの加工装置であることを要旨とする。
請求項15記載の本発明にあっては、光ファイバは1回の加工においては研磨面の両端側の加工能力のない斜面から研磨面領域に進入し、研磨面を撓みながら通過した後、研磨面から斜面に離脱するようになっている。この結果、台形状の斜めに下がった部分の研磨面の両端側から研磨面に入る場合には、直線状の光ファイバをストレスなく滑らかに撓ませることが可能になるとともに、また両端側での伸びた位置での前進および後退の切り替えも容易にしている。
請求項16記載の本発明は、光ファイバの先端を研磨面に接触させて研磨して、この先端を楔形に加工し楔形レンズ光ファイバを形成する楔形レンズ光ファイバの加工装置であって、光ファイバの先端が自由端となるように光ファイバを保持手段と、光ファイバの先端を研磨する研磨面と、光ファイバを研磨面に接触させる接触手段と、光ファイバの先端を研磨面に接触させて研磨面上を摺動させる動作を第1の摺動方向および該第1の摺動方向と反対方向の第2の摺動方向に複数回繰り返し行う往復動作を、前記光ファイバの先端と研磨面との接触の度合いが連続的に変化するように、前記光ファイバを研磨する研磨領域を傾斜させて配設して、光ファイバを保持する位置と研磨面との間の距離を変化させる領域の間で行うと共に、摺動方向とは反対方向に光ファイバの先端を研磨面上で撓ませながら、研磨面と光ファイバの先端との間で相対的に行わせるように前記保持手段および研磨面の動作を制御する往復動作手段とを特徴とする楔形レンズ光ファイバの加工装置であることを要旨とする。
請求項16記載の本発明にあっては、光ファイバの先端と研磨面との接触角は連続的に変化することができ、これにより光ファイバ1の先端の楔形状部の更に先の突端の稜線形成部は、曲面加工される。従って、この曲面加工を左右対称な斜面である例えば対称な「へ」の字状または凸形状に形成された研磨面を用いて光ファイバの先端に対して左右対称に行うことにより、対称性のある曲面、すなわち図6で説明するようなシリンドリカルレンズを形成することができる。
請求項17記載の本発明は、前記傾斜させた研磨領域が平面であることを特徴とする請求項16に記載の楔形レンズ光ファイバの加工装置であることを要旨とする。
請求項18記載の本発明は、前記傾斜させた研磨領域が曲面であることを特徴とする請求項16に記載の楔形レンズ光ファイバの加工装置であることを要旨とする。
請求項18記載の本発明にあっては、半円筒でない形状などのようなレンズ形状の精密制御も可能となり、更に高い結合特性も期待することができる。
請求項19記載の本発明は、光ファイバの先端を研磨面に接触させて研磨して、この先端を楔形に加工し楔形レンズ光ファイバを形成する楔形レンズ光ファイバの加工装置であって、光ファイバの先端が自由端となるように光ファイバを保持手段と、光ファイバの先端を研磨する研磨面と、光ファイバを研磨面に接触させる接触手段と、光ファイバの先端を研磨面に接触させて研磨面上を摺動させる動作を第1の摺動方向および該第1の摺動方向と反対方向の第2の摺動方向に複数回繰り返し行う往復動作を、前記光ファイバの先端と研磨面との接触の度合いが連続的に変化するように、前記光ファイバを研磨する研磨領域を含む領域を中央が凸である三角形状に形成し、光ファイバを保持する位置と研磨面との間の距離を変化させる領域の間で行うと共に、摺動方向とは反対方向に光ファイバの先端を研磨面上で撓ませながら、研磨面と光ファイバの先端との間で相対的に行わせるように前記保持手段および研磨面の動作を制御する往復動作手段とを特徴とする楔形レンズ光ファイバの加工装置であることを要旨とする。
請求項19記載の本発明にあっては、光ファイバ1のテーパ状に加工された先端を鏡面仕上げ加工して、先端にR面を形成することができる。
請求項20記載の本発明は、前記三角形状の一方の側の斜面を研磨領域とすることを特徴とする請求項19記載の楔形レンズ光ファイバの加工装置であることを要旨とする。
請求項20記載の本発明にあっては、斜めシリンドリカルレンズの形成が可能とすることができる。
請求項21記載の本発明は、光ファイバの先端を研磨面に接触させて研磨して、この先端を楔形に加工し楔形レンズ光ファイバを形成する楔形レンズ光ファイバの加工装置であって、光ファイバの先端が自由端となるように光ファイバを保持手段と、光ファイバの先端を研磨する研磨面と、光ファイバを研磨面に接触させる接触手段と、光ファイバの先端を研磨面に接触させて研磨面上を摺動させる動作を第1の摺動方向および該第1の摺動方向と反対方向の第2の摺動方向に複数回繰り返し行う往復動作を、 前記光ファイバの先端と研磨面との接触の度合いが連続的に変化するように、前記光ファイバを研磨する研磨領域を台形の上辺と斜辺に設けて、光ファイバを保持する位置と研磨面との間の距離を変化させる領域の間で行うと共に、摺動方向とは反対方向に光ファイバの先端を研磨面上で撓ませながら、研磨面と光ファイバの先端との間で相対的に行わせるように前記保持手段および研磨面の動作を制御する往復動作手段とを特徴とする楔形レンズ光ファイバの加工装置であることを要旨とする。
請求項21記載の本発明にあっては、テーパ加工と先球加工を同時に行うことが可能とすることができる。
【0023】
請求項22記載の本発明は、請求項21記載の発明において、前記往復動作手段が、第1の摺動方向における研磨量と第2の摺動方向における研磨量が等しいように往復動作を複数回繰り返すように構成されていることを要旨とする。
【0024】
請求項22記載の本発明にあっては、往復動作を第1の摺動方向における研磨量と第2の摺動方向における研磨量が等しいように複数回繰り返すため、光ファイバの先端には対称性の高い小さな半円筒形状の曲面を適確に形成することができる。
【0025】
また、請求項23記載の本発明は、請求項14または22記載の発明において、前記往復動作が、直線往復動作であることを要旨とする。
【0028】
請求項24記載の本発明は、請求項14乃至23のいずれか1項に記載の発明において、前記光ファイバが、弾性素材をコートされたものであることを要旨とする。
【0029】
また、請求項25記載の本発明は、請求項14乃至24のいずれか1項に記載の発明において、前記研磨面が、前記往復動作の方向に対して所定の有限長を有することを要旨とする。
【0030】
更に、請求項26記載の本発明は、請求項14乃至25のいずれか1項に記載の発明において、前記研磨面の前記往復動作方向の形状が往復動作の中心に対して対称であることを要旨とする。
【0032】
【発明の実施の形態】
以下、図面を用いて本発明の実施の形態を説明する。図1は、本発明の一実施形態に係る楔形レンズ光ファイバの加工方法を説明するための図である。
【0033】
同図に示す加工方法では、光ファイバ1をファイバ保持部2で垂直に保持し、このファイバ保持部2の下方に延出して垂れた光ファイバ1の先端を研磨フィルム3の研磨面3aに接触させる。すなわち、光ファイバ1を研磨面3aから所定の高さの所でファイバ保持部2により保持する。なお、この時、ファイバ保持部2の下方に延出した光ファイバ1の長さがファイバ保持部2と研磨面3aとの間の距離よりも長いように設定し、これにより下方に垂れた光ファイバ1の先端が研磨面3aにおいて図示のように撓むようにする。すなわち、光ファイバ1の先端を研磨面3aに接触させながらファイバ保持部2を矢印21で示す方向に移動させて光ファイバ1の先端を研磨面3aに対して摺動させると、光ファイバ1の先端はこの摺動方向とは逆方向に撓むことになる。この光ファイバ1の先端が研磨面3aにおいて撓む状態は、A部として拡大して図1(b)に示すように、接触角4を持って光ファイバ1の先端が研磨面3aに対して撓むことになるが、この接触角4で光ファイバ1の先端の加工角度が決まることになる。
【0034】
上述したように、光ファイバ1をファイバ保持部2で保持し、光ファイバ1の先端を研磨面3aに接触させた後、矢印21で示す方向にファイバ保持部2を移動させるかまたは研磨フィルム3を移動させることにより、すなわち矢印21で示す方向にファイバ保持部2または研磨フィルム3を相対的に移動させることにより、光ファイバ1の先端を研磨面3a上で摺動させることができ、この摺動動作、すなわち光ファイバ1の先端を研磨面3a上で摺動させる動作を矢印21で示すように第1の摺動方向および該第1の摺動方向と反対の第2の摺動方向に直線的に複数回繰り返し行う往復動作を、摺動方向とは反対方向に光ファイバ1の先端を研磨面3aに接触させて撓ませながら、研磨面3aと光ファイバ1の先端との間で相対的に行わせる。
【0035】
このような往復動作においては、光ファイバ1の高い材料的および機械的質性および高い形状精度を利用することにより光ファイバ1の先端を所望の楔形状に高い精度で加工することができる。本実施形態で対象とするミクロ的な鏡面形状を得る研磨加工において加工精度は加工量と加工形状で決まるが、加工量は加工荷重と相対接触量(研磨面と被加工物との相対的な摺動距離)の積に比例して決まり、また加工形状はこの研磨量と、研磨面と被加工物の干渉におけるその干渉面とで決まる。従って、これらの量を精密に制御することにより精密加工を行うことができる。
【0036】
また、光ファイバ1の先端を研磨面3a上で摺動させる往復動作では、光ファイバ1の先端が研磨面3aに接触している加工点において光ファイバ1の先端の撓みにより研磨面3aに対する押圧が発生し、これが加工荷重となる。この荷重は光ファイバ1が撓むことによる弾性によって発生するものであるが、上述したように光ファイバ1は材料的に均質で、形状精度が良好であるため、この弾性力を高い精度で制御再現させることができる。また、摺動距離は光ファイバ1が研磨面3aを横切る長さで厳密に決まる。更に、光ファイバ1の先端の楔形状のテーパ角度(形状)は光ファイバ1の研磨面3aへの接触角度で決まるが、この接触角度も撓み形状で厳密に制御可能である。このような原理に基づき本実施形態の光ファイバの先端の楔形状または楔レンズ形状の加工は精密に行うことができる。
【0037】
前述したように、楔形レンズ光ファイバは先端の楔形状部の楔稜線とファイバコアの中心のずれもサブミクロンの精度が必要となり、楔形状部の両テーパ面は非常に高い対称性を有することが必要であるが、本実施形態の加工方法では、対称性が非常に良い楔形状加工を行うことが可能である。すなわち、図1で説明したように、光ファイバ1を研磨面3aから所定の高さで垂直にファイバ保持部2で保持し、研磨フィルム3上でファイバ保持部2を垂直軸に対して回転させずに往復させる。図1において、右方向に矢印21に沿って移動させる時には、図1において向かって光ファイバ1の先端の右側のテーパ面が加工され、逆の左方向に移動させる時には、光ファイバ1の先端の左側のテーパ面が加工されるというように左右対称に光ファイバ1の先端は同一の撓み形状を示すことがわかる。
【0038】
また、1往復でそれぞれのテーパ面は同一の距離を加工面と相対運動する。すなわち、往復動作は第1の摺動方向における研磨量と第1の摺動方向と反対の第2の摺動方向における研磨量が等しいように複数回繰り返す。従って、1往復の加工で楔形状部の両テーパ面は同一の加工量、同一の形状に加工でき、極めて対称性の良い楔形状の加工が可能となる。通常、楔形状に到達するためには複数回の往復加工を行う。この場合、両テーパ面は逐次微小加工され、時間経過による加工状況の変化(例えば、加工による研磨面の能力低下)の影響も避けられる。
【0039】
更に、図1に示すように、研磨フィルム3は、左右の両端部が斜め下方に下がって台形状に構成されていて、研磨面3aは台形部分の上面のみに設けられ、この部分が研磨領域になっている。従って、往復押動において、光ファイバ1の先端が研磨フィルム3の台形部の上面の研磨面3aから左右に外れて、斜めに下がった両端側に移動した場合には、光ファイバ1の先端は研磨面3aに接触せず、真っ直ぐに伸びることができるようになっている。そして、このように真っ直ぐに伸びた状態から再度逆方向に移動して研磨面3aに向かって進むと、この研磨面3aに当たった所から光ファイバ1の先端は再度撓んで研磨面3aに接触して研磨されることになる。そして、研磨面3aに接触して移動している間は光ファイバ1の先端は研磨面3aで撓みながら研磨されるが、研磨面3aを通過して台形の斜めに下がった部分に移動すると、光ファイバ1の先端は研磨面3aとの接触から解放されて自由になり、下方に真っ直ぐに伸びる。すなわち研磨面3aは往復動作の方向に対して所定の有限長である。
【0040】
このように、光ファイバ1は1回の加工においては研磨面3aの両端側の加工能力のない斜面から研磨面3a領域に進入し、研磨面3aを撓みながら通過した後、研磨面3aから斜面に離脱するようになっている。この結果、台形状の斜めに下がった部分の研磨面3aの両端側から研磨面3aに入る場合には、直線状の光ファイバ1をストレスなく滑らかに撓ませることが可能になるとともに、また両端側での伸びた位置での前進および後退の切り替えも容易にしている。
【0041】
次に、図2を参照して、本発明の他の実施形態に係る楔形レンズ光ファイバの加工方法について説明する。
【0042】
本実施形態では、図2(a)に示すように、研磨面3aを形成している研磨フィルム3は、光ファイバ1を固定的に保持しているファイバ保持部2に対して傾斜して配設され、これにより光ファイバ1を保持しているファイバ保持部2の位置、すなわちライン23で示す位置と研磨面3aとの間の距離は図で右になる程長くなるように連続的に変化している。
【0043】
図2(a)において左側に位置する光ファイバ1の場合には、その光ファイバ1を保持しているファイバ保持部2と研磨面3aとの間の距離が短くなっているため、ファイバ保持部2の下方に延出した光ファイバ1は先端が研磨面3aに対して強く当たって大きく撓み、すなわち大きな押圧力で接触し、光ファイバ1の先端は図2(b)に示すように深く傾斜し、接触角4は小さくなり、光ファイバ1の先端の楔形状部の更に先の突端の稜線形成部も中心から外れた部分が研磨面3aに接触するようになっている。
【0044】
これに対して、図2(a)において右側に位置する光ファイバ1の場合には、その光ファイバ1を保持しているファイバ保持部2と研磨面3aとの間の距離が長くなっているため、ファイバ保持部2の下方に延出した光ファイバ1は先端が研磨面3aに対して弱く当たって小さく撓み、すなわち小さな押圧力で接触し、光ファイバ1の先端は図2(c)に示すように浅く傾斜し、接触角4は大きくなり、光ファイバ1の先端の楔形状部の更に先の突端の稜線形成部も中心部分が研磨面3aに接触するようになっている。
【0045】
従って、光ファイバ1をファイバ保持部2で保持して、図2(a)に示すように傾斜して配設された研磨面3aに対して光ファイバ1の先端を摺動させることにより、光ファイバ1の先端と研磨面3aとの接触角4は連続的に変化することができ、これにより光ファイバ1の先端の楔形状部の更に先の突端の稜線形成部は、曲面加工される。従って、この曲面加工を左右対称な斜面である例えば対称な「へ」の字状または凸形状に形成された研磨面3aを用いて光ファイバ1の先端に対して左右対称に行うことにより、対称性のある曲面、すなわち図6で説明したようなシリンドリカルレンズを形成することができる。
【0046】
なお、図2では、研磨面3aを構成している斜面の形状は平面であるが、研磨面3aを曲面状に形成することにより、半円筒でない形状などのようなレンズ形状の精密制御も可能となり、更に高い結合特性も期待することができる。
【0047】
上述した実施形態では、光ファイバ1自体の精密さを利用して、加工前の光ファイバの精密な位置決めの必要がない経済的な加工装置で熟練技術と測定との組合せを必要とすることなく、簡単で高い精度の加工を経済的に可能としているものである。このような加工方法を同様に利用することにより、多数本の光ファイバを一括して加工することが可能な低コスト大量生産を実現することもできる。
【0048】
次に、図3および図4を参照して、実際の加工工程について説明する。
【0049】
まず、第1の加工工程は粗加工であり、この粗加工では、図3に示すように、図1と同様に両端側が斜め下方に下がって台形状に構成された研磨フィルム3を用いて、すなわち台形状の研磨フィルム3の上面の研磨面3aを用いて、光ファイバ1の先端をテーパ加工する。このテーパ加工では、比較的粗い砥粒(例えば、粒径5μmのアルミナ)の研磨面3aで光ファイバ1の先端を高速加工し、テーパ面を光ファイバ1の先端に形成する。
【0050】
次に、第2の仕上げ加工工程では、図4に示すように中心が三角形の頂点のように尖った例えば対称な「へ」の字形状の研磨フィルム3の例えば微細シリカ砥粒の研磨面3aを用い、光ファイバ1のテーパ状に加工された先端を鏡面仕上げ加工して、先端にR面を形成する。
【0051】
図5は、上述した第1および第2の加工工程で加工して得られた光ファイバ1の先端の形状を触針式形状測定器で測定した評価結果を示す図である。同図に示すように、光ファイバ1の先端として、ほぼ2.7μmの先端Rが得られた。また、このR面は微細シリカ砥粒の使用により鏡面加工されたものとなっている。
【0052】
上述したように、本実施形態の加工方法によれば、精密な楔形レンズ光ファイバの加工を実現することが可能であり、また粗加工と仕上げ加工の2工程を用いることにより、実用的な時間で加工することができた。また、複数本の光ファイバを保持して同時に一括加工した結果でもすべての光ファイバに同様な加工を行うことができ、多数本の光ファイバを一括して加工する量産性の実現も可能であることがわかった。更に、本実施形態の加工では、光ファイバの突き出し量、光ファイバの保持高さが数十μm程度異なっても光ファイバの撓み形状自体には大きな影響がなく、ほぼ同様な加工形状を得ることも確認した。なお、光ファイバは加工形状、加工条件により加工中の保護のために弾性力の小さい被覆光ファイバを用いることも考えられるが、この場合の被覆光ファイバとしては、メタルコート、カーボンコート、ポリマースキンコーテッド(PSC)の光ファイバまたは通常のプライマリー被覆、更に別途被覆することも考えられる。すなわち、本実施形態では、上述した往復動作を行う前に、光ファイバ1に弾性素材をコートする前置工程を有するものである。
【0053】
また、本発明の別の実施形態としては、研磨面としてテーパ加工と先球加工を同時に行うために、台形形状の全面に研磨剤を設けるもの、または研磨面自体はフラットにしておいて、ファイバ保持部を逆台形の軌跡で運動させる形態なども考えられる。光ファイバの先端のR部の加工において高い対称性を確保するためには、例えば図4に示した研磨面3aの両側の斜面が左右対称であることが必要であるが、これは斜面が曲面である場合も同様である。
【0054】
更に、加工形状のバリエーションとして、楔形レンズ光ファイバの加工を直交する2方向に対して行うことによって、擬似的な先球光ファイバ機能を持たせることが可能である。また、この際もう一方向の加工において光ファイバの先端の曲率半径を変えることも可能である。また、例えば図4において、研磨面3aの片側の斜面に研磨剤を設けずに加工を行うことにより、斜めシリンドリカルレンズの形成も可能となる。
【0055】
【発明の効果】
以上説明したように、本発明によれば、光ファイバの先端を研磨面に接触させて光ファイバの先端を研磨面上で撓ませながら、第1の摺動方向および第2の摺動方向に研磨面上で摺動させる往復動作を研磨面と光ファイバの先端との間で相対的に複数回繰り返し行って、光ファイバの先端を楔形に加工するので、従来のように熟練を必要とせず、低コストで大量生産可能であるとともに、光ファイバの先端には対称性の高い非常に小さな半円筒形状の曲面を形成でき、レーザダイオードとの高効率な結合が可能である高精度な楔形レンズ光ファイバを形成することができる。
【0056】
また、本発明によれば、往復動作を第1の摺動方向における研磨量と第2の摺動方向における研磨量が等しいように複数回繰り返すので、光ファイバの先端には対称性の高い小さな半円筒形状の曲面を適確に形成することができる。
【0057】
更に、本発明によれば、光ファイバを保持する位置と研磨面との間の距離が変化して、光ファイバの先端と研磨面との接触の度合いが連続的に変化するので、光ファイバの先端に対称性の高い小さな半円筒形状の曲面を適確に形成することができる。
【図面の簡単な説明】
【図1】本発明の一実施形態に係る楔形レンズ光ファイバの加工方法を説明するための図である。
【図2】本発明の他の実施形態に係る楔形レンズ光ファイバの加工方法を説明するための図である。
【図3】図1および図2に示す実施形態の楔形レンズ光ファイバの加工方法を用いて説明する実際の加工工程における第1の粗加工工程を説明するための図である。
【図4】図1および図2に示す実施形態の楔形レンズ光ファイバの加工方法を用いて説明する実際の加工工程における図3に続く第2の仕上げ加工工程を説明するための図である。
【図5】図3および図4に示した第1および第2の加工工程で加工して得られた光ファイバの先端の形状を触針式形状測定器で測定した評価結果を示す図である。
【図6】楔形レンズ光ファイバの概観を示す斜視図である。
【図7】980nmの波長のレーザダイオードからの光の出射の様子を示す図である。
【符号の説明】
1 光ファイバ
2 ファイバ保持部
3 研磨フィルム
3a 研磨面
4 接触角
11 テーパ面
12 楔稜線
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a processing method and a processing apparatus for a wedge-shaped optical fiber in which a tip of an optical fiber is polished and processed into a wedge shape having a cylindrical lens function having a predetermined radius at the tip to form a wedge-shaped lens optical fiber. .
[0002]
[Prior art]
As shown in FIG. 6, the wedge lens optical fiber has a tapered surface 11 formed in a wedge shape by obliquely cutting the tip of the optical fiber 1 from both sides, and a wedge ridge line at the tip of the wedge shape where the tapered surface 11 overlaps. 12 has a function of a cylindrical lens with R added thereto. Further, the end face of the fiber core 13 is exposed at the center of the wedge ridge line 12. The wedge-shaped optical fiber having the tip formed in this way is effective for coupling with a laser diode having a flat opening.
[0003]
In particular, the 980 nm wavelength excitation laser of the fiber amplifier, which is essential for long-distance optical fiber communication, is a GaAs type, but it is difficult to embed structure and spot size conversion, and outputs a laser with a wavelength of 980 nm. The laser diode has, for example, a flat opening in the horizontal direction as shown in FIG. The light emission pattern from this laser diode is greatly spread in the vertical direction, with the spread angle of the laser light being greatly different in the vertical direction and the horizontal direction, for example, 27-28 ° in the vertical direction and 4-6 ° in the horizontal direction. For high-performance fiber amplifiers, high-efficiency optical coupling using wedge-shaped optical fibers is essential.
[0004]
However, the high-efficiency coupling by the wedge lens optical fiber requires a very small shape of 3 to 6 μm as the radius of the semi-cylindrical surface at the tip of the wedge lens optical fiber because the laser aperture is very thin. Further, taking the wedge lens optical fiber shown in FIG. 6 as an example, the deviation between the center of the wedge ridgeline 12 and the fiber core 13 also requires submicron accuracy. That is, both tapered surfaces 11 need to have very high symmetry.
[0005]
