JPH08181433A - Manufacture of two-layer flexible substrate - Google Patents

Manufacture of two-layer flexible substrate

Info

Publication number
JPH08181433A
JPH08181433A JP33651294A JP33651294A JPH08181433A JP H08181433 A JPH08181433 A JP H08181433A JP 33651294 A JP33651294 A JP 33651294A JP 33651294 A JP33651294 A JP 33651294A JP H08181433 A JPH08181433 A JP H08181433A
Authority
JP
Japan
Prior art keywords
layer
copper
substrate
film
chromium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33651294A
Other languages
Japanese (ja)
Inventor
Takehiko Sakurada
毅彦 櫻田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP33651294A priority Critical patent/JPH08181433A/en
Publication of JPH08181433A publication Critical patent/JPH08181433A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemically Coating (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

PURPOSE: To provide a manufacturing method of a two-layer flexible substrate which does not produce a pin hole even if an extremely thin copper film is formed. CONSTITUTION: A chromium or chromium oxide layer is directly formed as a foundation layer in one side or both sides of an insulator film without incorporating adhesive. A copper conductor layer is further formed on a chromium layer or a chromium oxide layer, or a copper layer of a substrate wherein a thin copper layer is formed on a foundation metallic layer. Thereafter, a wiring part is formed by a subtractive method or a semiadditive method and a flexible wiring board is manufactured. After a substrate wherein a foundation layer and a thin copper layer are formed is treated by inorganic alkaline solution and/or organic alkaline solution, an electroless copper plating film is formed at least 0.01μm thick in a substrate surface and a copper conductor layer is further formed on an electroless copper plating film.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は2層フレキシブル基板の
製造方法に関する。
FIELD OF THE INVENTION The present invention relates to a method for manufacturing a two-layer flexible substrate.

【0002】[0002]

【従来の技術】フレキシブル配線板は、絶縁体フィルム
に接着剤を用いて銅箔を貼り合わせた3層フレキシブル
基板を用い、サブトラクティブ法によって所望の配線パ
ターンを形成した3層フレキシブル配線板と、絶縁体フ
ィルム上に直接金属や金属酸化物などによる下地層を設
けた後、銅の導体層を形成した2層フレキシブル基板を
用いてサブトラクティブ法またはアディティブ法によっ
て所望の配線パターンを形成する2層フレキシブル配線
板とに大別される。
2. Description of the Related Art A flexible wiring board is a three-layer flexible wiring board in which a desired wiring pattern is formed by a subtractive method by using a three-layer flexible board in which a copper foil is bonded to an insulating film with an adhesive. A two-layer structure in which a desired wiring pattern is formed by a subtractive method or an additive method using a two-layer flexible substrate having a copper conductor layer formed directly after providing an underlying layer made of a metal or metal oxide on an insulator film. Broadly divided into flexible wiring boards.

【0003】そして従来は、製造工程が簡単で、低コス
トで製造できる3層フレキシブル配線板が一般的であっ
た。ところで、近年の電子機器の高密度化にともなって
フレキシブル配線板においても狭ピッチの配線幅が要求
されている。
Conventionally, a three-layer flexible wiring board which has a simple manufacturing process and can be manufactured at low cost has been generally used. By the way, with the recent increase in the density of electronic equipment, a narrow wiring width is required for flexible wiring boards.

【0004】3層フレキシブル配線板の場合には、エッ
チングによる配線部の形成に際してサイドエッチングを
生ずるために配線断面の形状が裾広がりの台形となるこ
とから、配線間の電気的絶縁性を確保するまでエッチン
グを行うと配線ピッチが広くなり過ぎてしまい、従って
配線幅の狭ピッチ化には限界があった。
In the case of a three-layer flexible wiring board, since side etching occurs when forming a wiring portion by etching, the shape of the wiring cross section becomes a trapezoid with a widened hem, so that electrical insulation between wirings is ensured. If etching is performed up to this point, the wiring pitch becomes too wide, and therefore there is a limit to narrowing the wiring width.

【0005】そしてこのサイドエッチングによる裾広が
りは銅の厚みが厚い程、広がりが大きくなるので、広が
りを小さくして配線幅をより狭ピッチ化するためには、
従来一般的に使用される35μm厚さの銅箔に換えて1
8μm以下の可及的に薄い銅箔を用いる必要があった。
しかし、薄肉の銅箔、殊に数μm程度の極薄肉の銅箔
は、それ自体の剛性が小さいために搬送などのハンドリ
ング性が悪く、アルミニウムキャリアを貼り合わせて剛
性を高くしなければならないという問題がある。また、
膜厚のばらつきやピンホールや亀裂などの被膜欠陥を生
じやすいという問題もあった。
Further, the skirt spread due to this side etching becomes larger as the thickness of the copper becomes thicker. Therefore, in order to reduce the spread and narrow the wiring width,
Replace with the copper foil of 35 μm thickness that is commonly used in the past
It was necessary to use a copper foil having a thickness as thin as 8 μm or less.
However, a thin copper foil, especially an extremely thin copper foil with a thickness of about several μm, has a low rigidity itself and therefore has poor handling properties such as transportation, and it is necessary to bond an aluminum carrier to increase the rigidity. There's a problem. Also,
There is also a problem that film defects such as variations in film thickness and pinholes and cracks are likely to occur.

【0006】したがって銅箔の厚さが薄くなればなる程
配線板の製造が困難になるし、また製造コストも高くな
るので、3層フレキシブル配線板の長所であるコストメ
リットがなくなってしまうという欠点もあった。
Therefore, the thinner the copper foil is, the more difficult it is to manufacture the wiring board and the higher the manufacturing cost is. Therefore, the cost merit, which is an advantage of the three-layer flexible wiring board, is lost. There was also.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、最近に
至り銅導体層の厚さが10μm以下、数μm程度でなく
ては製造できないような狭ピッチ配線幅のフレキシブル
配線板の要求が高くなってきた。そこで最近では2層フ
レキシブル配線板が注目されている。何となれば該2層
フレキシブル配線板は接着剤を施すことなく直接絶縁体
フィルム上に銅被膜層を形成するので基板を薄くできる
上に基板上に形成する銅被膜層も任意の厚さに形成させ
ることができるからコストを下げることができるからで
ある。
However, recently, there has been an increasing demand for a flexible wiring board having a narrow pitch wiring width that cannot be manufactured unless the thickness of the copper conductor layer is 10 μm or less, or about several μm. . Therefore, recently, a two-layer flexible wiring board has attracted attention. What is important is that the two-layer flexible wiring board directly forms the copper coating layer on the insulating film without applying an adhesive, so that the substrate can be made thin and the copper coating layer formed on the substrate can also be formed to an arbitrary thickness. This is because it is possible to reduce the cost.