Such high-precision precision processing is conventionally performed by repeating a process in which a skilled worker presses the tip of an optical fiber into a rotary tool and then performs correction processing by measuring with a shape measuring instrument or an optical property measuring instrument. Thus, the tip of the optical fiber is processed into a desired shape.
[0006]
As another processing method, a method of fixing a tip of an optical fiber to a multi-axis precision stage having a rotation axis and processing a desired shape by precisely controlling a complicated trajectory with a computer may be considered.
[0007]
[Problems to be solved by the invention]
Among the above-described conventional processing methods, the first method for performing measurement and correction processing after an expert presses the tip of the optical fiber on the rotary tool and then processes it requires an engineer with a certain skill. At the same time, there is a problem that it takes time, and for the low-cost mass production required for wedge-shaped lens optical fiber used for optical fiber amplifiers in the movement to incorporate optical fiber amplifiers in the rapid development of recent WAN etc. Not suitable.
[0008]
In addition, the second method in which the tip of the optical fiber is fixed to the multi-axis precision stage and the computer control is performed requires a very expensive device, and the installation of the optical fiber to the device and the return to the origin at the time of processing. There is a problem that a complicated and high-precision operation such as setting is necessary, and it is similarly not suitable for low-cost mass production.
[0009]
The present invention has been made in view of the above, and the object of the present invention is to use complicated and high-precision processing and setting, and does not require skill, and is easy to operate and inexpensive. Another object of the present invention is to provide a wedge lens optical fiber processing method and processing apparatus suitable for mass production at low cost.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, the present invention according to claim 1 provides a tip of an optical fiber. In contact with the polished surface A method of processing a wedge-shaped lens optical fiber by polishing and processing the tip into a wedge shape to form a wedge-shaped lens optical fiber, the optical fiber being held so that the tip of the optical fiber becomes a free end, and the tip of the optical fiber The operation of sliding the surface of the polishing member in contact with the polishing surface is opposite to the first sliding direction and the first sliding direction. direction The reciprocating motion that is repeated a plurality of times in the second sliding direction of A region provided with at least a region in which the distance between the position for holding the optical fiber and the polishing surface is changed so that the degree of contact between the tip of the optical fiber and the polishing surface continuously changes. As well as between A wedge-shaped lens optical fiber processing method characterized in that the optical fiber tip is bent on the polishing surface in a direction opposite to the sliding direction, and is relatively performed between the polishing surface and the optical fiber tip. It is a summary.
[0011]
In the first aspect of the present invention, while the tip of the optical fiber is brought into contact with the polishing surface and the tip of the optical fiber is bent on the polishing surface, the first sliding direction and the second sliding direction are applied. When the tip of the optical fiber is processed into a wedge shape by repeating the reciprocating motion of sliding on the polishing surface relatively multiple times between the polishing surface and the tip of the optical fiber, the position where the optical fiber is held and the polishing are performed. As the distance between the surface changes and the degree of contact between the tip of the optical fiber and the polished surface changes continuously, skill is not required as in the past, and mass production is possible at low cost. It is possible to accurately form a very small semi-cylindrical curved surface with high symmetry at the tip of the optical fiber, and to form a highly accurate wedge-shaped lens optical fiber capable of highly efficient coupling with a laser diode. it can.
According to the present invention, the tip of the optical fiber is In contact with the polished surface A method of processing a wedge-shaped lens optical fiber by polishing and processing the tip into a wedge shape to form a wedge-shaped lens optical fiber, the optical fiber being held so that the tip of the optical fiber becomes a free end, and the tip of the optical fiber The operation of sliding the surface of the polishing member in contact with the polishing surface is opposite to the first sliding direction and the first sliding direction. direction The reciprocating motion that is repeated a plurality of times in the second sliding direction of A base having a polishing region for polishing the optical fiber as an upper side and a non-polishing region provided on both sides of the polishing region as an oblique side so that the degree of contact between the tip of the optical fiber and the polishing surface changes continuously. Between the region of the shape that changes the distance between the holding position of the optical fiber and the polishing surface, A wedge-shaped lens optical fiber processing method characterized in that the optical fiber tip is bent on the polishing surface in a direction opposite to the sliding direction, and is relatively performed between the polishing surface and the optical fiber tip. It is a summary.
In the present invention according to claim 2, after the optical fiber 1 enters the polishing surface region from a slope having no processing capability on both ends of the polishing surface in one processing, and passes through the polishing surface while bending, Detach from the polished surface to the slope. As a result, when entering the polishing surface from both ends of the trapezoidally slanted portion of the polishing surface, the straight optical fiber 1 can be smoothly bent without stress, and at both ends. It is also easy to switch forward and backward at the extended position.
In the present invention as set forth in claim 3, the tip of the optical fiber is In contact with the polished surface A method of processing a wedge-shaped lens optical fiber by polishing and processing the tip into a wedge shape to form a wedge-shaped lens optical fiber, the optical fiber being held so that the tip of the optical fiber becomes a free end, and the tip of the optical fiber The operation of sliding the surface of the polishing member in contact with the polishing surface is opposite to the first sliding direction and the first sliding direction. direction The reciprocating motion that is repeated a plurality of times in the second sliding direction of The polishing region for polishing the optical fiber is inclined and arranged so that the degree of contact between the tip of the optical fiber and the polishing surface changes continuously, and the position of holding the optical fiber and the polishing surface Between the areas that change the distance between, A wedge-shaped lens optical fiber processing method characterized in that the optical fiber tip is bent on the polishing surface in a direction opposite to the sliding direction, and is relatively performed between the polishing surface and the optical fiber tip. It is a summary.
According to the third aspect of the present invention, the contact angle between the tip of the optical fiber and the polishing surface can be continuously changed, whereby the ridge line of the tip further forward of the wedge-shaped portion at the tip of the optical fiber. The forming part is curved. Therefore, this curved surface processing is performed symmetrically with respect to the tip of the optical fiber by using a polishing surface formed in a symmetrical “he” shape or convex shape, which is a symmetrical slope, for example. A certain curved surface, that is, a cylindrical lens as illustrated in FIG. 6 can be formed.
The gist of the present invention described in claim 4 is the wedge lens optical fiber processing method according to claim 3, wherein the inclined polished region is a flat surface.
The gist of the present invention described in claim 5 is the wedge lens optical fiber processing method according to claim 3, wherein the inclined polished region is a curved surface.
In the present invention described in claim 5 ¥ 18, it is possible to precisely control the lens shape such as a shape that is not a semi-cylindrical shape, and it is possible to expect higher coupling characteristics.
In the present invention of claim 6, the tip of the optical fiber is In contact with the polished surface A method of processing a wedge-shaped lens optical fiber by polishing and processing the tip into a wedge shape to form a wedge-shaped lens optical fiber, the optical fiber being held so that the tip of the optical fiber becomes a free end, and the tip of the optical fiber The operation of sliding the surface of the polishing member in contact with the polishing surface is opposite to the first sliding direction and the first sliding direction. direction The reciprocating motion that is repeated a plurality of times in the second sliding direction of A region including a polishing region for polishing the optical fiber is formed in a triangular shape having a convex center so as to continuously change the degree of contact between the tip of the optical fiber and the polishing surface, and the optical fiber is held. Between the areas that change the distance between the position and the polishing surface, A wedge-shaped lens optical fiber processing method characterized in that the optical fiber tip is bent on the polishing surface in a direction opposite to the sliding direction, and is relatively performed between the polishing surface and the optical fiber tip. It is a summary.
In the present invention according to the sixth aspect, the tip of the optical fiber 1 processed into a tapered shape can be mirror-finished to form an R surface at the tip.
According to a seventh aspect of the present invention, in the method for processing a wedge-shaped lens optical fiber according to the sixth aspect, the inclined surface on one side of the triangular shape is used as a polishing region. It is a summary.
In the present invention according to claim 7, it is possible to form an oblique cylindrical lens.
In the present invention according to claim 8, the tip of the optical fiber is In contact with the polished surface A method of processing a wedge-shaped lens optical fiber by polishing and processing the tip into a wedge shape to form a wedge-shaped lens optical fiber, the optical fiber being held so that the tip of the optical fiber becomes a free end, and the tip of the optical fiber The operation of sliding the surface of the polishing member in contact with the polishing surface is opposite to the first sliding direction and the first sliding direction. direction The reciprocating motion that is repeated a plurality of times in the second sliding direction of A polishing region for polishing the optical fiber is provided on the upper side and the oblique side of the trapezoid so that the degree of contact between the tip of the optical fiber and the polishing surface changes continuously, and the position for holding the optical fiber and the polishing surface Between the regions that change the distance between, A wedge-shaped lens optical fiber processing method characterized in that the optical fiber tip is bent on the polishing surface in a direction opposite to the sliding direction, and is relatively performed between the polishing surface and the optical fiber tip. It is a summary.