【0008】この2層フレキシブル基板は、絶縁体フィ
ルム上に乾式または湿式めっきで極めて薄い銅被膜を形
成させるものであるが、市場に流通しているものは殆ど
が乾式めっきを施したものである。
This two-layer flexible substrate forms an extremely thin copper film on an insulating film by dry or wet plating, but most of those on the market are those which are dry plated. .

【0009】この乾式めっきを施した2層フレキシブル
基板は、絶縁体フィルムと銅被膜との密着性が悪いこと
から一般に絶縁体フィルム上にクロム、酸化クロム、ニ
ッケルなどの銅以外の金属または金属酸化物を下地層と
して50〜200オングストローム程度の厚さに被着さ
せた後に該銅被膜を形成させることによって銅と絶縁体
フィルムとの間の密着性を高めることが行われている。
Since the dry-plated two-layer flexible substrate has poor adhesion between the insulator film and the copper coating, it is generally a metal or metal oxide other than copper, such as chromium, chromium oxide or nickel, on the insulator film. It has been practiced to increase the adhesion between copper and an insulating film by depositing an object as a base layer to a thickness of about 50 to 200 Å and then forming the copper coating.

【0010】そして通常この銅被膜の厚さは、通常0.
2〜0.5μm程度であるが、このようにして形成され
る銅被膜には多数のピンホールが生成しやすく、しばし
ば下地層や絶縁体フィルムが露出している場合がある。
また、下地層は前述したように50〜200オングスト
ロームの厚さしかないので、基板に電気銅めっきを行う
に際し、硫酸銅などの強酸性の電気めっき液に浸漬して
通電した場合に溶解され、絶縁体フィルムが露出してし
まうという問題もあった。
And, usually, the thickness of the copper coating is usually 0.
Although the thickness is about 2 to 0.5 μm, a large number of pinholes are likely to be formed in the copper coating thus formed, and the underlayer or the insulating film is often exposed in some cases.
In addition, since the underlayer has a thickness of 50 to 200 angstroms as described above, it is dissolved when the substrate is electroplated with copper and is immersed in a strongly acidic electroplating solution such as copper sulfate and is energized, There was also a problem that the insulating film was exposed.

【0011】従来は、配線部の形成に必要な銅による導
電層被膜の厚みは15〜35μmとされており、このよ
うなかなりの厚さの銅被膜を電気銅めっき法で得る場合
には、銅被膜は基板に対して垂直方向のみならず水平方
向にも成長するのでピンホールは該被膜によって埋ま
り、ピンホールの存在による配線部の欠陥は生じること
はないが、本発明の目的とするような狭ピッチの配線を
得ようとする場合には、配線部形成のための銅被膜の厚
みは10μm以下、例えば5μm前後と、上記の厚みよ
りもかなり薄くしなければならないために、電気銅めっ
き法により被膜を形成した場合に被膜の水平方向への成
長が足りずピンホールを埋めることができないので配線
部の欠陥等の問題を起こしやすいという問題がある。
Conventionally, the thickness of the conductive layer coating made of copper necessary for forming the wiring portion is 15 to 35 μm, and when a copper coating having such a considerable thickness is obtained by the electrolytic copper plating method, Since the copper film grows not only in the vertical direction but also in the horizontal direction with respect to the substrate, the pinholes are filled with the film, and the defect of the wiring portion due to the presence of the pinholes does not occur, but it is an object of the present invention. In order to obtain a wiring with a narrow pitch, the thickness of the copper coating for forming the wiring portion should be 10 μm or less, for example, about 5 μm, which is considerably smaller than the above thickness. When the coating is formed by the method, the growth of the coating in the horizontal direction is insufficient and the pinholes cannot be filled, so that there is a problem that problems such as defects of the wiring portion are likely to occur.

【0012】例えば、サブトラクティブ法により配線形
成を行う場合には、(1)絶縁体基板上に所望の厚さの
銅被膜を形成し、(2)該銅被膜上に配線部のみがマス
キングされ、それ以外の部分における銅被膜が露出する
ように所望の配線パターンを有するレジスト層を設け、
(3)露出している銅被膜をエッチングして除去し、
(4)最後にレジスト層を除去することによって行われ
る。従って、前述したように薄い銅被膜の場合には、ピ
ンホールが配線部にかかっていれば、配線部はピンホー
ルの位置で欠けることになり配線欠陥となるばかりか配
線の密着不良を招く原因となりやすい。
For example, when wiring is formed by the subtractive method, (1) a copper film having a desired thickness is formed on an insulating substrate, and (2) only the wiring portion is masked on the copper film. , Providing a resist layer having a desired wiring pattern so that the copper coating on the other part is exposed,
(3) The exposed copper film is removed by etching,
(4) Finally, the resist layer is removed. Therefore, as described above, in the case of a thin copper film, if the pinhole is in the wiring portion, the wiring portion will be chipped at the position of the pinhole, which not only causes a wiring defect but also causes poor wiring adhesion. It is easy to become.

【0013】本発明は、上記の問題に鑑みてなされたも
のであって、5μm前後の極めて薄い厚さの銅被膜を形
成した場合においてもピンホールが生成しないような2
層フレキシブル基板の製造方法を提供することを目的と
するものである。
The present invention has been made in view of the above-mentioned problems, and does not cause pinholes even when a copper coating having an extremely thin thickness of about 5 μm is formed.
An object of the present invention is to provide a method for manufacturing a layer flexible substrate.

【0014】[0014]

【課題を解決するための手段】本発明者は、該絶縁体フ
ィルム上に下地層のクロムまたはクロム酸化物被膜と表
面金属層である銅被膜を乾式めっき法により形成した基
板上に、薄膜の無電解めっき被膜を形成し、さらに電気
銅めっき法で銅の導電被膜層を形成する場合には、薄い
導体層を形成した場合においても、絶縁体フィルムまた
は下地層に露出するピンホールを減少させることができ
ることを見出した。
The present inventor has found that a thin film of a thin film is formed on a substrate on which a chromium or chromium oxide film as a base layer and a copper film as a surface metal layer are formed on the insulating film by a dry plating method. When an electroless plating film is formed and then a copper conductive film layer is formed by the electrolytic copper plating method, even if a thin conductor layer is formed, the number of pinholes exposed in the insulating film or the underlayer is reduced. I found that I can.