In the present invention according to claim 8, it is possible to perform the taper processing and the tip ball processing simultaneously.
[0012]
Claims 9 The invention as described is claimed. 1 Thru 8 The gist of the invention is that the reciprocating operation is repeated a plurality of times so that the polishing amount in the first sliding direction is equal to the polishing amount in the second sliding direction.
[0013]
Claim 9 In the described invention, since the reciprocating operation is repeated a plurality of times so that the polishing amount in the first sliding direction is equal to the polishing amount in the second sliding direction, the tip of the optical fiber is small and highly symmetric. A semi-cylindrical curved surface can be formed accurately.
[0014]
Further claims 10 The present invention as described in claim 1 or 9 The gist of the invention is that the reciprocating operation is a linear reciprocating operation.
[0017]
Claims 11 The present invention as described in claims 1 to 10 The gist of the invention described in any one of the above is that the optical fiber is coated with an elastic material before the reciprocating operation.
[0018]
Further claims 12 The present invention as described in claims 1 to 11 The gist of the invention described in any one of the above is that the polishing surface has a predetermined finite length with respect to the direction of the reciprocating motion.
[0019]
Claim 13 The present invention as described in claims 1 to 12 The gist of the invention described in any one of the above is that the shape of the polishing surface in the reciprocating direction is symmetric with respect to the center of the reciprocating operation.
[0021]
Claim 14 The present invention as described describes the tip of an optical fiber. In contact with the polished surface A wedge-shaped lens optical fiber processing apparatus that polishes and forms a wedge-shaped lens optical fiber by processing the tip into a wedge shape, and holding means for holding the optical fiber so that the tip of the optical fiber becomes a free end; A polishing surface for polishing the tip of the fiber, contact means for bringing the optical fiber into contact with the polishing surface, and an operation of sliding the tip of the optical fiber on the polishing surface by contacting the polishing surface with the first sliding direction and the Opposite to the first sliding direction direction The reciprocating motion that is repeated a plurality of times in the second sliding direction of Between at least a part of the region in which the distance between the position where the optical fiber is held and the polishing surface is changed so that the degree of contact between the tip of the optical fiber and the polishing surface changes continuously. As well as The operation of the holding means and the polishing surface is controlled so as to be relatively performed between the polishing surface and the tip of the optical fiber while bending the tip of the optical fiber on the polishing surface in the direction opposite to the sliding direction. The gist of the present invention is a processing apparatus for wedge-shaped lens optical fibers characterized by reciprocating means.
[0022]
Claim 14 In the present invention described above, the tip of the optical fiber is brought into contact with the polishing surface and the tip of the optical fiber is bent on the polishing surface, while the first sliding direction and the second sliding direction are on the polishing surface. When the tip of the optical fiber is processed into a wedge shape by repeating the reciprocating motion of sliding at a plurality of times relatively between the polishing surface and the tip of the optical fiber, the position of holding the optical fiber and the polishing surface As the distance between them changes and the degree of contact between the tip of the optical fiber and the polishing surface changes continuously, it is possible to mass-produce the optical fiber at low cost without requiring skill as in the prior art. It is possible to accurately form a very small semi-cylindrical curved surface with high symmetry at the tip of the optical fiber, and it is possible to form a highly accurate wedge lens optical fiber capable of highly efficient coupling with a laser diode.
The present invention according to claim 15 provides a tip of an optical fiber. In contact with the polished surface A wedge-shaped lens optical fiber processing apparatus that polishes and forms a wedge-shaped lens optical fiber by processing the tip into a wedge shape, and holding means for holding the optical fiber so that the tip of the optical fiber becomes a free end; A polishing surface for polishing the tip of the fiber, contact means for bringing the optical fiber into contact with the polishing surface, and an operation of sliding the tip of the optical fiber on the polishing surface by contacting the polishing surface with the first sliding direction and the Opposite to the first sliding direction direction The reciprocating motion that is repeated a plurality of times in the second sliding direction of A base having a polishing region for polishing the optical fiber as an upper side and a non-polishing region provided on both sides of the polishing region as an oblique side so that the degree of contact between the tip of the optical fiber and the polishing surface changes continuously. Between the region of the shape that changes the distance between the holding position of the optical fiber and the polishing surface, The operation of the holding means and the polishing surface is controlled so as to be relatively performed between the polishing surface and the tip of the optical fiber while bending the tip of the optical fiber on the polishing surface in the direction opposite to the sliding direction. The gist of the present invention is a processing apparatus for wedge-shaped lens optical fibers characterized by reciprocating means.
In the present invention according to claim 15, the optical fiber enters the polishing surface region from a slope having no processing capability on both ends of the polishing surface in one processing, passes through the polishing surface while being bent, and then polished. It is designed to leave from the surface to the slope. As a result, when entering the polished surface from both ends of the trapezoidally slanted portion of the polished surface, it becomes possible to bend the straight optical fiber smoothly without stress, and at both ends. It also facilitates switching between forward and backward in the extended position.
The present invention according to claim 16 provides the tip of the optical fiber. In contact with the polished surface A wedge-shaped lens optical fiber processing apparatus that polishes and processes the tip into a wedge shape to form a wedge-shaped lens optical fiber, the optical fiber holding means so that the tip of the optical fiber becomes a free end, and the optical fiber A polishing surface for polishing the tip, contact means for bringing the optical fiber into contact with the polishing surface, and an operation of causing the tip of the optical fiber to contact the polishing surface and sliding on the polishing surface are the first sliding direction and the first Opposite to the sliding direction direction The reciprocating motion that is repeated a plurality of times in the second sliding direction of The polishing region for polishing the optical fiber is inclined and arranged so that the degree of contact between the tip of the optical fiber and the polishing surface changes continuously, and the position of holding the optical fiber and the polishing surface Between the areas that change the distance between, The operation of the holding means and the polishing surface is controlled so as to be relatively performed between the polishing surface and the tip of the optical fiber while bending the tip of the optical fiber on the polishing surface in the direction opposite to the sliding direction. The gist of the present invention is a processing apparatus for wedge-shaped lens optical fibers characterized by reciprocating means.
In the present invention as set forth in claim 16, the contact angle between the tip of the optical fiber and the polishing surface can be continuously changed, whereby the tip of the wedge-shaped portion at the tip of the optical fiber 1 is further changed. The ridge line forming part is curved. Therefore, this curved surface processing is performed symmetrically with respect to the tip of the optical fiber by using a polishing surface formed in a symmetrical “he” shape or convex shape, which is a symmetrical slope, for example. A certain curved surface, that is, a cylindrical lens as illustrated in FIG. 6 can be formed.
The present invention according to claim 17 is characterized in that the inclined polishing region is a plane. 16 The processing apparatus of the wedge-shaped lens optical fiber described in the above.
The present invention according to claim 18 is characterized in that the inclined polishing region is a curved surface. 16 The processing apparatus of the wedge-shaped lens optical fiber described in the above.
In the present invention according to the eighteenth aspect, it is possible to precisely control the lens shape such as a shape that is not a semi-cylindrical shape, and further expect high coupling characteristics.
The present invention according to claim 19 provides the tip of the optical fiber. In contact with the polished surface A wedge-shaped lens optical fiber processing apparatus that polishes and processes the tip into a wedge shape to form a wedge-shaped lens optical fiber, the optical fiber holding means so that the tip of the optical fiber becomes a free end, and the optical fiber A polishing surface for polishing the tip, contact means for bringing the optical fiber into contact with the polishing surface, and an operation of causing the tip of the optical fiber to contact the polishing surface and sliding on the polishing surface are the first sliding direction and the first Opposite to the sliding direction direction The reciprocating motion that is repeated a plurality of times in the second sliding direction of A region including a polishing region for polishing the optical fiber is formed in a triangular shape having a convex center so as to continuously change the degree of contact between the tip of the optical fiber and the polishing surface, and the optical fiber is held. Between the areas that change the distance between the position and the polishing surface, The operation of the holding means and the polishing surface is controlled so as to be relatively performed between the polishing surface and the tip of the optical fiber while bending the tip of the optical fiber on the polishing surface in the direction opposite to the sliding direction. The gist of the present invention is a processing apparatus for wedge-shaped lens optical fibers characterized by reciprocating means.