【0015】すなわち上記の課題を解決するための本発
明は、絶縁体フィルムの片面または両面に、接着剤を介
さずに、直接クロムまたはクロム酸化物層を下地層とし
て形成し、さらに該下地層上に薄い銅層を形成した基板
の該クロム層またはクロム酸化物層または銅層上に更に
銅の導体層を形成した後、サブトラクティブ法またはセ
ミアディティブ法によって配線部を形成してプリント配
線板を製造する方法において、該下地層および薄膜の銅
層を形成した後の基板を、無機アルカリ溶液および/ま
たは有機アルカリ溶液で処理し、しかる後該基板表面に
無電解銅めっき被膜を0.01μm以上の厚さに形成
し、さらに該無電解銅めっき被膜上に銅の導体層を形成
することを特徴とする2層フレキシブル基板の製造方法
である。
That is, according to the present invention for solving the above problems, a chromium or chromium oxide layer is directly formed as an underlayer on one side or both sides of an insulating film without an adhesive, and the underlayer is further formed. A printed wiring board in which a wiring layer is formed by a subtractive method or a semi-additive method after further forming a copper conductor layer on the chromium layer, the chromium oxide layer or the copper layer of the substrate on which a thin copper layer is formed. In the method for producing a substrate, the substrate after the formation of the underlayer and the thin copper layer is treated with an inorganic alkaline solution and / or an organic alkaline solution, and then an electroless copper plating film of 0.01 μm is formed on the surface of the substrate. A method of manufacturing a two-layer flexible substrate, which is characterized in that it is formed to the above thickness, and a conductor layer of copper is further formed on the electroless copper plating film.

【0016】本発明の方法をさらに具体的に説明する
と、ピンホール部分において露出する絶縁体フィルム表
面を例えばヒドラジンおよびエチレンジアミンの混合液
のような有機アルカリ溶液または水酸化カリウム、水酸
化ナトリウムのような無機アルカリ溶液、またはこれら
の混合溶液によって処理して親水化させると同時にクロ
ム表面の自然酸化膜またはクロム酸化物を除去し、活性
な金属クロム面または絶縁体フィルム面を露出させる
(当然のことながらクロム酸化物が除去された場合には
絶縁体フィルム面が露出するので、その表面は親水化さ
れる)。
To explain the method of the present invention more specifically, the surface of the insulating film exposed at the pinhole portion is treated with an organic alkaline solution such as a mixed solution of hydrazine and ethylenediamine or with a potassium hydroxide or sodium hydroxide solution. It is treated with an inorganic alkaline solution or a mixed solution thereof to make it hydrophilic, and at the same time, removes the natural oxide film or chromium oxide on the chromium surface to expose the active metal chromium surface or the insulating film surface (as a matter of course, When the chromium oxide is removed, the surface of the insulating film is exposed, so that the surface is made hydrophilic).

【0017】次に基板全体に周知の無電解めっきのため
の触媒付与を行うことによって、該親水化されている絶
縁体フィルム表面とピンホール部分に露出しているニッ
ケル被膜上に触媒を付与し、次いで無電解めっき法によ
って銅被膜を形成することで導体層の厚みを増加させ
る。このようにすることにより次工程での電気銅めっき
を施す場合における強酸性の電気めっき液下での通電時
においても被膜が溶解することなく電気銅めっき被膜が
得られる。
Next, by applying a known catalyst for electroless plating to the entire substrate, the catalyst is applied on the surface of the hydrophilized insulating film and the nickel coating exposed on the pinhole portion. Then, the thickness of the conductor layer is increased by forming a copper film by an electroless plating method. By doing so, an electrolytic copper plating film can be obtained without dissolving the film even during energization under a strongly acidic electroplating solution in the case of performing electrolytic copper plating in the next step.

【0018】使用される触媒付与溶液は、酸性のパラジ
ウム−錫コロイド溶液や、アルカリ性のパラジウム錯体
溶液。または錫を含まない酸性パラジウム溶液など一般
的なものでよい。また触媒付与法も一般的な方法でよい
が、無電解めっき法の前処理として通常行われているセ
ンシタイジング・アクチベーション法や、キャタリスツ
・アクセレーター法などが簡便であり好ましい方法であ
る。
The catalyst-applying solution used is an acidic palladium-tin colloidal solution or an alkaline palladium complex solution. Or, a general one such as an acidic palladium solution containing no tin may be used. Further, the catalyst application method may be a general method, but a sensitizing activation method and a catalyst accelerator method, which are usually performed as a pretreatment of the electroless plating method, are simple and preferable methods.

【0019】また触媒付与に際しての前処理は、特に限
定されるものでないが乾式めっき被膜と湿式めっき被膜
との密着性を図るために脱脂等の処理を手利き行うこと
が好ましい。しかしながら、前処理によってニッケル被
膜や銅被膜が溶解するような条件は避けることが肝要で
ある。
The pretreatment for applying the catalyst is not particularly limited, but it is preferable to perform a degreasing treatment in order to improve the adhesion between the dry plating film and the wet plating film. However, it is important to avoid the condition that the nickel film and the copper film are dissolved by the pretreatment.

【0020】[0020]

【作用】次に本発明の詳細およびその作用についてより
具体的に説明する。
Next, the details of the present invention and the operation thereof will be described more specifically.

【0021】ポリイミドフィルムなどの絶縁体フィルム
上に例えば100オングストローム程度の極薄膜のクロ
ムまたはクロム酸化物被膜を乾式めっきにより形成し、
さらにその上に例えば0.3μm程度の薄膜の銅被膜を
乾式めっき法により形成した基板の表面をヒドラジンと
エチルジアミン混合溶液のような有機アルカリ溶液、ま
たは水酸化カリウム、水酸化ナトリウムのような無機ア
ルカリ溶液、あるいはヒドラジンと水酸化カリウムの混
合液のような有機アルカリと無機アルカリの混合溶液に
よって処理することにより、ピンホール部において露出
している絶縁体フィルムの表面は親水化される。次いで
従来から無電解めっき法で行われている公知の触媒付与
法により触媒の付与を行えば、親水化された絶縁体フィ
ルム上とピンホール部分において露出している該クロム
被膜上と最表面の銅被膜上に触媒が付与される。そして
このように触媒を付与した基板を所定の無電気めっき条
件で無電解銅めっき液に浸漬すれば、触媒が付与された
部分、すなわち親水化された絶縁体フィルム表面とクロ
ム被膜上と銅被膜上とに新たに無電解銅めっき被膜が形
成される。
An extremely thin film of chromium or chromium oxide having a thickness of, for example, about 100 Å is formed on an insulating film such as a polyimide film by dry plating.
Further, on the surface of the substrate on which a thin copper film having a thickness of, for example, about 0.3 μm is formed by dry plating, an organic alkaline solution such as a mixed solution of hydrazine and ethyldiamine, or an inorganic solution such as potassium hydroxide or sodium hydroxide is used. By treating with an alkaline solution or a mixed solution of an organic alkali and an inorganic alkali such as a mixed solution of hydrazine and potassium hydroxide, the surface of the insulating film exposed in the pinhole portion is made hydrophilic. Then, by applying a catalyst by a known catalyst applying method that has been conventionally performed by electroless plating, the chrome coating exposed on the hydrophilized insulator film and the pinhole portion and the outermost surface A catalyst is applied on the copper coating. When the substrate thus provided with the catalyst is immersed in an electroless copper plating solution under predetermined electroless plating conditions, the portion provided with the catalyst, that is, the surface of the hydrophilized insulator film, the chromium film, and the copper film An electroless copper plating film is newly formed on the top.

【0022】すなわち、親水化した絶縁体フィルム表面
とクロム被膜上に新たに銅被膜を形成することで両者の
表面の導電性を高め、また金属層の厚みを増加させるこ
とで硫酸銅めっき液を用いた電気銅めっきを行った場合
においても絶縁体フィルムの露出部やクロム被膜部分の
溶解を起こすことがなくなる。したがってピンホールを
埋めることができるのである。電気銅めっき法によって
5μm〜10μm程度の厚さの銅導体層を形成した後、
従来法によって該銅導体層上に所望の配線パターンを有
するレジスト層を形成し、銅導体層の露出部分をエッチ
ングにより除去し、その後該レジスト層を剥離除去すれ
ば配線の欠落部や断線などの欠陥のない導体厚さ5μm
〜10μm程度の2層フレキシブル配線板が得られる。
That is, by newly forming a copper coating on the surface of the hydrophilized insulating film and the chromium coating, the conductivity of both surfaces is enhanced, and by increasing the thickness of the metal layer, the copper sulfate plating solution is added. Even when the electrolytic copper plating used is performed, the exposed portion of the insulator film and the chromium coating portion are not dissolved. Therefore, the pinhole can be filled. After forming a copper conductor layer having a thickness of about 5 μm to 10 μm by electrolytic copper plating,
A resist layer having a desired wiring pattern is formed on the copper conductor layer by a conventional method, the exposed portion of the copper conductor layer is removed by etching, and then the resist layer is removed by peeling to remove a missing portion or a disconnection of the wiring. Defect-free conductor thickness 5 μm
A two-layer flexible wiring board of about 10 μm can be obtained.

【0023】本発明の触媒付与法に用いる触媒活性金属
としては、無電解めっき液において添加される錯体化さ
れた金属イオン種よりも電位的に貴なものであればよ
い。例えば、金、白金、銀、パラジウムなどが使用でき
る。しかし、簡便さを考慮すれば、触媒付与液として広
く市販されているパラジム系のものを使用することが好
ましい。本発明において使用される無電解めっき液の種
類としては、触媒として触媒活性金属種を用いているの
で、めっき液に含まれる金属イオンの種類が金、銀、白
金、パラジウム、銅、ニッケル、コバルト、クロムなど
の自己触媒性を有するもので、かつヒドラジン、ホスフ
ィン酸ナトリウム、ホルマリンなどの還元剤により還元
されて金属析出する還元析出型のものが適当である。
The catalytically active metal used in the catalyst application method of the present invention may be any one that is more noble in potential than the complexed metal ion species added in the electroless plating solution. For example, gold, platinum, silver, palladium or the like can be used. However, from the viewpoint of simplicity, it is preferable to use a widely-used paradigm-based catalyst-adding liquid. As the type of electroless plating solution used in the present invention, since a catalytically active metal species is used as a catalyst, the types of metal ions contained in the plating solution are gold, silver, platinum, palladium, copper, nickel, cobalt. A reduction-precipitation type that has an autocatalytic property such as chromium and a metal that is reduced by a reducing agent such as hydrazine, sodium phosphinate, or formalin to cause metal precipitation is suitable.

【0024】しかしながら、本発明はピンホール部で露
出している絶縁体フィルム上を導電性に改修すること
と、薄い下地クロム層が電気めっき時に溶解しないよう
にすることが主たる目的であるので、導電性が良好で比
較的作業性のよい無電解銅めっき液が最も適していると
いえる。この無電解めっき被膜の厚さは、電気銅めっき
を施す際に、めっき液によって溶解されない程度の厚さ
であればよい。
However, the main purpose of the present invention is to make the insulating film exposed at the pinholes electrically conductive and to prevent the thin chromium underlayer from dissolving during electroplating. It can be said that the electroless copper plating solution having good conductivity and relatively good workability is most suitable. The thickness of this electroless plating film may be such that it is not dissolved by the plating solution when performing electrolytic copper plating.

【0025】また、本発明において、基板の親水化処理
を行うに際してのアルカリ溶液の濃度や処理温度等の処
理条件は、使用アルカリ溶液の種類等により異なるの
で、処理に際しては、あらかじめ使用アルカリの種類等
に応じて実験的に定めておく必要がある。
Further, in the present invention, the treatment conditions such as the concentration of the alkali solution and the treatment temperature at the time of carrying out the hydrophilic treatment of the substrate are different depending on the kind of the alkali solution used and the like. It is necessary to determine it experimentally according to the above.

【0026】[0026]

【実施例】次に本発明の実施例について述べる。 実施例1 厚さ50μmのポリイミドフィルム(東レ・デュポン社
製、「カプトン200V」)を12cm×12cmの大
きさに切り出し、その片面に真空蒸着法によってクロム
を100オングストロームの厚さに被着させ、さらにそ
の上に真空蒸着法によって銅を0.25μmの厚さに被
着させた基板を作成した。
Next, an embodiment of the present invention will be described. Example 1 A polyimide film having a thickness of 50 μm (“Kapton 200V” manufactured by Toray-Dupont Co., Ltd.) was cut into a size of 12 cm × 12 cm, and chromium was deposited on one side of the film to a thickness of 100 angstrom by a vacuum deposition method. Furthermore, a substrate was formed by depositing copper to a thickness of 0.25 μm thereon by vacuum deposition.