In the present invention according to the nineteenth aspect, the tip of the optical fiber 1 processed into a tapered shape can be mirror-finished to form an R surface at the tip.
The present invention according to claim 20 is characterized in that a slope on one side of the triangular shape is a polishing region. 19 The gist of the present invention is a processing apparatus for a wedge-shaped optical fiber.
In the present invention according to the twentieth aspect, it is possible to form an oblique cylindrical lens.
The present invention as set forth in claim 21, wherein the tip of the optical fiber is In contact with the polished surface A wedge-shaped lens optical fiber processing apparatus that polishes and processes the tip into a wedge shape to form a wedge-shaped lens optical fiber, the optical fiber holding means so that the tip of the optical fiber becomes a free end, and the optical fiber A polishing surface for polishing the tip, contact means for bringing the optical fiber into contact with the polishing surface, and an operation of causing the tip of the optical fiber to contact the polishing surface and sliding on the polishing surface are the first sliding direction and the first Opposite to the sliding direction direction The reciprocating motion that is repeated a plurality of times in the second sliding direction of A polishing region for polishing the optical fiber is provided on the upper side and the oblique side of the trapezoid so that the degree of contact between the tip of the optical fiber and the polishing surface changes continuously, and the position for holding the optical fiber and the polishing surface Between the regions that change the distance between, The operation of the holding means and the polishing surface is controlled so as to be relatively performed between the polishing surface and the tip of the optical fiber while bending the tip of the optical fiber on the polishing surface in the direction opposite to the sliding direction. The gist of the present invention is a processing apparatus for wedge-shaped lens optical fibers characterized by reciprocating means.
In the present invention according to claim 21, it is possible to perform the taper processing and the tip ball processing simultaneously.
[0023]
Claim 22 The invention as described is claimed. 21 In the described invention, the reciprocating means is configured to repeat the reciprocating operation a plurality of times so that the polishing amount in the first sliding direction and the polishing amount in the second sliding direction are equal. To do.
[0024]
Claim 22 In the described invention, since the reciprocating operation is repeated a plurality of times so that the polishing amount in the first sliding direction is equal to the polishing amount in the second sliding direction, the tip of the optical fiber has high symmetry. A small semi-cylindrical curved surface can be accurately formed.
[0025]
Claims 23 The invention as described is claimed. 14 Or 22 The gist of the invention is that the reciprocating operation is a linear reciprocating operation.
[0028]
Claim 24 The invention as described is claimed. 14 Thru 23 The gist of the invention described in any one of the above is that the optical fiber is coated with an elastic material.
[0029]
Claims 25 The invention as described is claimed. 14 Thru 24 The gist of the invention described in any one of the above is that the polishing surface has a predetermined finite length with respect to the direction of the reciprocating motion.
[0030]
Further claims 26 The invention as described is claimed. 14 Thru 25 The gist of the invention described in any one of the above is that the shape of the polishing surface in the reciprocating direction is symmetric with respect to the center of the reciprocating operation.
[0032]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a diagram for explaining a processing method of a wedge-shaped lens optical fiber according to an embodiment of the present invention.
[0033]
In the processing method shown in the figure, the optical fiber 1 is vertically held by the fiber holding portion 2, and the tip of the optical fiber 1 extending and hanging below the fiber holding portion 2 contacts the polishing surface 3 a of the polishing film 3. Let That is, the optical fiber 1 is held by the fiber holding portion 2 at a predetermined height from the polishing surface 3a. At this time, the length of the optical fiber 1 extending below the fiber holding portion 2 is set to be longer than the distance between the fiber holding portion 2 and the polishing surface 3a. The tip of the fiber 1 is bent as shown in the drawing on the polishing surface 3a. That is, when the tip of the optical fiber 1 is brought into contact with the polishing surface 3a and the fiber holding portion 2 is moved in the direction indicated by the arrow 21 and the tip of the optical fiber 1 is slid with respect to the polishing surface 3a, the optical fiber 1 The tip is bent in the direction opposite to the sliding direction. The state in which the tip of the optical fiber 1 bends on the polishing surface 3a is enlarged as part A and the tip of the optical fiber 1 has a contact angle 4 with respect to the polishing surface 3a as shown in FIG. The contact angle 4 determines the processing angle of the tip of the optical fiber 1.
[0034]
As described above, the optical fiber 1 is held by the fiber holder 2 and the tip of the optical fiber 1 is brought into contact with the polishing surface 3a, and then the fiber holder 2 is moved in the direction indicated by the arrow 21 or the polishing film 3 is moved. , That is, by relatively moving the fiber holder 2 or the polishing film 3 in the direction indicated by the arrow 21, the tip of the optical fiber 1 can be slid on the polishing surface 3a. The moving operation, that is, the operation of sliding the tip of the optical fiber 1 on the polishing surface 3a is performed in the first sliding direction and the second sliding direction opposite to the first sliding direction as indicated by an arrow 21. A reciprocating operation that is repeated a plurality of times in a straight line is relatively made between the polishing surface 3a and the tip of the optical fiber 1 while bending the tip of the optical fiber 1 in contact with the polishing surface 3a in the direction opposite to the sliding direction. Done That.
[0035]
In such reciprocating operation, the tip of the optical fiber 1 can be processed into a desired wedge shape with high accuracy by utilizing the high material and mechanical properties and high shape accuracy of the optical fiber 1. In the polishing process for obtaining the microscopic mirror surface shape targeted in this embodiment, the processing accuracy is determined by the processing amount and the processing shape, but the processing amount depends on the processing load and the relative contact amount (the relative relationship between the polishing surface and the workpiece). The machining shape is determined by this polishing amount and its interference surface in the interference between the polishing surface and the workpiece. Therefore, precise processing can be performed by precisely controlling these amounts.
[0036]
In the reciprocating operation in which the tip of the optical fiber 1 is slid on the polishing surface 3a, the optical fiber 1 is pressed against the polishing surface 3a by bending of the tip of the optical fiber 1 at a processing point where the tip of the optical fiber 1 is in contact with the polishing surface 3a. Is generated and this becomes a processing load. This load is generated by elasticity due to the bending of the optical fiber 1. However, as described above, the optical fiber 1 is homogeneous in material and has good shape accuracy, so that this elastic force can be controlled with high accuracy. Can be reproduced. The sliding distance is strictly determined by the length that the optical fiber 1 crosses the polishing surface 3a. Furthermore, the wedge-shaped taper angle (shape) at the tip of the optical fiber 1 is determined by the contact angle of the optical fiber 1 with respect to the polishing surface 3a, and this contact angle can also be strictly controlled by the bent shape. Based on such a principle, the processing of the wedge shape or wedge lens shape of the tip of the optical fiber according to the present embodiment can be performed precisely.
[0037]
As described above, the wedge-shaped lens optical fiber requires a submicron accuracy for the deviation between the wedge ridge line of the wedge-shaped portion at the tip and the center of the fiber core, and both tapered surfaces of the wedge-shaped portion have very high symmetry. However, in the processing method of this embodiment, it is possible to perform wedge-shaped processing with very good symmetry. That is, as described with reference to FIG. 1, the optical fiber 1 is held vertically by the fiber holder 2 at a predetermined height from the polishing surface 3a, and the fiber holder 2 is rotated about the vertical axis on the polishing film 3. Without going back and forth. In FIG. 1, when moving along the arrow 21 in the right direction, the right tapered surface of the tip of the optical fiber 1 is processed in FIG. 1, and when moving in the opposite left direction, the tip of the optical fiber 1 is moved. It can be seen that the tip of the optical fiber 1 shows the same bending shape symmetrically as the left tapered surface is processed.
[0038]
Further, in one reciprocation, each tapered surface moves relative to the machining surface at the same distance. That is, the reciprocating operation is repeated a plurality of times so that the polishing amount in the first sliding direction is equal to the polishing amount in the second sliding direction opposite to the first sliding direction. Therefore, both taper surfaces of the wedge-shaped portion can be processed into the same processing amount and the same shape by one reciprocating processing, and processing of a wedge shape with extremely good symmetry is possible. Usually, in order to reach the wedge shape, a plurality of reciprocations are performed. In this case, both tapered surfaces are successively micromachined, and the influence of changes in the machining status over time (for example, the ability of the polished surface to be reduced due to machining) can be avoided.
[0039]
Further, as shown in FIG. 1, the polishing film 3 has a trapezoidal shape in which both left and right ends are obliquely lowered, and the polishing surface 3 a is provided only on the upper surface of the trapezoidal portion, and this portion is a polishing region. It has become. Therefore, when the tip of the optical fiber 1 moves left and right from the polishing surface 3a on the upper surface of the trapezoidal portion of the polishing film 3 and moves to both ends that are slanted down during reciprocating pushing, the tip of the optical fiber 1 is It can extend straight without contacting the polishing surface 3a. Then, when moving in the opposite direction again from the straight extension state and proceeding toward the polishing surface 3a, the tip of the optical fiber 1 is bent again from the position where it hits the polishing surface 3a and comes into contact with the polishing surface 3a. And will be polished. And while moving in contact with the polishing surface 3a, the tip of the optical fiber 1 is polished while being bent by the polishing surface 3a, but when passing through the polishing surface 3a and moving to an obliquely lowered portion of the trapezoid, The tip of the optical fiber 1 is released from contact with the polishing surface 3a and becomes free, and extends straight downward. That is, the polishing surface 3a has a predetermined finite length with respect to the reciprocating direction.