【0027】次に、該基板を弱アルカリ性の脱脂剤に1
分間浸漬して脱脂した後2分間水洗して表面を清浄化し
た。次いで、2.5モル/リットルのヒドラジンと1.
0モル/リットルのエチレンジアミンの混合有機アルカ
リ溶液に浸漬して露出している絶縁体フィルム表面を親
水化し、水洗後に希塩酸溶液に浸漬して基板表面を中和
し、さらにキャラクタライジング液、アクセレーティン
グ液(共に奥野製薬社製)に浸漬して基板表面に無電解
めっき用の触媒を付与した。引き続き表1に示す組成の
無電解銅めっき液に基板を3分間浸漬して表面に無電解
銅めっき被膜を形成した。このときのめっき条件はめっ
き液の温度60℃、pH=12.5で、空気攪拌による
処理を行った。
Next, the substrate was treated with a weak alkaline degreasing agent 1
After soaking for 1 minute to degrease, the surface was cleaned by washing with water for 2 minutes. Then 2.5 mol / l hydrazine and 1.
The exposed surface of the insulating film is made hydrophilic by immersing it in a mixed organic alkali solution of 0 mol / liter of ethylenediamine, washed with water and then immersed in a dilute hydrochloric acid solution to neutralize the surface of the substrate, and further characterization liquid and accelerating liquid. (Both made by Okuno Seiyaku Co., Ltd.) to apply a catalyst for electroless plating on the surface of the substrate. Subsequently, the substrate was immersed in an electroless copper plating solution having the composition shown in Table 1 for 3 minutes to form an electroless copper plating film on the surface. At this time, the plating conditions were a temperature of the plating solution of 60 ° C. and a pH of 12.5, and the treatment was performed by stirring with air.

【0028】[0028]

【表1】無電解めっき液組成 ─────────────────────── 硫酸銅 : 10g/l EDTA : 30g/l HCHO(36%sol.): 5ml/l PEG#1000 : 0.5g/l ジピリジル : 10ml/l ─────────────────────── 無電解めっき処理後、引き続き表2に示す組成の電気銅
めっき液を用いて電気めっき処理を行い厚さ5μmの銅
被膜を形成した。このときのめっき条件は、めっき液の
温度は室温、攪拌は機械攪拌で、通電時の電流密度は3
A/dmであり、通電時間は9分間とした。
[Table 1] Composition of electroless plating solution ──────────────────────── Copper sulfate: 10 g / l EDTA: 30 g / l HCHO (36% sol.) : 5 ml / l PEG # 1000: 0.5 g / l dipyridyl: 10 ml / l ─────────────────────── After the electroless plating, continue to Table 2 Electroplating treatment was performed using the electrolytic copper plating solution having the composition shown in (1) to form a copper coating having a thickness of 5 μm. The plating conditions at this time were that the temperature of the plating solution was room temperature, the stirring was mechanical stirring, and the current density during energization was 3
A / dm 2 , and the energization time was 9 minutes.

【0029】[0029]

【表2】電気銅めっき液組成 ─────────────────────── 硫酸銅 : 80g/l 硫酸 : 200g/l 光沢剤 : 適量 塩素イオン : 50mg/l ─────────────────────── 得られた基板の銅被膜側から光をあててピンホールの有
無を確認したところ、12cm×12cmの領域内では
光の透過は認められず、ピンホールが存在しないことが
わかった。この基板を用いて配線幅が40μm、配線ピ
ッチが80μmのフレキシブル配線板を常法によりサブ
トラクティブ法に基づいて作成したところ、配線部分に
ピンホールが原因で生ずる欠落部分や断線部分などの欠
陥のないものが得られた。なお本実施例は、サブトラク
ティブ法によって絶縁体フィルムの片面に配線パターン
を有する片面フレキシブル配線板を作成した例を示した
ものであるが、絶縁体フィルムの両面に配線部を有する
両面フレキシブル配線板、あるいはセミアディティブ法
による片面または両面フレキシブル配線板についても同
様に優れた結果が得られることが確認されている。 実施例2 脱脂処理後の絶縁体フィルム表面の親水化処理を2モル
/リットルの水酸化カリウム溶液を用いた以外は、実施
例1と同様の手順で片面フレキシブル配線板を作成した
ところ、得られた配線板はピンホールの存在に基づく配
線部の欠陥のないものが得られた。 実施例3 脱脂処理後の絶縁体フィルム表面の親水化処理を2.5
モル/リットルのヒドラジンと2モル/リットルの水酸
化カリウムの混合アルカリ溶液を用いた以外は実施例1
と同様の手順で片面フレキシブル配線板を作成したとこ
ろ、得られた配線板はピンホールの存在に基づく配線部
の欠陥のないものが得られた。 比較例1 厚さ50μmのポリイミドフィルム(東レ・デュポン社
製、「カプトン200V」)を12cm×12cmの大
きさに切り出し、その片面に真空蒸着法によってクロム
を100オングストロームの厚さに被着させ、さらにそ
の上に真空蒸着法によって銅を0.25μmの厚さに被
着させた基板を作成した。
[Table 2] Composition of electrolytic copper plating solution ──────────────────────── Copper sulfate: 80 g / l Sulfuric acid: 200 g / l Brightener: Appropriate amount Chloride ion: 50 mg / l ─────────────────────── When the presence of pinholes was confirmed by shining light from the copper coating side of the obtained substrate, 12 cm × No light transmission was observed within the 12 cm region, indicating that there were no pinholes. Using this substrate, a flexible wiring board having a wiring width of 40 μm and a wiring pitch of 80 μm was prepared by a conventional method based on the subtractive method. As a result, it was found that the wiring portion had defects such as missing portions and disconnection portions caused by pinholes. I got something not. The present example shows an example in which a single-sided flexible wiring board having a wiring pattern on one surface of an insulating film was prepared by a subtractive method, but a double-sided flexible wiring board having wiring portions on both surfaces of the insulating film. It has been confirmed that the same excellent results can be obtained for a single-sided or double-sided flexible wiring board by the semi-additive method. Example 2 A single-sided flexible wiring board was prepared by the same procedure as in Example 1 except that the hydrophilizing treatment of the insulating film surface after the degreasing treatment was carried out by using a 2 mol / liter potassium hydroxide solution. The obtained wiring board was free from defects in the wiring part due to the presence of pinholes. Example 3 After the degreasing treatment, the surface of the insulator film was made hydrophilic by 2.5.
Example 1 except that a mixed alkaline solution of mol / l hydrazine and 2 mol / l potassium hydroxide was used.
When a single-sided flexible wiring board was prepared by the same procedure as in (1), the obtained wiring board was free from defects in the wiring part due to the presence of pinholes. Comparative Example 1 A polyimide film (“Kapton 200V” manufactured by Toray-Dupont Co., Ltd.) having a thickness of 50 μm was cut into a size of 12 cm × 12 cm, and chromium was deposited on one surface of the film to a thickness of 100 angstrom by a vacuum deposition method. Furthermore, a substrate was formed by depositing copper to a thickness of 0.25 μm thereon by vacuum deposition.

【0030】次に、該基板を弱アルカリ性の脱脂剤に1
分間浸漬して脱脂した後2分間水洗して表面を清浄化し
た。次いで、0.01モル/リットルのヒドラジンと
0.01モル/リットルのエチレンジアミンの混合有機
アルカリ溶液に浸漬して露出している絶縁体フィルム表
面を親水化した。その後基板に無電解銅めっき処理を施
すための工程を経ることなく直ちに実施例1と同様の手
順で電気銅めっき法によって5μmの銅被膜を形成し
た。
Next, the substrate was treated with a weakly alkaline degreasing agent.
After soaking for 1 minute to degrease, the surface was cleaned by washing with water for 2 minutes. Then, the exposed surface of the insulating film was made hydrophilic by immersing it in a mixed organic alkaline solution of 0.01 mol / liter hydrazine and 0.01 mol / liter ethylenediamine. Then, a 5 μm copper coating was immediately formed by the electrolytic copper plating method in the same procedure as in Example 1 without passing through a step for subjecting the substrate to electroless copper plating.

【0031】得られた基板の銅被膜側から光をあててピ
ンホールの有無を確認したところ、12cm×12cm
の領域内では光の透過があり、ピンホールの大きさは数
μmから百数十μmでその数は真空蒸着後のピンホール
数と殆ど変化がなかった。
When the presence or absence of pinholes was confirmed by shining light from the copper coating side of the obtained substrate, it was 12 cm × 12 cm.
There was light transmission in the region of, and the size of the pinholes was several μm to hundreds of tens of μm, and the number was almost the same as the number of pinholes after vacuum deposition.

【0032】この基板を用いて配線幅が40μm、配線
ピッチが80μmのフレキシブル配線板を常法によるサ
ブトラクティブ法に基づいて作成したところ、配線部分
にピンホールが原因で生ずる欠陥部分や断線部分などの
欠陥が多数確認され、この基板は狭ピッチの微小配線基
板には適さないことがわかった。 比較例2 比較例1と同様にして作成した基板を弱アルカリ性の脱
脂剤に1分間浸漬して脱脂した後、2分間水洗して表面
を清浄化した。次いで5モル/リットルのヒドラジンと
3モル/リットルのエチレンジアミンの混合溶液に浸漬
して、露出している絶縁体フィルム表面を親水化した。
その後、基板に無電解めっき処理を施すための工程を経
ることなく直ちに実施例1と同様の手順で電気銅めっき
法によって、5μm銅被膜を形成した。
Using this substrate, a flexible wiring board having a wiring width of 40 μm and a wiring pitch of 80 μm was prepared based on the subtractive method according to the usual method. As a result, a defective portion or a disconnection portion caused by a pinhole in the wiring portion was produced. Many defects were confirmed, and it was found that this substrate was not suitable for a fine pitch fine wiring substrate. Comparative Example 2 A substrate prepared in the same manner as in Comparative Example 1 was immersed in a weak alkaline degreasing agent for 1 minute to degrease it, and then washed with water for 2 minutes to clean the surface. Next, the exposed surface of the insulating film was made hydrophilic by immersing it in a mixed solution of 5 mol / liter of hydrazine and 3 mol / liter of ethylenediamine.
Thereafter, a 5 μm copper coating was immediately formed by the electrolytic copper plating method in the same procedure as in Example 1 without passing through the step of subjecting the substrate to electroless plating.

【0033】得られた基板の銅被膜側から光をあててピ
ンホールの有無を確認したところ、12cm×12cm
の領域内では光の透過があり、ピンホールの大きさは数
μmから百数十μmで、加えて筋状の裂け目も存在し
た。ピンホールの数は真空蒸着した後のピンホール数と
比較し増加していた。
When the presence or absence of pinholes was confirmed by shining light from the copper coating side of the obtained substrate, it was 12 cm × 12 cm.
There was light transmission in the region (2), the size of the pinhole was from several μm to hundreds of tens of μm, and in addition, streak-like cracks were present. The number of pinholes was larger than that after vacuum evaporation.

【0034】この基板を用いて比較例1と同様にフレキ
シブル配線板を作成したところ、比較例1と同様の欠陥
が確認され、狭ピッチの微小配線基板には適さないこと
がわかった。 比較例3 比較例1と同様にして作成した基板を弱アルカリ性の脱
脂剤に1分間浸漬して脱脂した後、2分間水洗して表面
を清浄化した。次いで0.1モル/リットルのヒドラジ
ンと0.01モル/リットル水酸化カリウムの混合溶液
浸漬して、露出している絶縁体フィルム表面を親水化し
た。その後、基板に無電解めっき処理を施すための工程
を経ることなく直ちに実施例1と同様の手順で電気銅め
っき法によって、5μm銅被膜を形成した。
When a flexible wiring board was prepared using this substrate in the same manner as in Comparative Example 1, the same defects as in Comparative Example 1 were confirmed, and it was found that it was not suitable for a fine pitch fine wiring substrate. Comparative Example 3 A substrate prepared in the same manner as in Comparative Example 1 was immersed in a weak alkaline degreasing agent for 1 minute to degrease it, and then washed with water for 2 minutes to clean the surface. Then, it was immersed in a mixed solution of 0.1 mol / liter hydrazine and 0.01 mol / liter potassium hydroxide to make the exposed surface of the insulating film hydrophilic. Thereafter, a 5 μm copper coating was immediately formed by the electrolytic copper plating method in the same procedure as in Example 1 without passing through the step of subjecting the substrate to electroless plating.