[0040]
As described above, the optical fiber 1 enters the polishing surface 3a region from the slope having no processing ability on both ends of the polishing surface 3a in one processing, passes through the polishing surface 3a while being bent, and then is inclined from the polishing surface 3a. To come out. As a result, when entering the polishing surface 3a from both ends of the trapezoidally inclined portion of the polishing surface 3a, the linear optical fiber 1 can be smoothly bent without stress, and both ends It also facilitates switching between forward and backward at the extended position on the side.
[0041]
Next, with reference to FIG. 2, the processing method of the wedge-shaped lens optical fiber which concerns on other embodiment of this invention is demonstrated.
[0042]
In this embodiment, as shown in FIG. 2 (a), the polishing film 3 forming the polishing surface 3a is inclined with respect to the fiber holding portion 2 holding the optical fiber 1 fixedly. Accordingly, the position of the fiber holding portion 2 holding the optical fiber 1, that is, the distance between the position indicated by the line 23 and the polishing surface 3a continuously changes so as to become right in the drawing. is doing.
[0043]
In the case of the optical fiber 1 located on the left side in FIG. 2A, since the distance between the fiber holding part 2 holding the optical fiber 1 and the polishing surface 3a is short, the fiber holding part The optical fiber 1 extending below 2 is strongly bent at the tip thereof against the polishing surface 3a, that is, is contacted by a large pressing force, and the tip of the optical fiber 1 is deeply inclined as shown in FIG. However, the contact angle 4 is reduced, and the portion of the ridge line forming portion at the further tip of the wedge-shaped portion at the tip of the optical fiber 1 is also in contact with the polishing surface 3a.
[0044]
On the other hand, in the case of the optical fiber 1 located on the right side in FIG. 2A, the distance between the fiber holding part 2 holding the optical fiber 1 and the polishing surface 3a is long. Therefore, the optical fiber 1 extending below the fiber holding portion 2 has a tip that is weakly touched against the polishing surface 3a and bends slightly, that is, contacts with a small pressing force, and the tip of the optical fiber 1 is shown in FIG. As shown in the figure, it is shallowly inclined, the contact angle 4 is increased, and the center portion of the ridge line forming portion at the tip of the tip of the wedge-shaped portion at the tip of the optical fiber 1 is in contact with the polishing surface 3a.
[0045]
Accordingly, the optical fiber 1 is held by the fiber holding portion 2 and the tip of the optical fiber 1 is slid with respect to the polishing surface 3a disposed at an inclination as shown in FIG. The contact angle 4 between the tip of the fiber 1 and the polishing surface 3a can be continuously changed, whereby the ridge line forming portion at the further tip of the wedge-shaped portion at the tip of the optical fiber 1 is curved. Accordingly, the curved surface processing is performed symmetrically with respect to the tip of the optical fiber 1 by using the polished surface 3a formed in a symmetrical “he” shape or convex shape, which is a symmetrical slope, for example. A characteristic curved surface, that is, a cylindrical lens as described with reference to FIG. 6 can be formed.
[0046]
In FIG. 2, the shape of the inclined surface constituting the polishing surface 3a is a flat surface. However, by forming the polishing surface 3a into a curved surface, it is possible to precisely control the lens shape such as a shape that is not a semi-cylindrical shape. Thus, higher bonding characteristics can be expected.
[0047]
In the above-described embodiment, the precision of the optical fiber 1 itself is used, and an economical processing apparatus that does not require precise positioning of the optical fiber before processing does not require a combination of skill and measurement. This makes it possible to process easily and with high accuracy economically. By similarly using such a processing method, it is possible to realize low-cost mass production that can process a large number of optical fibers at once.
[0048]
Next, an actual processing process will be described with reference to FIGS.
[0049]
First, the first processing step is rough processing. In this rough processing, as shown in FIG. 3, both ends are lowered obliquely downward as shown in FIG. 1, and a polishing film 3 configured in a trapezoidal shape is used. That is, the tip of the optical fiber 1 is tapered using the polishing surface 3 a on the upper surface of the trapezoidal polishing film 3. In this taper processing, the tip of the optical fiber 1 is processed at a high speed with a polishing surface 3 a of relatively coarse abrasive grains (for example, alumina having a particle size of 5 μm), and a tapered surface is formed at the tip of the optical fiber 1.
[0050]
Next, in the second finishing step, as shown in FIG. 4, for example, a polishing surface 3a of, for example, fine silica abrasive grains of an abrasive film 3 having a symmetrical "he" shape whose center is sharp like a vertex of a triangle. The tip of the optical fiber 1 processed into a tapered shape is mirror-finished to form an R surface at the tip.
[0051]
FIG. 5 is a diagram showing an evaluation result obtained by measuring the shape of the tip of the optical fiber 1 obtained by processing in the first and second processing steps described above with a stylus type shape measuring instrument. As shown in the figure, a tip R of approximately 2.7 μm was obtained as the tip of the optical fiber 1. The R surface is mirror-finished by using fine silica abrasive grains.
[0052]
As described above, according to the processing method of the present embodiment, it is possible to realize a precise processing of a wedge lens optical fiber, and it is possible to realize a practical time by using two steps of roughing and finishing. It was possible to process with. In addition, even when multiple optical fibers are held and processed simultaneously, all of the optical fibers can be processed in the same way, and mass productivity can be realized by processing multiple optical fibers at once. I understood it. Furthermore, in the processing of this embodiment, even if the protruding amount of the optical fiber and the holding height of the optical fiber differ by about several tens of μm, the bending shape of the optical fiber itself is not greatly affected, and a substantially similar processed shape can be obtained. Also confirmed. It is also possible to use a coated optical fiber with a small elastic force for protection during processing depending on the processing shape and processing conditions. In this case, the coated optical fiber may be a metal coat, carbon coat, polymer skin, or the like. A coated (PSC) optical fiber or a normal primary coating, or a separate coating may be considered. In other words, in the present embodiment, the optical fiber 1 is coated with an elastic material before performing the above-described reciprocating operation.
[0053]
Further, as another embodiment of the present invention, in order to perform the taper processing and the tip ball processing simultaneously as the polishing surface, a polishing agent is provided on the entire surface of the trapezoidal shape, or the polishing surface itself is flat and the fiber A form in which the holding portion is moved along an inverted trapezoidal locus is also conceivable. In order to ensure high symmetry in the processing of the R portion at the tip of the optical fiber, for example, the inclined surfaces on both sides of the polishing surface 3a shown in FIG. 4 need to be symmetrical, and this is because the inclined surfaces are curved surfaces. The same applies to the case.
[0054]
Furthermore, as a variation of the processing shape, it is possible to provide a pseudo-tip-spherical optical fiber function by processing the wedge-shaped lens optical fiber in two orthogonal directions. At this time, it is also possible to change the radius of curvature of the tip of the optical fiber in processing in the other direction. Further, for example, in FIG. 4, an oblique cylindrical lens can be formed by performing processing without providing an abrasive on one inclined surface of the polishing surface 3a.
[0055]
【The invention's effect】
As described above, according to the present invention, the tip end of the optical fiber is brought into contact with the polishing surface and the tip end of the optical fiber is bent on the polishing surface, while the first sliding direction and the second sliding direction are set. The reciprocating motion of sliding on the polishing surface is repeated relatively many times between the polishing surface and the tip of the optical fiber, and the tip of the optical fiber is processed into a wedge shape. High-precision wedge-shaped lens that can be mass-produced at low cost and that can form a highly symmetrical semi-cylindrical curved surface at the tip of the optical fiber, enabling highly efficient coupling with a laser diode. An optical fiber can be formed.
[0056]
Further, according to the present invention, the reciprocating operation is repeated a plurality of times so that the polishing amount in the first sliding direction is equal to the polishing amount in the second sliding direction, so that the tip of the optical fiber is small and highly symmetric. A semi-cylindrical curved surface can be formed accurately.
[0057]
Furthermore, according to the present invention, the distance between the position where the optical fiber is held and the polishing surface changes, and the degree of contact between the tip of the optical fiber and the polishing surface changes continuously. A small semi-cylindrical curved surface with high symmetry can be accurately formed at the tip.
[Brief description of the drawings]
FIG. 1 is a view for explaining a processing method of a wedge lens optical fiber according to an embodiment of the present invention.
FIG. 2 is a view for explaining a processing method of a wedge lens optical fiber according to another embodiment of the present invention.
FIG. 3 is a diagram for explaining a first roughing process in an actual processing process described using the processing method of the wedge-shaped lens optical fiber according to the embodiment shown in FIGS. 1 and 2;
FIG. 4 is a diagram for explaining a second finishing process step subsequent to FIG. 3 in an actual process step described using the wedge lens optical fiber processing method of the embodiment shown in FIGS. 1 and 2;
FIG. 5 is a diagram showing evaluation results obtained by measuring the shape of the tip of the optical fiber obtained by processing in the first and second processing steps shown in FIGS. 3 and 4 with a stylus type shape measuring instrument; .
FIG. 6 is a perspective view showing an overview of a wedge lens optical fiber.
FIG. 7 is a diagram showing how light is emitted from a laser diode having a wavelength of 980 nm.
[Explanation of symbols]
1 Optical fiber
2 Fiber holder
3 Polishing film
3a Polished surface
4 Contact angle
11 Tapered surface
12 Wedge ridge line

Claims (26)

光ファイバの先端を研磨面に接触させて研磨して、この先端を楔形に加工し楔形レンズ光ファイバを形成する楔形レンズ光ファイバの加工方法であって、
光ファイバの先端が自由端となるように光ファイバを保持し、
光ファイバの先端を研磨面に接触させて研磨面上を摺動させる動作を第1の摺動方向および該第1の摺動方向と反対方向の第2の摺動方向に複数回繰り返し行う往復動作を、
前記光ファイバの先端と研磨面との接触の度合いが連続的に変化するように、前記光ファイバを保持する位置と研磨面との間の距離を変化させる領域を少なくとも一部に設けた領域の間で行うと共に、
摺動方向とは反対方向に光ファイバの先端を研磨面上で撓ませながら、研磨面と光ファイバの先端との間で相対的に行わせること
を特徴とする楔形レンズ光ファイバの加工方法。
A method for processing a wedge-shaped lens optical fiber, wherein the tip of an optical fiber is polished by contacting with a polishing surface, and the tip is processed into a wedge shape to form a wedge-shaped lens optical fiber,
Hold the optical fiber so that the tip of the optical fiber is the free end,
Reciprocating repeatedly performed a plurality of times an operation to slide on the polishing surface tip into contact with the polishing surface of the optical fiber in a second sliding direction opposite direction to the first sliding direction of the sliding direction and the first Operation,
A region provided with at least a region in which the distance between the position for holding the optical fiber and the polishing surface is changed so that the degree of contact between the tip of the optical fiber and the polishing surface continuously changes. As well as between
A method of processing a wedge-shaped lens optical fiber, characterized in that the optical fiber tip is bent relative to the polishing surface in a direction opposite to the sliding direction, while being relatively performed between the polishing surface and the optical fiber tip.
光ファイバの先端を研磨面に接触させて研磨して、この先端を楔形に加工し楔形レンズ光ファイバを形成する楔形レンズ光ファイバの加工方法であって、
光ファイバの先端が自由端となるように光ファイバを保持し、
光ファイバの先端を研磨面に接触させて研磨面上を摺動させる動作を第1の摺動方向および該第1の摺動方向と反対方向の第2の摺動方向に複数回繰り返し行う往復動作を、
前記光ファイバの先端と研磨面との接触の度合いが連続的に変化するように、前記光ファイバを研磨する研磨領域を上辺とし、該研磨領域の両側に設けた非研磨領域を斜辺とする台形状の、光ファイバを保持する位置と研磨面との間の距離を変化させる領域の間で行うと共に、
摺動方向とは反対方向に光ファイバの先端を研磨面上で撓ませながら、研磨面と光ファイバの先端との間で相対的に行わせること
を特徴とする楔形レンズ光ファイバの加工方法。
A method for processing a wedge-shaped lens optical fiber, wherein the tip of an optical fiber is polished by contacting with a polishing surface, and the tip is processed into a wedge shape to form a wedge-shaped lens optical fiber,
Hold the optical fiber so that the tip of the optical fiber is the free end,
Reciprocating repeatedly performed a plurality of times an operation to slide on the polishing surface tip into contact with the polishing surface of the optical fiber in a second sliding direction opposite direction to the first sliding direction of the sliding direction and the first Operation,
A base having a polishing region for polishing the optical fiber as an upper side and a non-polishing region provided on both sides of the polishing region as an oblique side so that the degree of contact between the tip of the optical fiber and the polishing surface changes continuously. Between the region of the shape that changes the distance between the holding position of the optical fiber and the polishing surface,
A method of processing a wedge-shaped lens optical fiber, characterized in that the optical fiber tip is bent relative to the polishing surface in a direction opposite to the sliding direction, while being relatively performed between the polishing surface and the optical fiber tip.
光ファイバの先端を研磨面に接触させて研磨して、この先端を楔形に加工し楔形レンズ光ファイバを形成する楔形レンズ光ファイバの加工方法であって、
光ファイバの先端が自由端となるように光ファイバを保持し、
光ファイバの先端を研磨面に接触させて研磨面上を摺動させる動作を第1の摺動方向および該第1の摺動方向と反対方向の第2の摺動方向に複数回繰り返し行う往復動作を、
前記光ファイバの先端と研磨面との接触の度合いが連続的に変化するように、前記光ファイバを研磨する研磨領域を傾斜させて配設して、光ファイバを保持する位置と研磨面との間の距離を変化させる領域の間で行うと共に、
摺動方向とは反対方向に光ファイバの先端を研磨面上で撓ませながら、研磨面と光ファイバの先端との間で相対的に行わせること
を特徴とする楔形レンズ光ファイバの加工方法。
A method for processing a wedge-shaped lens optical fiber, wherein the tip of an optical fiber is polished by contacting with a polishing surface, and the tip is processed into a wedge shape to form a wedge-shaped lens optical fiber,
Hold the optical fiber so that the tip of the optical fiber is the free end,
Reciprocating repeatedly performed a plurality of times an operation to slide on the polishing surface tip into contact with the polishing surface of the optical fiber in a second sliding direction opposite direction to the first sliding direction of the sliding direction and the first Operation,
The polishing region for polishing the optical fiber is inclined and arranged so that the degree of contact between the tip of the optical fiber and the polishing surface changes continuously, and the position of holding the optical fiber and the polishing surface Between the areas that change the distance between,
A method of processing a wedge-shaped lens optical fiber, characterized in that the optical fiber tip is bent relative to the polishing surface in a direction opposite to the sliding direction, while being relatively performed between the polishing surface and the optical fiber tip.
前記傾斜させた研磨領域が平面であることを特徴とする請求項3に記載の楔形レンズ光ファイバの加工方法。  4. The method for processing a wedge-shaped lens optical fiber according to claim 3, wherein the inclined polishing region is a flat surface. 前記傾斜させた研磨領域が曲面であることを特徴とする請求項3に記載の楔形レンズ光ファイバの加工方法。  The wedge-shaped lens optical fiber processing method according to claim 3, wherein the inclined polishing region is a curved surface. 光ファイバの先端を研磨面に接触させて研磨して、この先端を楔形に加工し楔形レンズ光ファイバを形成する楔形レンズ光ファイバの加工方法であって、
光ファイバの先端が自由端となるように光ファイバを保持し、
光ファイバの先端を研磨面に接触させて研磨面上を摺動させる動作を第1の摺動方向および該第1の摺動方向と反対方向の第2の摺動方向に複数回繰り返し行う往復動作を、
前記光ファイバの先端と研磨面との接触の度合いが連続的に変化するように、前記光ファイバを研磨する研磨領域を含む領域を中央が凸である三角形状に形成し、光ファイバを保持する位置と研磨面との間の距離を変化させる領域の間で行うと共に、
摺動方向とは反対方向に光ファイバの先端を研磨面上で撓ませながら、研磨面と光ファイバの先端との間で相対的に行わせること
を特徴とする楔形レンズ光ファイバの加工方法。
A method for processing a wedge-shaped lens optical fiber, wherein the tip of an optical fiber is polished by contacting with a polishing surface, and the tip is processed into a wedge shape to form a wedge-shaped lens optical fiber,
Hold the optical fiber so that the tip of the optical fiber is the free end,
Reciprocating repeatedly performed a plurality of times an operation to slide on the polishing surface tip into contact with the polishing surface of the optical fiber in a second sliding direction opposite direction to the first sliding direction of the sliding direction and the first Operation,
A region including a polishing region for polishing the optical fiber is formed in a triangular shape having a convex center so as to continuously change the degree of contact between the tip of the optical fiber and the polishing surface, and the optical fiber is held. Between the areas that change the distance between the position and the polishing surface,
A method of processing a wedge-shaped lens optical fiber, characterized in that the optical fiber tip is bent relative to the polishing surface in a direction opposite to the sliding direction, while being relatively performed between the polishing surface and the optical fiber tip.
前記三角形状の一方の側の斜面を研磨領域とすることを特徴とする請求項6に記載の楔形レンズ光ファイバの加工方法。  The method of processing a wedge-shaped lens optical fiber according to claim 6, wherein a slope on one side of the triangular shape is used as a polishing region. 光ファイバの先端を研磨面に接触させて研磨して、この先端を楔形に加工し楔形レンズ光ファイバを形成する楔形レンズ光ファイバの加工方法であって、
光ファイバの先端が自由端となるように光ファイバを保持し、
光ファイバの先端を研磨面に接触させて研磨面上を摺動させる動作を第1の摺動方向および該第1の摺動方向と反対方向の第2の摺動方向に複数回繰り返し行う往復動作を、
前記光ファイバの先端と研磨面との接触の度合いが連続的に変化するように、前記光ファイバを研磨する研磨領域を台形の上辺と斜辺に設けて、光ファイバを保持する位置と研磨面との間の距離を変化させる領域の間で行うと共に、
摺動方向とは反対方向に光ファイバの先端を研磨面上で撓ませながら、研磨面と光ファイバの先端との間で相対的に行わせること
を特徴とする楔形レンズ光ファイバの加工方法。
A method for processing a wedge-shaped lens optical fiber, wherein the tip of an optical fiber is polished by contacting with a polishing surface, and the tip is processed into a wedge shape to form a wedge-shaped lens optical fiber,
Hold the optical fiber so that the tip of the optical fiber is the free end,
Reciprocating repeatedly performed a plurality of times an operation to slide on the polishing surface tip into contact with the polishing surface of the optical fiber in a second sliding direction opposite direction to the first sliding direction of the sliding direction and the first Operation,
A polishing region for polishing the optical fiber is provided on the upper side and the oblique side of the trapezoid so that the degree of contact between the tip of the optical fiber and the polishing surface changes continuously, and the position for holding the optical fiber and the polishing surface Between the regions that change the distance between,
A method of processing a wedge-shaped lens optical fiber, characterized in that the optical fiber tip is bent relative to the polishing surface in a direction opposite to the sliding direction, while being relatively performed between the polishing surface and the optical fiber tip.
前記往復動作は、第1の摺動方向における研磨量と第2の摺動方向における研磨量が等しいように複数回繰り返すことを特徴とする請求項1乃至のいずれか1項に記載の楔形レンズ光ファイバの加工方法。The wedge shape according to any one of claims 1 to 8 , wherein the reciprocating operation is repeated a plurality of times so that the polishing amount in the first sliding direction is equal to the polishing amount in the second sliding direction. Lens optical fiber processing method. 前記往復動作は、直線往復動作であることを特徴とする請求項1乃至のいずれか1項に記載の楔形レンズ光ファイバの加工方法。The method for processing a wedge-shaped lens optical fiber according to any one of claims 1 to 9 , wherein the reciprocating operation is a linear reciprocating operation. 前記往復動作前において光ファイバに弾性素材をコートする前置工程を有することを特徴とする請求項1乃至10のいずれか1項に記載の楔形レンズ光ファイバの加工方法。The method of processing a wedge-shaped lens optical fiber according to any one of claims 1 to 10 , further comprising a pre-process of coating the optical fiber with an elastic material before the reciprocating operation. 前記研磨面は、前記往復動作の方向に対して所定の有限長を有することを特徴とする請求項1乃至11のいずれか1項に記載の楔形レンズ光ファイバの加工方法。The method for processing a wedge-shaped lens optical fiber according to any one of claims 1 to 11 , wherein the polished surface has a predetermined finite length with respect to the reciprocating direction. 前記研磨面は、前記往復動作方向の形状が往復動作の中心に対して対称であることを特徴とする請求項1乃至12のいずれか1項に記載の楔形レンズ光ファイバの加工方法。The wedge-shaped lens optical fiber processing method according to any one of claims 1 to 12 , wherein the shape of the polishing surface in the reciprocating direction is symmetrical with respect to the center of the reciprocating operation. 光ファイバの先端を研磨面に接触させて研磨して、この先端を楔形に加工し楔形レンズ光ファイバを形成する楔形レンズ光ファイバの加工装置であって、
光ファイバの先端が自由端となるように光ファイバを保持する保持手段と、
光ファイバの先端を研磨する研磨面と、
光ファイバを研磨面に接触させる接触手段と、
光ファイバの先端を研磨面に接触させて研磨面上を摺動させる動作を第1の摺動方向および該第1の摺動方向と反対方向の第2の摺動方向に複数回繰り返し行う往復動作を、前記光ファイバの先端と研磨面との接触の度合いが連続的に変化するように、光ファイバを保持する位置と研磨面との間の距離を変化させる領域を少なくとも一部に設けた領域の間で行うと共に、摺動方向とは反対方向に光ファイバの先端を研磨面上で撓ませながら、研磨面と光ファイバの先端との間で相対的に行わせるように前記保持手段および研磨面の動作を制御する往復動作手段と
を特徴とする楔形レンズ光ファイバの加工装置。
A wedge-shaped lens optical fiber processing apparatus for polishing a tip of an optical fiber in contact with a polishing surface and processing the tip into a wedge shape to form a wedge-shaped lens optical fiber,
Holding means for holding the optical fiber so that the tip of the optical fiber is a free end;
A polishing surface for polishing the tip of the optical fiber;
Contact means for contacting the optical fiber with the polishing surface;