【0035】この基板を用いて比較例1と同様にフレキ
シブル配線板を作成したところ、比較例1と同様の欠陥
が確認され、狭ピッチの微小配線基板には適さないこと
がわかった。 比較例4 比較例1と同様にして作成した基板を弱アルカリ性の脱
脂剤に1分間浸漬して脱脂した後、2分間水洗して表面
を清浄化した。次いで6モル/リットルのヒドラジンと
5モル/リットル水酸化カリウムの混合溶液に浸漬し
て、露出している絶縁体フィルム表面を親水化した。そ
の後、基板に無電解めっき処理を施すための工程を経る
ことなく直ちに実施例1と同様の手順で電気銅めっき法
によって、5μm銅被膜を形成した。
When a flexible wiring board was prepared using this substrate in the same manner as in Comparative Example 1, the same defects as in Comparative Example 1 were confirmed, and it was found that it was not suitable for a fine pitch fine wiring board. Comparative Example 4 A substrate prepared in the same manner as in Comparative Example 1 was immersed in a weak alkaline degreasing agent for 1 minute to degrease it, and then washed with water for 2 minutes to clean the surface. Then, the surface of the exposed insulating film was hydrophilized by immersing it in a mixed solution of 6 mol / liter hydrazine and 5 mol / liter potassium hydroxide. Thereafter, a 5 μm copper coating was immediately formed by the electrolytic copper plating method in the same procedure as in Example 1 without passing through the step of subjecting the substrate to electroless plating.

【0036】得られた基板の銅被膜側から光をあててピ
ンホールの有無を確認したところ、12cm×12cm
の領域内では光の透過があり、ピンホールの大きさは数
μmから百数十μmで加えて筋状の裂け目も存在した。
ピンホールの数は真空蒸着した後のピンホール数と比較
して増加していた。
When the presence or absence of pinholes was confirmed by shining light from the copper coating side of the obtained substrate, it was 12 cm × 12 cm.
There was light transmission in the region of, and the size of the pinhole was several μm to several hundred and several tens μm, and in addition, there were streak-like cracks.
The number of pinholes was increased compared to the number of pinholes after vacuum evaporation.

【0037】この基板を用いて比較例1と同様にフレキ
シブル配線板を作成したところ、比較例1と同様の欠陥
が確認され、狭ピッチの微小配線基板には適さないこと
がわかった。 比較例5 比較例1と同様にして作成した基板を弱アルカリ性の脱
脂剤に1分間浸漬して脱脂した後、2分間水洗して表面
を清浄化した。次いで0.01モル/リットルの水酸化
カリウム溶液に浸漬して、露出している絶縁体フィルム
表面を親水化した。その後、基板に無電解めっき処理を
施すための工程を経ることなく直ちに実施例1と同様の
手順で電気銅めっき法によって、5μm銅被膜を形成し
た。
When a flexible wiring board was prepared using this substrate in the same manner as in Comparative Example 1, the same defects as in Comparative Example 1 were confirmed, and it was found that it was not suitable for a fine pitch fine wiring board. Comparative Example 5 A substrate prepared in the same manner as in Comparative Example 1 was immersed in a weak alkaline degreasing agent for 1 minute to degrease it, and then washed with water for 2 minutes to clean the surface. Then, it was immersed in a 0.01 mol / liter potassium hydroxide solution to make the exposed surface of the insulating film hydrophilic. Thereafter, a 5 μm copper coating was immediately formed by the electrolytic copper plating method in the same procedure as in Example 1 without passing through the step of subjecting the substrate to electroless plating.

【0038】得られた基板の銅被膜側から光をあててピ
ンホールの有無を確認したところ、12cm×12cm
の領域内では光の透過があり、ピンホールの大きさは数
μmから百数十μmでその数は真空蒸着した後のピンホ
ール数とほぼ変化がなかった。
When the presence or absence of pinholes was confirmed by shining light from the copper coating side of the obtained substrate, it was 12 cm × 12 cm.
There was light transmission in the region of, and the size of the pinholes was from several μm to hundreds of tens of μm, and the number was almost the same as the number of pinholes after vacuum deposition.

【0039】この基板を用いて比較例1と同様にフレキ
シブル配線板を作成したところ、比較例1と同様の欠陥
が確認され、狭ピッチの微小配線基板には適さないこと
がわかった。 比較例6 比較例1と同様にして作成した基板を弱アルカリ性の脱
脂剤に1分間浸漬して脱脂した後、2分間水洗して表面
を清浄化した。次いで5モル/リットルの水酸化カリウ
ム溶液に浸漬して、露出している絶縁体フィルム表面を
親水化した。
When a flexible wiring board was prepared using this substrate in the same manner as in Comparative Example 1, the same defects as in Comparative Example 1 were confirmed, and it was found that it was not suitable for a fine pitch fine wiring board. Comparative Example 6 A substrate prepared in the same manner as in Comparative Example 1 was immersed in a weak alkaline degreasing agent for 1 minute to degrease it, and then washed with water for 2 minutes to clean the surface. Then, it was immersed in a 5 mol / liter potassium hydroxide solution to make the exposed surface of the insulating film hydrophilic.

【0040】その後、基板に無電解めっき処理を施すた
めの工程を経ることなく直ちに実施例1と同様の手順で
電気銅めっき法によって、5μm銅被膜を形成した。
Thereafter, a 5 μm copper coating was immediately formed by the electrolytic copper plating method in the same procedure as in Example 1 without passing through the step of subjecting the substrate to electroless plating.

【0041】得られた基板の銅被膜側から光をあててピ
ンホールの有無を確認したところ、12cm×12cm
の領域内では光の透過があり、ピンホールの大きさは数
μmから百数十μmで加えて筋状の裂け目も存在した。
ピンホール数は真空蒸着した後のピンホール数と比較し
て増加していた。
When the presence or absence of pinholes was confirmed by shining light from the copper coating side of the obtained substrate, it was 12 cm × 12 cm.
There was light transmission in the region of, and the size of the pinhole was several μm to several hundred and several tens μm, and in addition, there were streak-like cracks.
The number of pinholes was increased compared to the number of pinholes after vacuum deposition.

【0042】この基板を用いて比較例1と同様にフレキ
シブル配線板を作成したところ、比較例1と同様の欠陥
が確認され、狭ピッチの微小配線基板には適さないこと
がわかった。
When a flexible wiring board was prepared using this substrate in the same manner as in Comparative Example 1, the same defects as in Comparative Example 1 were confirmed, and it was found that it was not suitable for a fine pitch fine wiring board.

【0043】[0043]

【発明の効果】以上述べたように本発明によるときは、
多数のピンホールを生じやすい乾式めっき被膜を有する
基板上に無電解めっき被膜を形成させることにより、ピ
ンホール部に露出している下地金属層の電気めっき時に
おける溶解を防止し、5μm程度の薄い電気めっき被膜
を形成した場合にもピンホール欠陥のない基板を得るこ
とができ、したがってサブトラクティブ法などによる極
めて狭小なピッチを有する配線板を作成する場合におい
ても、配線部の欠陥のない信頼性の優れたフレキシブル
配線板を得ることができるので工業上優れた発明である
ということができる。
As described above, according to the present invention,
By forming an electroless plating film on a substrate having a dry plating film that easily causes many pinholes, the underlying metal layer exposed in the pinholes is prevented from being dissolved during electroplating, and the thickness is about 5 μm. A substrate without pinhole defects can be obtained even when an electroplating film is formed. Therefore, even when a wiring board having an extremely narrow pitch is formed by a subtractive method, etc., reliability without a defect in the wiring portion. It can be said that the invention is an industrially excellent invention because it is possible to obtain an excellent flexible wiring board.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 絶縁体フィルムの少なくとも片面に、接
着剤を介さずに、直接クロムまたはクロム酸化物層を下
地層として形成し、さらに該下地層上に薄膜の銅層を形
成した基板の該クロム層またはクロム酸化物層または銅
層上に更に銅の導体層を形成した後、サブトラクティブ
法またはセミアディティブ法によって配線部を形成する
ことによりフレキシブル配線板を製造する方法におい
て、該下地層および薄膜の銅層を形成した後の基板を、
無機アルカリ溶液または有機アルカリ溶液のうち少なく
とも一方の溶液で処理した後、該基板表面に無電解銅め
っき被膜を0.01μm以上の厚さに形成し、さらに該
無電解銅めっき被膜上に銅の導体層を形成することを特
徴とする2層フレキシブル基板の製造方法。
1. A substrate in which a chromium or chromium oxide layer is directly formed as an underlayer on at least one surface of an insulating film without an adhesive, and a thin copper layer is formed on the underlayer. In a method for producing a flexible wiring board by forming a wiring layer by a subtractive method or a semi-additive method after further forming a copper conductor layer on a chromium layer, a chromium oxide layer or a copper layer, the underlying layer and The substrate after forming a thin copper layer,
After treatment with at least one of an inorganic alkaline solution and an organic alkaline solution, an electroless copper plating film is formed on the surface of the substrate to a thickness of 0.01 μm or more, and copper is further deposited on the electroless copper plating film. A method for manufacturing a two-layer flexible substrate, which comprises forming a conductor layer.
【請求項2】 該無電解銅めっき被膜上に形成する銅の
導体層の厚さは5μm〜10μmであることを特徴とす
る請求項1記載の2層フレキシブル基板の製造方法。
2. The method for producing a two-layer flexible substrate according to claim 1, wherein the thickness of the copper conductor layer formed on the electroless copper plating film is 5 μm to 10 μm.
【請求項3】 該絶縁体フィルムの片面または両面に直
接形成する下地層のクロムまたはクロム酸化物と該下地
層上に形成する薄膜の銅層は、乾式めっき法によって形
成される請求項1記載の2層フレキシブル基板の製造方
法。
3. The chromium or chromium oxide of the underlayer directly formed on one side or both sides of the insulating film and the thin copper layer formed on the underlayer are formed by a dry plating method. And a method for manufacturing a two-layer flexible substrate.
JP33651294A 1994-12-22 1994-12-22 Manufacture of two-layer flexible substrate Pending JPH08181433A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33651294A JPH08181433A (en) 1994-12-22 1994-12-22 Manufacture of two-layer flexible substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33651294A JPH08181433A (en) 1994-12-22 1994-12-22 Manufacture of two-layer flexible substrate

Publications (1)

Publication Number Publication Date
JPH08181433A true JPH08181433A (en) 1996-07-12

Family

ID=18299901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33651294A Pending JPH08181433A (en) 1994-12-22 1994-12-22 Manufacture of two-layer flexible substrate

Country Status (1)

Country Link
JP (1) JPH08181433A (en)

Similar Documents

Publication Publication Date Title
JP5461988B2 (en) Metal laminated polyimide substrate and manufacturing method thereof
JP3615033B2 (en) Manufacturing method of two-layer flexible substrate
US5342501A (en) Method for electroplating metal onto a non-conductive substrate treated with basic accelerating solutions for metal plating
JP2011225929A (en) Catalyst solution used in electroless plating method, method for preparing the catalyst solution, electroless plating method using the catalyst solution, and plated product with metal layer including metallic film formed by using the electroless plating method
JPH10193505A (en) 2 layer flexible circuit board production method
JP3728572B2 (en) Wiring board manufacturing method
US4066809A (en) Method for preparing substrate surfaces for electroless deposition
JPH10507229A (en) Method for forming an interconnected metallic structure layer on an electrically non-conductive surface
JP3125838B2 (en) Method for manufacturing two-layer flexible substrate
JP3152331B2 (en) Flexible substrate manufacturing method
JP2666470B2 (en) Electroless plating method
JP4646376B2 (en) Accelerator bath solution for direct plating and direct plating method
JP2006104504A (en) Electroless plating pre-treatment method and surface metallizing method for polyimide resin, and flexible printed circuit board and manufacturing method for the same
JP2785102B2 (en) Electroless gold plating method
JPH10195668A (en) Production of two-layer flexible substrate
JPH08181433A (en) Manufacture of two-layer flexible substrate
JPH1065316A (en) Manufacturing method of double-layer flexible board
JPH1060661A (en) Production of two-layer flexible substrate
JPH10154863A (en) Production of two layer flexible wiring board
JPH10154864A (en) Production of two layer flexible wiring board
JP2003293143A (en) Cleaning agent for palladium catalyst, method for cleaning palladium catalyst, method for plating electronic parts using the agent, and electronic parts
KR100295144B1 (en) Method for plating conductive metal on the surface of non-conductive substrates and the promoting solution therefor
JPH1065311A (en) Manufacturing method for double-layer flexible board
JPH06256960A (en) Production of copper-coated aramid substrate
JPH06260759A (en) Manufacture of printed circuit board