Reciprocating repeatedly performed a plurality of times an operation to slide on the polishing surface tip into contact with the polishing surface of the optical fiber in a second sliding direction opposite direction to the first sliding direction of the sliding direction and the first At least part of the region for changing the distance between the position where the optical fiber is held and the polishing surface is provided so that the degree of contact between the tip of the optical fiber and the polishing surface changes continuously. The holding means and the holding means so as to be relatively performed between the polishing surface and the tip of the optical fiber while bending between the regions and bending the tip of the optical fiber on the polishing surface in a direction opposite to the sliding direction. A processing apparatus for a wedge-shaped lens optical fiber, characterized by reciprocating means for controlling the operation of the polished surface.
光ファイバの先端を研磨面に接触させて研磨して、この先端を楔形に加工し楔形レンズ光ファイバを形成する楔形レンズ光ファイバの加工装置であって、
光ファイバの先端が自由端となるように光ファイバを保持する保持手段と、
光ファイバの先端を研磨する研磨面と、
光ファイバを研磨面に接触させる接触手段と、
光ファイバの先端を研磨面に接触させて研磨面上を摺動させる動作を第1の摺動方向および該第1の摺動方向と反対方向の第2の摺動方向に複数回繰り返し行う往復動作を、前記光ファイバの先端と研磨面との接触の度合いが連続的に変化するように、前記光ファイバを研磨する研磨領域を上辺とし、該研磨領域の両側に設けた非研磨領域を斜辺とする台形状の、光ファイバを保持する位置と研磨面との間の距離を変化させる領域の間で行うと 共に、摺動方向とは反対方向に光ファイバの先端を研磨面上で撓ませながら、研磨面と光ファイバの先端との間で相対的に行わせるように前記保持手段および研磨面の動作を制御する往復動作手段と
を特徴とする楔形レンズ光ファイバの加工装置。
A wedge-shaped lens optical fiber processing apparatus for polishing a tip of an optical fiber in contact with a polishing surface and processing the tip into a wedge shape to form a wedge-shaped lens optical fiber,
Holding means for holding the optical fiber so that the tip of the optical fiber is a free end;
A polishing surface for polishing the tip of the optical fiber;
Contact means for contacting the optical fiber with the polishing surface;
Reciprocating repeatedly performed a plurality of times an operation to slide on the polishing surface tip into contact with the polishing surface of the optical fiber in a second sliding direction opposite direction to the first sliding direction of the sliding direction and the first The operation is such that the polishing region for polishing the optical fiber is the upper side and the non-polishing regions provided on both sides of the polishing region are the hypotenuse so that the degree of contact between the tip of the optical fiber and the polishing surface changes continuously. a trapezoidal that, when among the area for changing the distance between the position and the polishing surface for holding an optical fiber together, the tip of the optical fiber is flexed on the polishing surface in the opposite direction to the sliding direction However, a wedge-shaped lens optical fiber processing apparatus comprising: the holding means and reciprocating means for controlling the operation of the polishing surface so that the polishing surface and the tip of the optical fiber are relatively moved.
光ファイバの先端を研磨面に接触させて研磨して、この先端を楔形に加工し楔形レンズ光ファイバを形成する楔形レンズ光ファイバの加工装置であって、
光ファイバの先端が自由端となるように光ファイバを保持手段と、
光ファイバの先端を研磨する研磨面と、
光ファイバを研磨面に接触させる接触手段と、
光ファイバの先端を研磨面に接触させて研磨面上を摺動させる動作を第1の摺動方向および該第1の摺動方向と反対方向の第2の摺動方向に複数回繰り返し行う往復動作を、前記光ファイバの先端と研磨面との接触の度合いが連続的に変化するように、前記光ファイバを研磨する研磨領域を傾斜させて配設して、光ファイバを保持する位置と研磨面との間の距離を変化させる領域の間で行うと共に、摺動方向とは反対方向に光ファイバの先端を研磨面上で撓ませながら、研磨面と光ファイバの先端との間で相対的に行わせるように前記保持手段および研磨面の動作を制御する往復動作手段と
を特徴とする楔形レンズ光ファイバの加工装置。
A wedge-shaped lens optical fiber processing apparatus for polishing a tip of an optical fiber in contact with a polishing surface and processing the tip into a wedge shape to form a wedge-shaped lens optical fiber,
Means for holding the optical fiber such that the tip of the optical fiber is a free end;
A polishing surface for polishing the tip of the optical fiber;
Contact means for contacting the optical fiber with the polishing surface;
Reciprocating repeatedly performed a plurality of times an operation to slide on the polishing surface tip into contact with the polishing surface of the optical fiber in a second sliding direction opposite direction to the first sliding direction of the sliding direction and the first The operation is performed by inclining the polishing region for polishing the optical fiber so that the degree of contact between the tip of the optical fiber and the polishing surface changes continuously, and the position and polishing for holding the optical fiber. Relatively between the polishing surface and the tip of the optical fiber while bending the tip of the optical fiber on the polishing surface in a direction opposite to the sliding direction , while changing between the areas changing the distance between the surfaces A wedge-shaped lens optical fiber processing apparatus comprising: a holding means and a reciprocating means for controlling the operation of the polishing surface so as to be performed.
前記傾斜させた研磨領域が平面であることを特徴とする請求項16に記載の楔形レンズ光ファイバの加工装置。The wedge lens optical fiber processing apparatus according to claim 16 , wherein the inclined polishing region is a flat surface. 前記傾斜させた研磨領域が曲面であることを特徴とする請求項16に記載の楔形レンズ光ファイバの加工装置。The wedge-shaped lens optical fiber processing apparatus according to claim 16 , wherein the inclined polishing region is a curved surface. 光ファイバの先端を研磨面に接触させて研磨して、この先端を楔形に加工し楔形レンズ光ファイバを形成する楔形レンズ光ファイバの加工装置であって、
光ファイバの先端が自由端となるように光ファイバを保持手段と、
光ファイバの先端を研磨する研磨面と、
光ファイバを研磨面に接触させる接触手段と、
光ファイバの先端を研磨面に接触させて研磨面上を摺動させる動作を第1の摺動方向および該第1の摺動方向と反対方向の第2の摺動方向に複数回繰り返し行う往復動作を、前記光ファイバの先端と研磨面との接触の度合いが連続的に変化するように、前記光ファイバを研磨する研磨領域を含む領域を中央が凸である三角形状に形成し、光ファイバを保持する位置と研磨面との間の距離を変化させる領域の間で行うと共に、摺動方向とは反対方向に光ファイバの先端を研磨面上で撓ませながら、研磨面と光ファイバの先端との間で相対的に行わせるように前記保持手段および研磨面の動作を制御する往復動作手段と
を特徴とする楔形レンズ光ファイバの加工装置。
A wedge-shaped lens optical fiber processing apparatus for polishing a tip of an optical fiber in contact with a polishing surface and processing the tip into a wedge shape to form a wedge-shaped lens optical fiber,
Means for holding the optical fiber such that the tip of the optical fiber is a free end;
A polishing surface for polishing the tip of the optical fiber;
Contact means for contacting the optical fiber with the polishing surface;
Reciprocating repeatedly performed a plurality of times an operation to slide on the polishing surface tip into contact with the polishing surface of the optical fiber in a second sliding direction opposite direction to the first sliding direction of the sliding direction and the first The operation is performed by forming a region including a polishing region for polishing the optical fiber into a triangular shape having a convex center so that the degree of contact between the tip of the optical fiber and the polishing surface changes continuously. Between the holding position and the region where the distance between the polishing surface is changed , and while bending the tip of the optical fiber on the polishing surface in the direction opposite to the sliding direction, the tip of the polishing surface and the optical fiber And a reciprocating means for controlling the operation of the holding means and the polishing surface so as to be relatively performed with respect to the wedge lens optical fiber processing apparatus.
前記三角形状の一方の側の斜面を研磨領域とすることを特徴とする請求項19記載の楔形レンズ光ファイバの加工装置。20. The wedge lens optical fiber processing apparatus according to claim 19, wherein a slope on one side of the triangular shape is a polishing region. 光ファイバの先端を研磨面に接触させて研磨して、この先端を楔形に加工し楔形レンズ光ファイバを形成する楔形レンズ光ファイバの加工装置であって、
光ファイバの先端が自由端となるように光ファイバを保持手段と、
光ファイバの先端を研磨する研磨面と、
光ファイバを研磨面に接触させる接触手段と、
光ファイバの先端を研磨面に接触させて研磨面上を摺動させる動作を第1の摺動方向および該第1の摺動方向と反対方向の第2の摺動方向に複数回繰り返し行う往復動作を、
前記光ファイバの先端と研磨面との接触の度合いが連続的に変化するように、前記光ファイバを研磨する研磨領域を台形の上辺と斜辺に設けて、光ファイバを保持する位置と研磨面との間の距離を変化させる領域の間で行うと共に、
摺動方向とは反対方向に光ファイバの先端を研磨面上で撓ませながら、研磨面と光ファイバの先端との間で相対的に行わせるように前記保持手段および研磨面の動作を制御する往復動作手段と
を特徴とする楔形レンズ光ファイバの加工装置。
A wedge-shaped lens optical fiber processing apparatus for polishing a tip of an optical fiber in contact with a polishing surface and processing the tip into a wedge shape to form a wedge-shaped lens optical fiber,
Means for holding the optical fiber such that the tip of the optical fiber is a free end;
A polishing surface for polishing the tip of the optical fiber;
Contact means for contacting the optical fiber with the polishing surface;
Reciprocating repeatedly performed a plurality of times an operation to slide on the polishing surface tip into contact with the polishing surface of the optical fiber in a second sliding direction opposite direction to the first sliding direction of the sliding direction and the first Operation,
A polishing region for polishing the optical fiber is provided on the upper side and the oblique side of the trapezoid so that the degree of contact between the tip of the optical fiber and the polishing surface changes continuously, and the position for holding the optical fiber and the polishing surface Between the regions that change the distance between,
The operation of the holding means and the polishing surface is controlled so as to be relatively performed between the polishing surface and the tip of the optical fiber while bending the tip of the optical fiber on the polishing surface in the direction opposite to the sliding direction. A wedge lens optical fiber processing device characterized by reciprocating means.
前記往復動作手段は、第1の摺動方向における研磨量と第2の摺動方向における研磨量が等しいように往復動作を複数回繰り返すように構成されていることを特徴とする請求項14乃至21のいずれか1項に記載の楔形レンズ光ファイバの加工装置。Said reciprocating motion means, to claim 14, characterized in that it is configured to repeat a plurality of times back and forth operation so that equal polishing amount of polishing amount and a second sliding direction in the first sliding direction The wedge lens optical fiber processing apparatus according to any one of 21 . 前記往復動作は、直線往復動作であることを特徴とする請求項14乃至22のいずれか1項に記載の楔形レンズ光ファイバの加工装置。  The wedge-shaped lens optical fiber processing apparatus according to any one of claims 14 to 22, wherein the reciprocating operation is a linear reciprocating operation. 前記光ファイバは、弾性素材をコートされたものであることを特徴とする請求項14乃至23のいずれか1項に記載の楔形レンズ光ファイバの加工装置。The wedge optical fiber processing apparatus according to any one of claims 14 to 23 , wherein the optical fiber is coated with an elastic material. 前記研磨面は、前記往復動作の方向に対して所定の有限長を有することを特徴とする請求項14乃至24のいずれか1項に記載の楔形レンズ光ファイバの加工装置。The wedge-shaped lens optical fiber processing apparatus according to any one of claims 14 to 24 , wherein the polishing surface has a predetermined finite length with respect to the reciprocating direction. 前記研磨面は、前記往復動作方向の形状が往復動作の中心に対して対称であることを特徴とする請求項14乃至25のいずれか1項に記載の楔形レンズ光ファイバの加工装置。The wedge-shaped lens optical fiber processing apparatus according to any one of claims 14 to 25 , wherein the polished surface has a shape in the reciprocating direction symmetrical with respect to a center of the reciprocating operation.
JP2002121314A 2002-04-23 2002-04-23 Processing method and processing apparatus for wedge lens optical fiber Expired - Fee Related JP3779640B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2002121314A JP3779640B2 (en) 2002-04-23 2002-04-23 Processing method and processing apparatus for wedge lens optical fiber
US10/420,425 US6890243B2 (en) 2002-04-23 2003-04-22 Processing method and apparatus of distal end of optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002121314A JP3779640B2 (en) 2002-04-23 2002-04-23 Processing method and processing apparatus for wedge lens optical fiber

Publications (2)

Publication Number Publication Date
JP2003315563A JP2003315563A (en) 2003-11-06
JP3779640B2 true JP3779640B2 (en) 2006-05-31

Family

ID=29537283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002121314A Expired - Fee Related JP3779640B2 (en) 2002-04-23 2002-04-23 Processing method and processing apparatus for wedge lens optical fiber

Country Status (1)

Country Link
JP (1) JP3779640B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5345964B2 (en) * 2010-02-23 2013-11-20 日本電信電話株式会社 Optical fiber tip processing apparatus, method and polishing member
EP2524648B1 (en) * 2011-05-20 2016-05-04 Imec Method for sharpening microprobe tips
CN110987832A (en) * 2019-10-15 2020-04-10 桂林电子科技大学 Macro-bending side-polishing plastic optical fiber surface plasma resonance sensor and preparation method thereof

Also Published As

Publication number Publication date
JP2003315563A (en) 2003-11-06

Similar Documents

Publication Publication Date Title
US7561333B2 (en) Method for manufacturing mold
JP6000643B2 (en) Workpiece processing method, and optical element, mold, and semiconductor substrate processed by the processing method
JP2008509012A (en) Raster cutting technology for ophthalmic lenses
JP3779640B2 (en) Processing method and processing apparatus for wedge lens optical fiber
JP2007030095A (en) Method for manufacturing diamond tool
JP4662018B2 (en) Curved surface processing apparatus and parallel link mechanism calibration method
JPH0253557A (en) Method and device for working non-spherical body
JP2009107055A (en) Polishing tool and polishing device
JP2003039282A (en) Free-form surface working device and free-form surface working method
JP3333679B2 (en) Groove cutting device and groove cutting method
JP2011036974A (en) Polishing method and polishing device
JP2000246614A (en) Device and method for machining offset evolution curved surface
JP2010188525A (en) Machining method
JP2004141983A (en) Working method of molding die, molding die, and optical element
WO2006132126A1 (en) Method of producing optical element, and optical element
JP4110107B2 (en) Optical fiber tip lens processing method and processing apparatus
JP2006297562A (en) Grinding method, molding die, and optical element
US20030198457A1 (en) Processing method and apparatus of destal end of optical fiber
JP2011048266A (en) Microlens array and method of manufacturing die of the same
JP2005305583A (en) Index machining method for die and machining tool for die
JP3839326B2 (en) Axisymmetric aspheric grinding method
JP3939983B2 (en) Measuring method of movement / attitude control device
JP2000263380A (en) Machining method and device for work
JP2003127052A (en) Grinding method
JP2001129714A (en) Curved surface mechining method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040729

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050906

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060302

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090310

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100310

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110310

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110310

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120310

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130310

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees