JPH08180959A - Corona polarization treating method and corona polarization device - Google Patents

Corona polarization treating method and corona polarization device

Info

Publication number
JPH08180959A
JPH08180959A JP31730694A JP31730694A JPH08180959A JP H08180959 A JPH08180959 A JP H08180959A JP 31730694 A JP31730694 A JP 31730694A JP 31730694 A JP31730694 A JP 31730694A JP H08180959 A JPH08180959 A JP H08180959A
Authority
JP
Japan
Prior art keywords
electrode
needle
polarized
lower electrode
corona
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31730694A
Other languages
Japanese (ja)
Inventor
Masayuki Iijima
正行 飯島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP31730694A priority Critical patent/JPH08180959A/en
Publication of JPH08180959A publication Critical patent/JPH08180959A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatments Of Macromolecular Shaped Articles (AREA)

Abstract

PURPOSE: To uniformly electrify the surface of material to be polarized to treat corona polarization having no difference in polarity by heating the material to be heated, arranged on a lower side electrode, to a given temperature to perform corona electric discharge between plural needlelike electrodes. CONSTITUTION: A material 5 to be polarized such as a polyurea film is placed on the lower part electrode 2 of Al on the like, and voltage is applied by a power source 4 to needlelike electrodes 3, opposite to the material 5, of W or the like to generate corona electric discharge to electrify the surface of the material 5 to be polarized. Together with this, the temperature of the material 5 to be polarized is risen by a heater 6. This makes a dipole in the material 5 to be polarized rotatable by heating, and is oriented along an electric field gradient generated by this electrification. In this corona polarization treating method, the plural needlelike electrodes 3 are arranged, and a grid electrode is located between both the electrodes as required. Also, the corona electric discharge can be made with the needlelike electrodes or the grid electrode or the material 5 to be polarized moved in a horizontal direction to an electric field.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、コロナ分極処理方法お
よびコロナ分極装置に関し、更に詳しくは、マイクロホ
ン、コンデンサー等のエレクトレット、加速度センサ
ー、流体センサー、圧力センサー等の圧電性センサー、
赤外線センサー等の焦電性センサー等に用いる絶縁体材
料に分極処理を施すコロナ分極処理方法、並びにそれに
用いるコロナ分極装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a corona polarization treatment method and a corona polarization device, and more particularly, to an electret such as a microphone and a condenser, an acceleration sensor, a fluid sensor, a piezoelectric sensor such as a pressure sensor,
The present invention relates to a corona polarization treatment method for subjecting an insulating material used for a pyroelectric sensor such as an infrared sensor to a polarization treatment, and a corona polarization device used for the same.

【0002】[0002]

【従来の技術】ステンレス、タングステン等の針状電極
と、それと離れた位置に平板電極との間に高電界(例え
ば数KV/cm)を印加すると、コロナ放電が発生す
る、この場合においては極性はどちらでもよい。
2. Description of the Related Art Corona discharge occurs when a high electric field (for example, several KV / cm) is applied between a needle electrode made of stainless steel, tungsten, etc. and a plate electrode at a position apart from the needle electrode. In this case, polarity is generated. Can be either.

【0003】この電極間に絶縁体を置くと、放電時に針
状電極付近から平板電極に向かって移動するイオンが絶
縁体の表面に入射し、帯電する。帯電すると絶縁体内部
では強い電場勾配が生じる。
When an insulator is placed between the electrodes, ions moving from the vicinity of the needle electrode toward the plate electrode at the time of discharge enter the surface of the insulator and are charged. When charged, a strong electric field gradient occurs inside the insulator.

【0004】絶縁体内に双極子を持つ材料が電極間にお
かれ、かつ双極子の回転が行える状態(例えば絶縁体の
温度を上昇させて双極子が動けるようにする)になった
場合、双極子は生じた電場に沿って配向する。この配向
状態を保ったまま、双極子の動きを固定する(例えば絶
縁体の温度を下げる)と、その後電場を取り除いても配
向はそのまま保たれる。
When a material having a dipole in an insulator is placed between electrodes and the dipole can rotate (for example, the temperature of the insulator is raised to allow the dipole to move), the dipole The child is oriented along the generated electric field. If the movement of the dipole is fixed (for example, the temperature of the insulator is lowered) while maintaining this alignment state, the alignment is maintained even if the electric field is subsequently removed.

【0005】このように、双極子をある方向に配向させ
る処理を分極処理と称する。また、この分極処理をポー
リングとも称する。
The process of orienting the dipole in a certain direction in this way is called a polarization process. This polarization process is also called poling.

【0006】従来、基板上に成膜された例えばポリ尿素
膜から成る被分極材料にコロナ放電を行って、被分極材
料内に含まれる双極子を配向させる、所謂分極処理を施
すコロナ分極装置としては、図10に示すような、アル
ミニウム製の下部電極aと、下部電極aの対向位置に配
置されたタングステン製の針状電極bと、下部電極aの
裏面側に配置した被分極材料を加熱するヒーターcとか
らなり、下部電極aと針状電極bをコロナ放電を発生さ
せる電源dを介して接続したコロナ分極装置が知られて
いる。
[0006] Conventionally, as a corona polarization device for performing so-called polarization treatment, in which a polarized material formed of, for example, a polyurea film on a substrate is subjected to corona discharge to orient the dipoles contained in the polarized material. Is for heating a lower electrode a made of aluminum, a needle electrode b made of tungsten arranged at a position opposite to the lower electrode a, and a polarized material arranged on the back surface side of the lower electrode a as shown in FIG. A corona polarization device is known in which a lower electrode a and a needle electrode b are connected via a power source d for generating a corona discharge.

【0007】そして、下部電極a上に例えばポリ尿素膜
から成る被分極材料eを載置し、電源dより下部電極a
と針状電極b間に例えば300KV/mの電界を加え
て、コロナ放電fを行って被分極材料eの表面に帯電さ
せ、同時にヒーターcにより被分極材料eの温度を例え
ば180℃に上昇して被分極材料e内に含まれる双極子
を配向させる。
Then, a polarized material e made of, for example, a polyurea film is placed on the lower electrode a, and the lower electrode a from the power source d is placed.
An electric field of, for example, 300 KV / m is applied between the needle-shaped electrode b and the needle-shaped electrode b to perform corona discharge f to charge the surface of the polarized material e, and at the same time raise the temperature of the polarized material e to 180 ° C. by the heater c. To orient the dipoles contained in the polarized material e.

【0008】しかしながら、前記コロナ分極装置を用い
て、被分極材料eにコロナ放電で分極処理を行うと、針
状電極bと被分極材料eとの位置関係や両者間b、eの
距離により分極の度合いに差異が生じる。即ち、針状電
極bに最も近い部分が分極しやすく、遠くになるにつれ
て分極しにくくなる。即ち、図10に示すように被分極
材料eの中央部分に分極大の部分gが、被分極材料eの
端部分に分極小の部分hが形成されることになる。
However, when the material e to be polarized is polarized by corona discharge using the corona polarization device, it is polarized depending on the positional relationship between the needle-shaped electrode b and the material e to be polarized and the distance between the two. There is a difference in the degree of. That is, the portion closest to the needle-shaped electrode b is likely to be polarized, and the farther away it is, the less likely it is to polarize. That is, as shown in FIG. 10, a large polarization portion g is formed at the central portion of the polarized material e, and a small polarization portion h is formed at the end portion of the polarized material e.

【0009】尚、分極処理を行った被分極材料のうち、
電場を取り除いても表面に帯電した電荷が長く保存され
るものをエレクトレットと称し、また、双極子が配向
し、内部に残留分極が生じ、力や熱で残留分極が変化
し、その変化分を補うために電流が流れるものを、力に
対しては圧電体、熱に対しては焦電体と称する。
Among the materials to be polarized that have been polarized,
The one in which the electric charge charged on the surface is preserved for a long time even if the electric field is removed is called an electret.In addition, the dipole is oriented and remanent polarization occurs inside, and the remanent polarization changes due to force or heat. The one through which an electric current flows to compensate is called a piezoelectric body for force and a pyroelectric body for heat.

【0010】従って、前記分極装置を用いて、分極処理
を行うと、分極処理された材料内部で帯電量(何Vに帯
電しているか)、或いは圧電性、焦電性に違いが生じて
しまうという問題がある。
Therefore, when polarization treatment is performed using the above-mentioned polarization device, a difference in charge amount (how much V is charged), piezoelectricity, or pyroelectricity occurs inside the polarized material. There is a problem.

【0011】そこで、この問題点を解消するために、図
11に示すような下部電極aと針状電極bとの間に例え
ばステンレス等の金属から成るグリッド電極iを配置す
ることが行われている。尚、図中、jは下部電極aとグ
リッド電極i間に配置した電源を示す。
In order to solve this problem, therefore, a grid electrode i made of metal such as stainless steel is arranged between the lower electrode a and the needle electrode b as shown in FIG. There is. In the figure, j indicates a power source arranged between the lower electrode a and the grid electrode i.

【0012】図11に示す分極装置のように下部電極と
針状電極間にグリッド電極を配置することにより、絶縁
体である被分極材料とグリッド電極間の電場が均一とな
り、被分極材料が均一に分極処理される。
By arranging the grid electrode between the lower electrode and the needle electrode as in the polarization device shown in FIG. 11, the electric field between the material to be polarized, which is an insulator, and the grid electrode becomes uniform, and the material to be polarized becomes uniform. Is polarized.

【0013】[0013]

【発明が解決しようとする課題】前記図11に示すグリ
ッド電極を配置した分極装置のグリッド電極は針状電極
からの放電を防げず、針状電極付近に生じるイオンを被
分極材料表面に入射させるために、網状の例えばステン
レスのような金属材料を用いる。
The grid electrode of the polarization device in which the grid electrode shown in FIG. 11 is arranged cannot prevent discharge from the needle electrode, and ions generated near the needle electrode are incident on the surface of the material to be polarized. For this purpose, a mesh-like metal material such as stainless steel is used.

【0014】本発明者らは、被分極材料に均一な分極処
理を施すべく、鋭意検討した結果、一見均一に分極され
たように考えられていた被分極材料に図12に示すよう
な、分極が充分に行われている部分kと、分極が不充分
である部分mが存在していることを知見した。
The inventors of the present invention have diligently studied in order to apply a uniform polarization treatment to the polarized material, and as a result, the polarized material, which is considered to be uniformly polarized, is polarized as shown in FIG. It was found that there are a portion k in which the polarization is sufficiently performed and a portion m in which the polarization is insufficient.

【0015】即ち、針状電極の先端から見て、グリッド
電極の網目の影になる部分mに分極が不充分であること
が分かった。
That is, it was found that polarization was insufficient in the portion m of the mesh of the grid electrode as seen from the tip of the needle electrode.

【0016】その理由は、被分極材料へのイオンの入射
がグリット電極の網目により妨げられ、その結果、被分
極材料の帯電に分布が生じ、被分極材料の分極に差異が
生じることによる。
The reason is that the incidence of ions on the material to be polarized is hindered by the mesh of the grid electrode, and as a result, the charge on the material to be polarized is distributed and the polarization of the material to be polarized is different.

【0017】現在、センサー等は小型化される傾向にあ
り、小型化されるに従い、網目の影による分極の差異が
各センサーの感度のバラツキになることが懸念される。
At the present time, sensors and the like tend to be miniaturized, and as miniaturization is concerned, there is a concern that the difference in polarization due to the shadow of the mesh will cause variations in the sensitivity of each sensor.

【0018】そこで、グリッド電極の影部分(分極が不
充分な部分:図12の符号m)と他の部分(分極が充分
な部分:図12の符号k)との分極に差異のない分極方
法の出現が望まれている。
Therefore, there is no difference in polarization between the shaded portion of the grid electrode (the portion with insufficient polarization: symbol m in FIG. 12) and the other portion (the portion with sufficient polarization: symbol k in FIG. 12). Is expected to emerge.

【0019】本発明は分極に差異のないコロナ分極処理
方法と、それに用いるコロナ分極装置を提供することを
目的とする。
An object of the present invention is to provide a corona polarization treatment method having no difference in polarization and a corona polarization device used therefor.

【0020】[0020]

【課題を解決するための手段】請求項1のコロナ分極処
理方法は、下部電極と針状電極間のコロナ放電を利用
し、下部電極上の被分極材料の表面を帯電させつつ、同
時に被分極材料の温度を上昇させて被分極材料内に含ま
れる双極子を配向させるコロナ分極処理方法において、
複数の針状電極よりコロナ放電を行うことを特徴とす
る。
A corona polarization treatment method according to claim 1 utilizes corona discharge between a lower electrode and a needle electrode to charge a surface of a material to be polarized on the lower electrode, and at the same time polarizes the material to be polarized. In the corona polarization treatment method of raising the temperature of the material to orient the dipoles contained in the material to be polarized,
It is characterized in that corona discharge is performed from a plurality of needle electrodes.

【0021】請求項2のコロナ分極処理方法は、グリッ
ト電極を介して下部電極と針状電極間のコロナ放電を利
用し、下部電極上の被分極材料の表面を帯電させつつ、
同時に被分極材料の温度を上昇させて被分極材料内に含
まれる双極子を配向させるコロナ分極処理方法におい
て、複数の針状電極よりコロナ放電を行うことを特徴と
する。
According to a second aspect of the present invention, the corona polarization treatment method utilizes corona discharge between the lower electrode and the needle electrode via the grit electrode to charge the surface of the material to be polarized on the lower electrode,
At the same time, in the corona polarization treatment method in which the temperature of the polarized material is raised to orient the dipoles contained in the polarized material, the corona discharge is performed from a plurality of needle electrodes.

【0022】請求項3のコロナ分極処理方法は、グリッ
ト電極を介して下部電極と針状電極間のコロナ放電を利
用し、下部電極上の被分極材料の表面を帯電させつつ、
同時に被分極材料の温度を上昇させて被分極材料内に含
まれる双極子を配向させるコロナ分極処理方法におい
て、針状電極を電場に対して水平方向に移動させながら
コロナ放電を行うことを特徴とする。
The corona polarization treatment method of claim 3 utilizes corona discharge between the lower electrode and the needle-shaped electrode via the grit electrode to charge the surface of the material to be polarized on the lower electrode,
At the same time, in the corona polarization treatment method in which the temperature of the polarized material is raised to orient the dipoles contained in the polarized material, the corona discharge is performed while moving the needle electrode horizontally with respect to the electric field. To do.

【0023】請求項4のコロナ分極処理方法は、グリッ
ト電極を介して下部電極と針状電極間のコロナ放電を利
用し、下部電極上の被分極材料の表面を帯電させつつ、
同時に被分極材料の温度を上昇させて被分極材料内に含
まれる双極子を配向させるコロナ分極処理方法におい
て、グリット電極を電場に対して水平方向に移動させな
がら針状電極よりコロナ放電を行うことを特徴とする。
According to a fourth aspect of the present invention, the corona polarization treatment method utilizes corona discharge between the lower electrode and the needle-shaped electrode through the grit electrode to charge the surface of the polarized material on the lower electrode,
At the same time, in the corona polarization treatment method in which the temperature of the polarized material is raised to orient the dipoles contained in the polarized material, corona discharge is performed from the needle electrode while moving the grit electrode horizontally with respect to the electric field. Is characterized by.

【0024】請求項5のコロナ分極処理方法は、グリッ
ト電極を介して下部電極と針状電極間のコロナ放電を利
用し、下部電極上の被分極材料の表面を帯電させつつ、
同時に被分極材料の温度を上昇させて被分極材料内に含
まれる双極子を配向させるコロナ分極処理方法におい
て、被分極材料を電場に対して水平方向に移動させなが
ら針状電極よりコロナ放電を行うことを特徴とする。
The corona polarization treatment method of claim 5 utilizes corona discharge between the lower electrode and the needle-shaped electrode through the grit electrode to charge the surface of the material to be polarized on the lower electrode,
At the same time, in the corona polarization treatment method in which the temperature of the polarized material is raised to orient the dipoles contained in the polarized material, corona discharge is performed from the needle electrode while moving the polarized material horizontally with respect to the electric field. It is characterized by

【0025】請求項6のコロナ分極処理方法は、請求3
項ないし請求項5のいずれか1項記載のコロナ分極処理
方法であって、針状電極は複数の針状電極であることを
特徴とする。
The corona polarization treatment method of claim 6 is the same as that of claim 3.
The corona polarization treatment method according to any one of claims 1 to 5, wherein the needle electrode is a plurality of needle electrodes.

【0026】請求項7のコロナ分極装置は、下部電極
と、下部電極の対向位置に配置された針状電極とから成
り、下部電極と針状電極間のコロナ放電を利用して、下
部電極上の被分極材料内に含まれる双極子を配向させる
コロナ分極装置において、針状電極を複数の針状電極で
構成したことを特徴とする。
According to a seventh aspect of the present invention, there is provided a corona polarization device, which comprises a lower electrode and a needle-shaped electrode arranged at a position opposite to the lower electrode, and utilizes corona discharge between the lower electrode and the needle-shaped electrode. In the corona polarization device for orienting the dipoles contained in the material to be polarized, the needle-shaped electrode is composed of a plurality of needle-shaped electrodes.

【0027】請求項8のコロナ分極装置は、下部電極
と、下部電極の対向位置に配置された針状電極と、下部
電極と針状電極間に配置されたグリット電極とから成
り、グリット電極を介して下部電極と針状電極間のコロ
ナ放電を利用して、下部電極上の被分極材料内に含まれ
る双極子を配向させるコロナ分極装置において、針状電
極を複数の針状電極で構成したことを特徴とする。
The corona polarization device according to the present invention comprises a lower electrode, a needle-shaped electrode arranged at a position opposite to the lower electrode, and a grit electrode arranged between the lower electrode and the needle-shaped electrode. In the corona polarization device for orienting the dipoles contained in the material to be polarized on the lower electrode by utilizing the corona discharge between the lower electrode and the needle electrode via the needle electrode, the needle electrode is composed of a plurality of needle electrodes. It is characterized by

【0028】請求項9のコロナ分極装置は、下部電極
と、下部電極の対向位置に配置された針状電極と、下部
電極と針状電極間に配置されたグリット電極とから成
り、グリット電極を介して下部電極と針状電極間のコロ
ナ放電を利用して、下部電極上の被分極材料内に含まれ
る双極子を配向させるコロナ分極装置において、針状電
極を電場に対して水平方向に移動自在に配置したことを
特徴とする。
A corona polarization device according to a ninth aspect of the present invention comprises a lower electrode, a needle electrode disposed at a position opposite to the lower electrode, and a grit electrode disposed between the lower electrode and the needle electrode. In the corona polarization device that uses the corona discharge between the lower electrode and the needle electrode to orient the dipoles contained in the material to be polarized on the lower electrode, the needle electrode is moved horizontally to the electric field. It is characterized by being placed freely.

【0029】請求項10のコロナ分極装置は、下部電極
と、下部電極の対向位置に配置された針状電極と、下部
電極と針状電極間に配置されたグリット電極とから成
り、グリット電極を介して下部電極と針状電極間のコロ
ナ放電を利用して、下部電極上の被分極材料内に含まれ
る双極子を配向させるコロナ分極装置において、グリッ
ト電極を電場に対して水平方向に移動自在に配置したこ
とを特徴とする。
A corona polarization device according to a tenth aspect of the present invention comprises a lower electrode, a needle-shaped electrode arranged at a position opposite to the lower electrode, and a grit electrode arranged between the lower electrode and the needle-shaped electrode. In the corona polarization device that uses the corona discharge between the lower electrode and the needle electrode to orient the dipoles contained in the material to be polarized on the lower electrode, the grit electrode can be moved horizontally with respect to the electric field. It is characterized by being placed in.

【0030】請求項11のコロナ分極装置は、下部電極
と、下部電極の対向位置に配置された針状電極と、下部
電極と針状電極間に配置されたグリット電極とから成
り、グリット電極を介して下部電極と針状電極間のコロ
ナ放電を利用して、下部電極上の被分極材料内に含まれ
る双極子を配向させるコロナ分極装置において、被分極
材料を電場に対して水平方向に移動自在に配置したこと
を特徴とする。
The corona polarization device of claim 11 comprises a lower electrode, a needle-shaped electrode arranged at a position opposite to the lower electrode, and a grit electrode arranged between the lower electrode and the needle-shaped electrode. In a corona polarization device that uses a corona discharge between the lower electrode and the needle electrode to orient the dipoles contained in the polarized material on the lower electrode, the polarized material is moved horizontally with respect to the electric field. It is characterized by being placed freely.

【0031】請求項12のコロナ分極装置は、請求項9
ないし請求項11のいずれか1項に記載のコロナ分極装
置であって、針状電極は複数の針状電極であることを特
徴とする。
The corona polarization device of claim 12 is the same as that of claim 9.
The corona polarization device according to any one of claims 1 to 11, wherein the needle-shaped electrode is a plurality of needle-shaped electrodes.

【0032】[0032]

【作用】コロナ放電によるコロナ分極処理において、針
状電極を複数の針状電極で構成することにより、大面積
の被分極材料の表面に均一にコロナ放電を行えて、被分
極材料の表面が均一に帯電し、その結果、均一な分極処
理が行える。
[Function] In corona polarization treatment by corona discharge, by configuring the needle-shaped electrode with a plurality of needle-shaped electrodes, corona discharge can be uniformly performed on the surface of the material to be polarized having a large area, and the surface of the material to be polarized is uniform. As a result, it is possible to perform uniform polarization treatment.

【0033】コロナ放電によるコロナ分極処理におい
て、分極(帯電の大きさ)を均一にするために、グリッ
ド電極を下部電極と針状電極間に設けるが、針状電極、
グリッド電極、被分極材料のいずれかを電場に対して水
平方向に移動させることにより、グリッド電極がコロナ
放電によって生じたイオンの被分極材料への入射を妨げ
ないので、被分極材料の表面が均一に帯電し、その結
果、均一な分極処理が行える。
In corona polarization treatment by corona discharge, a grid electrode is provided between the lower electrode and the needle electrode in order to make the polarization (magnitude of charge) uniform.
By moving either the grid electrode or the polarized material horizontally to the electric field, the grid electrode does not prevent the ions generated by the corona discharge from entering the polarized material, so the surface of the polarized material is uniform. As a result, it is possible to perform uniform polarization treatment.

【0034】[0034]

【実施例】先ず、本発明の基本的考え方について説明す
る。
First, the basic idea of the present invention will be described.

【0035】1) 針状電極の本数について (1) 針状電極を複数の針状電極で構成する際の単位面積
当たり本数には制限がない。その理由は、分極は被分極
材料に対して均一に分布されていなければならず、その
ために単位面積当たりの本数を増加(過密状態)すれば
よいが生産性、コスト等を考慮すれば単に無駄となるば
かりである。
1) Regarding the Number of Needle-Shaped Electrodes (1) There is no limitation on the number of needle-shaped electrodes per unit area when the needle-shaped electrodes are composed of a plurality of needle-shaped electrodes. The reason is that the polarization must be evenly distributed with respect to the material to be polarized, and therefore the number per unit area can be increased (overcrowded state), but it is simply a waste if productivity, cost, etc. are taken into consideration. It just becomes.

【0036】ポーリング処理については種々の方式があ
り(例えば基板と針或いはワイヤー等の電極との距離
や、電界強度は実験結果報告においてまちまちであ
る)、統一的な、或いは最適条件等はあまり研究の対象
になっていないのが現状である。
There are various methods for the poling process (for example, the distance between the substrate and the electrode such as the needle or the wire, and the electric field strength are different in the report of the experimental results). The current situation is that it is not subject to.

【0037】それはポーリング方法、それ自体が単なる
手段(道具)であって、研究対象はポーリング処理後の
被分極材料の物性や特性に向けられているからである。
This is because the poling method itself is merely a means (tool), and the research subject is directed to the physical properties and characteristics of the polarized material after the poling treatment.

【0038】(2) 例えば基板の大きさが1m四方(1000mm
×1000mm)と非常に大きい場合は、1本の針状電極で
は、たとえ下部電極と針状電極間にグリッド電極を配置
したとしても、被分極材料に対して均一に分極処理を行
うことは極めて困難である。
(2) For example, the size of the substrate is 1 m square (1000 mm
X 1000 mm), it is extremely difficult to uniformly polarize the material to be polarized with a single needle electrode, even if a grid electrode is placed between the lower electrode and the needle electrode. Have difficulty.

【0039】種々の実験の結果からみると針状電極の間
隔は5〜10cm程度である。ただ、この場合も針状電極と
基板間の距離、グリッド電極と基板までの距離のパラメ
ーターで大きく変化するので、針状電極と基板間の距離
が例えばXmm、グリッド電極と基板までの距離か例えば
Hmmの時、針状電極間の間隔はY〜Zmmの範囲というよ
うにある程度に決められるだけである。
From the results of various experiments, the distance between the needle electrodes is about 5 to 10 cm. However, even in this case, since the parameters of the distance between the needle electrode and the substrate and the distance between the grid electrode and the substrate greatly change, the distance between the needle electrode and the substrate is, for example, X mm, or the distance between the grid electrode and the substrate, for example, When the distance is Hmm, the distance between the needle electrodes is only determined to some extent such as the range of Y to Zmm.

【0040】その1例を挙げると、針状電極と基板との
間隔(距離)が2cmで、電圧が10kV、グリッド電極と基
板との間隔(距離)が1cmで、電圧が2kVの場合(針状電
極とグリッド電極がマイナス、基板が接地電位、或いは
その逆)は針状電極の間隔は5〜10cmが好ましい。
As an example, when the distance (distance) between the needle electrode and the substrate is 2 cm, the voltage is 10 kV, the distance (distance) between the grid electrode and the substrate is 1 cm, and the voltage is 2 kV (needle) It is preferable that the distance between the needle-shaped electrodes is 5 to 10 cm in the case of the negative electrodes and the grid electrodes being negative and the substrate being at the ground potential or vice versa.

【0041】(3) 図12に示すように、針状電極と基板
の間で生じたイオン(針状電極がマイナスの時は負イオ
ンや電子、針状電極がプラスなら正イオンや電子)が電
界で基板に引き寄せられて、被分極材料の表面に帯電
し、分極処理が起こる。この時、グリッド電極が被分極
材料へのイオンの入射を妨害し、被分極材料の表面が帯
電できなくなると分極の不均一が生じることになる。
(3) As shown in FIG. 12, ions generated between the needle-shaped electrode and the substrate (negative ions and electrons when the needle-shaped electrode is negative, positive ions and electrons when the needle-shaped electrode is positive) are generated. The electric field attracts the substrate, charges the surface of the material to be polarized, and causes polarization. At this time, the grid electrode interferes with the incidence of ions on the material to be polarized, and if the surface of the material to be polarized cannot be charged, the polarization becomes non-uniform.

【0042】従って、ポーリング(時間は30〜40分)中
に針状電極、グリッド電極、被分極材料(基板)のいず
れかを移動させることにより、被分極材料全体にイオン
が入射できるようにすればよい。
Therefore, by moving any of the needle electrode, the grid electrode, and the material to be polarized (substrate) during poling (time is 30 to 40 minutes), it is possible to allow ions to enter the entire material to be polarized. Good.

【0043】2. 針状電極、グリッド電極、被分極材料
(基板)の移動について (1) 針状電極と基板の間で生じたイオンや電子が基板に
引き寄せられて均一に入射して、結果として表面での帯
電が均一となるようにすればよいから、移動手段として
はどのような方法(手段)を採用してもよいことにな
る。ただ、移動中は電極と基板の距離が変化すると電界
強度が変化し、この電界強度の制御は一般に困難を伴う
ので、移動は電場に対して水平方向に移動させることが
好ましい。
2. Movement of Needle-Shaped Electrode, Grid Electrode, and Material to be Polarized (Substrate) (1) Ions and electrons generated between the needle-shaped electrode and the substrate are attracted to the substrate and uniformly incident on the substrate. As a result, since it is sufficient to make the charging on the surface uniform, any method (means) can be adopted as the moving means. However, the electric field strength changes during the movement as the distance between the electrode and the substrate changes, and it is generally difficult to control the electric field strength. Therefore, it is preferable to move the electric field in a horizontal direction with respect to the electric field.

【0044】(2) コロナ分極処理方法において針状電
極、グリッド電極、被分極材料のいずれかを電場に対し
て水平方向に移動させながらコロナ放電を行う際の移動
とは、 例えば針状電極を被分極材料の決められた範囲内を
往復させる場合、 例えば針状電極を被分極材料の一部を中心として旋
回させる場合のいずれかである。
(2) In the corona polarization treatment method, the movement when performing corona discharge while moving any of the needle electrode, the grid electrode, and the material to be polarized in the horizontal direction with respect to the electric field is, for example, the needle electrode. It is either a case of reciprocating within a predetermined range of the material to be polarized, for example, a case of rotating the needle electrode around a part of the material to be polarized.

【0045】(3) コロナ分極装置において針状電極、グ
リッド電極、被分極材料のいずれかを電場に対して配置
する際の移動自在とは、 例えば針状電極を被分極材料の決められた範囲内を
往復させる場合、 例えば針状電極を被分極材料の一部を中心として旋
回させる場合のいずれかである。
(3) In the corona polarization device, when the needle electrode, the grid electrode, or the material to be polarized is arranged with respect to the electric field, the term "movable" means, for example, that the needle electrode is within a predetermined range of the material to be polarized. It is either a case of reciprocating the inside, for example, a case of rotating the needle electrode around a part of the material to be polarized.

【0046】(4) 移動速度はポーリング(時間は30〜40
分)中に針状電極、グリッド電極、被分極材料(基板)
のいずれかを移動させることにより、被分極材料全体に
イオンが入射できるようにすればよい。
(4) The movement speed is polling (time is 30-40
Minute) inside needle-shaped electrode, grid electrode, polarized material (substrate)
It is sufficient to allow ions to be incident on the entire material to be polarized by moving either of the above.

【0047】以下に本発明のコロナ分極装置の具体的実
施例を説明する。
Specific examples of the corona polarization device of the present invention will be described below.

【0048】実施例1 図1装置は針状電極を複数の針状電極で構成した場合の
装置の説明図である。
Example 1 FIG. 1 is an explanatory view of the device when the needle-shaped electrode is composed of a plurality of needle-shaped electrodes.

【0049】図中、1はコロナ分極装置を示し、該コロ
ナ分極装置1は、アルミニウム製の下部電極2と、その
上方に配置されたタングステン製の径1〜2mm、長さ50〜
100mmの針状電極3とから成り、下部電極2と、針状電
極3を電源4を介して接続し、下部電極2の背面側に被
分極材料5をポーリング中所定温度に加熱し、該温度を
維持するヒーター6を配置した。
In the figure, reference numeral 1 denotes a corona polarization device. The corona polarization device 1 comprises a lower electrode 2 made of aluminum and a tungsten made above it having a diameter of 1-2 mm and a length of 50-.
The lower electrode 2 and the needle electrode 3 are connected via a power source 4, and the polarized material 5 is heated to a predetermined temperature during poling on the back side of the lower electrode 2 by a 100 mm needle electrode 3. The heater 6 for maintaining the temperature was placed.

【0050】そして電源4より例えば10kVの電圧を下部
電極2と針状電極3間に印加して、両者間にコロナ放電
を発生させ、被分極材料5にコロナで帯電させて、分極
されるようにした。
A voltage of, for example, 10 kV is applied from the power source 4 between the lower electrode 2 and the needle electrode 3 to generate corona discharge between them, and the polarized material 5 is charged by the corona so that it is polarized. I chose

【0051】また、複数の針状電極3を1〜2cm間隔で配
置すればよい。
The plurality of needle-shaped electrodes 3 may be arranged at intervals of 1 to 2 cm.

【0052】針状電極3の真下が最も分極するが、針状
電極3を複数にすることによって被分極材料5の表面の
帯電を均一にして、被分極材料5に付与される分極の差
異をなくする。
The region directly below the needle-shaped electrode 3 is most polarized, but the plurality of needle-shaped electrodes 3 makes the surface of the material 5 to be polarized uniform, and the difference in the polarization imparted to the material 5 to be polarized can be reduced. To lose.

【0053】実施例2 図2装置はグリッド電極を備え、かつ針状電極を複数の
針状電極で構成した場合の説明図である。
Example 2 FIG. 2 is an explanatory view in the case where the device is provided with a grid electrode and the needle electrode is composed of a plurality of needle electrodes.

【0054】図2装置は下部電極2と針状電極3との間
にステンレス製の径0.5〜1mm、網目の開口間隔1〜2mmの
網状のグリッド電極7を配置し、下部電極2とグリッド
電極3を電源8を介して接続した以外は、前記図1装置
と同一構成である。尚、図1装置の同一符号は説明を省
略した。
In the apparatus shown in FIG. 2, a mesh grid electrode 7 made of stainless steel and having a diameter of 0.5 to 1 mm and a mesh opening interval of 1 to 2 mm is disposed between the lower electrode 2 and the needle electrode 3, and the lower electrode 2 and the grid electrode 3 are arranged. 3 has the same configuration as that of the apparatus shown in FIG. 1 except that 3 is connected via a power source 8. The same reference numerals as those of the apparatus shown in FIG. 1 are omitted.

【0055】この場合、針状電極3の配置位置は針状電
極3の先端から見てグリッド電極7の網目の影が出来な
いように配置すればよい。
In this case, the needle electrode 3 may be arranged so that the mesh of the grid electrode 7 is not shaded when viewed from the tip of the needle electrode 3.

【0056】実施例3 図3装置はグリッド電極を備え、コロナ放電中は針状電
極を移動させるように構成した場合の装置の説明図であ
る。
Example 3 FIG. 3 is an explanatory view of a device including a grid electrode and configured to move the needle electrode during corona discharge.

【0057】図中、11はコロナ分極装置を示し、該コ
ロナ分極装置11は、アルミニウム製の下部電極12
と、その上方に配置されたタングステン製の径1〜2mm、
長さ50〜100mmの針状電極13と、下部電極12と針状
電極13との間に配置したステンレス製の径0.5〜1mm、
網目の開口間隔1〜2mmの網状のグリッド電極17とから
成り、下部電極12と、針状電極13を電源14を介し
て接続すると共に、下部電極12とグリッド電極17を
電源18を介して接続した。
In the figure, reference numeral 11 denotes a corona polarization device, which is a lower electrode 12 made of aluminum.
And a diameter of 1-2 mm made of tungsten placed above it,
A needle electrode 13 having a length of 50 to 100 mm and a stainless steel diameter of 0.5 to 1 mm arranged between the lower electrode 12 and the needle electrode 13;
It is composed of a mesh grid electrode 17 having a mesh opening interval of 1 to 2 mm. The lower electrode 12 and the needle electrode 13 are connected via a power supply 14, and the lower electrode 12 and the grid electrode 17 are connected via a power supply 18. did.

【0058】また、下部電極12の背面側に被分極材料
15をポーリング中所定温度に加熱し、該温度を維持す
るヒーター16を配置した。
Further, a heater 16 for heating the polarized material 15 to a predetermined temperature during poling and maintaining the temperature on the back side of the lower electrode 12 was arranged.

【0059】そして、電源14より例えば10kVの電圧を
下部電極12と針状電極13間に印加すると共に、電源
18より例えば2kVの電圧を下部電極12とグリッド電
極17間に印加し、下部電極12と針状電極13間にコ
ロナ放電を発生させ、コロナで被分極材料15に帯電さ
せて、分極されるようにした。
Then, a voltage of, for example, 10 kV is applied from the power source 14 between the lower electrode 12 and the needle electrode 13, and a voltage of, for example, 2 kV is applied from the power source 18 between the lower electrode 12 and the grid electrode 17 to lower the lower electrode 12. A corona discharge was generated between the needle electrode 13 and the needle electrode 13, and the polarized material 15 was charged by the corona so that the material 15 was polarized.

【0060】また、コロナ放電中に針状電極13を例え
ばリニアモーターのような駆動装置(図示せず)で電場
に対して水平方向に図3に示す実線から仮想線のように
移動させるようにした。このようにコロナ放電中に針状
電極13を電場に対して水平方向に移動させることによ
り、針状電極の先端から見てグリッド電極の網目の影部
は出来ないことになる。
During the corona discharge, the needle electrode 13 is moved horizontally from the solid line shown in FIG. 3 to a virtual line by a driving device (not shown) such as a linear motor in a horizontal direction with respect to the electric field. did. By moving the needle-shaped electrode 13 in the horizontal direction with respect to the electric field during the corona discharge in this manner, the shaded portion of the mesh of the grid electrode as viewed from the tip of the needle-shaped electrode cannot be formed.

【0061】実施例4 図4装置はグリッド電極を備え、コロナ放電中は該グリ
ッド電極を移動させるように構成した場合の装置の説明
図である。
Example 4 FIG. 4 is an explanatory view of a device including a grid electrode and configured so that the grid electrode is moved during corona discharge.

【0062】図中、21はコロナ分極装置を示し、該コ
ロナ分極装置21は、アルミニウム製の下部電極22
と、その上方に配置されたタングステン製の径1〜2mm、
長さ50〜100mmの針状電極23と、下部電極22と針状
電極23との間に配置したステンレス製の径0.5〜1mm、
網目の開口間隔1〜2mmの網状のグリッド電極27とから
成り、下部電極22と、針状電極23を電源24を介し
て接続すると共に、下部電極22とグリッド電極27を
電源28を介して接続した。
In the figure, reference numeral 21 denotes a corona polarization device, which is a lower electrode 22 made of aluminum.
And a diameter of 1-2 mm made of tungsten placed above it,
A needle electrode 23 having a length of 50 to 100 mm, and a stainless steel diameter of 0.5 to 1 mm arranged between the lower electrode 22 and the needle electrode 23,
It is composed of a mesh grid electrode 27 having a mesh opening interval of 1 to 2 mm. The lower electrode 22 and the needle electrode 23 are connected via a power supply 24, and the lower electrode 22 and the grid electrode 27 are connected via a power supply 28. did.

【0063】また、下部電極22の背面側に被分極材料
25をポーリング中所定温度に加熱し、該温度を維持す
るヒーター26を配置した。
Further, a heater 26 for heating the polarized material 25 to a predetermined temperature during poling and maintaining the temperature on the back surface side of the lower electrode 22 is arranged.

【0064】そして、電源24より例えば10kVの電圧を
下部電極22と針状電極23間に印加すると共に、電源
28より例えば2kVの電圧を下部電極22とグリッド電
極27間に印加し、下部電極22と針状電極23間にコ
ロナ放電を発生させ、コロナで被分極材料25に帯電さ
せて、分極されるようにした。
Then, a voltage of, for example, 10 kV is applied from the power source 24 between the lower electrode 22 and the needle electrode 23, and a voltage of, for example, 2 kV is applied from the power source 28 between the lower electrode 22 and the grid electrode 27. A corona discharge was generated between the needle electrode 23 and the needle electrode 23, and the polarized material 25 was charged by the corona so that the material 25 was polarized.

【0065】また、コロナ放電中にグリッド電極27を
例えばリニアモーターのような駆動装置(図示せず)で
電場に対して水平方向に移動させるようにした。
Further, during the corona discharge, the grid electrode 27 is moved horizontally with respect to the electric field by a driving device (not shown) such as a linear motor.

【0066】このようにコロナ放電中にグリッド電極2
7を電場に対して水平方向に移動させることにより、針
状電極の先端から見てグリッド電極の網目の影部は出来
ないこととなる。
Thus, during the corona discharge, the grid electrode 2
By moving 7 in the horizontal direction with respect to the electric field, the shaded portion of the mesh of the grid electrode cannot be seen when viewed from the tip of the needle electrode.

【0067】実施例5 図5装置はグリッド電極を備え、コロナ放電中に被分極
分極材料を移動させるように構成した装置の説明図であ
る。
Example 5 FIG. 5 is an explanatory view of an apparatus having a grid electrode and configured to move a polarized material to be polarized during corona discharge.

【0068】図中、31はコロナ分極装置を示し、該コ
ロナ分極装置31は、アルミニウム製の下部電極32
と、その上方に配置されたタングステン製の径1〜2mm、
長さ50〜100mmの針状電極33と、下部電極32と針状
電極33との間に配置したステンレス製の径0.5〜1mm、
網目の開口間隔1〜2mmの網状のグリッド電極37とから
成り、下部電極32と、針状電極33を電源34を介し
て接続すると共に、下部電極32とグリッド電極37を
電源38を介して接続した。
In the figure, 31 indicates a corona polarization device, and the corona polarization device 31 is a lower electrode 32 made of aluminum.
And a diameter of 1-2 mm made of tungsten placed above it,
A needle electrode 33 having a length of 50 to 100 mm, and a stainless steel diameter of 0.5 to 1 mm arranged between the lower electrode 32 and the needle electrode 33,
It is composed of a mesh grid electrode 37 having a mesh opening interval of 1 to 2 mm. The lower electrode 32 and the needle electrode 33 are connected via a power source 34, and the lower electrode 32 and the grid electrode 37 are connected via a power source 38. did.

【0069】また、下部電極32の背面側に被分極材料
35をポーリング中所定温度に加熱し、該温度を維持す
るヒーター36を配置した。
Further, a heater 36 for heating the polarized material 35 to a predetermined temperature during poling and maintaining the temperature on the back surface of the lower electrode 32 is arranged.

【0070】そして、電源34より例えば10kVの電圧を
下部電極32と針状電極33間に印加すると共に、電源
38より例えば2kVの電圧を下部電極32とグリッド電
極37間に印加し、下部電極32と針状電極33間にコ
ロナ放電を発生させ、コロナで被分極材料35に帯電さ
せて、分極されるようにした。
Then, a voltage of, for example, 10 kV is applied between the lower electrode 32 and the needle electrode 33 from the power source 34, and a voltage of, for example, 2 kV is applied between the lower electrode 32 and the grid electrode 37 from the power source 38, thereby lowering the lower electrode 32. A corona discharge was generated between the needle electrode 33 and the needle electrode 33, and the material 35 to be polarized was charged by the corona so that the material 35 was polarized.

【0071】また、コロナ放電中に被分極材料35を例
えばリニアモーターのような駆動装置(図示せず)で電
場に対して水平方向に図5に示すように実線から仮想線
のように移動させるようにした。
Further, during the corona discharge, the polarized material 35 is moved in the horizontal direction with respect to the electric field from a solid line to a virtual line as shown in FIG. 5 by a driving device (not shown) such as a linear motor. I did it.

【0072】このようにコロナ放電中に被分極材料35
を電場に対して水平方向に移動させることにより、針状
電極の先端から見てグリッド電極の網目の影部は出来な
いこととなる。
As described above, the polarized material 35 is generated during the corona discharge.
Is moved in the horizontal direction with respect to the electric field, the shadow of the mesh of the grid electrode cannot be formed when viewed from the tip of the needle electrode.

【0073】以下に本発明のコロナ分極処理方法の具体
的実施例を比較例と共に説明する。
Specific examples of the corona polarization treatment method of the present invention will be described below together with comparative examples.

【0074】実施例6 本実施例は針状電極を単一とし、グリッド電極を移動さ
せながらコロナ放電を行って分極処理する分極処理方法
であり、被分極材料としてポリ尿素膜を用いた。
Example 6 This example is a polarization treatment method in which a single needle electrode is used and corona discharge is performed while moving the grid electrode to perform polarization treatment, and a polyurea film was used as the material to be polarized.

【0075】ポリ尿素膜の作製は 本出願人が先に、特
開平2-284485号(特願平1-104562号)で提案せる有機圧
焦電体膜の形成方法における基板上へのポリ尿素膜の形
成方法に準じて行うものであって、基板上へのポリ尿素
膜は図6に示す装置を用いて行った。ポリ尿素膜の作製
について説明する。
The polyurea film was prepared on the substrate by the present applicant in the method for forming an organic piezoelectric pyroelectric film proposed in Japanese Patent Application Laid-Open No. 2-284485 (Japanese Patent Application No. 1-104562). The polyurea film was formed according to the method for forming the film, and the polyurea film was formed on the substrate by using the apparatus shown in FIG. The production of the polyurea film will be described.

【0076】先ず、蒸発用容器46,46の一方にポリ
尿素の原料モノマーaである4,4′−ジアミノフェニ
ルエーテルと、他方にポリ尿素の原料モノマーbである
ジイソシアネート4,4′−ジイソシアン酸メチルジフ
ェニルを夫々充填し、シャッター49を閉じた状態で真
空処理室41内の全圧を真空排気系42を介して1.3×1
0-3Pa(1×10-5Torr)に設定する。
First, one of the evaporation containers 46, 46 is 4,4'-diaminophenyl ether, which is a raw material monomer a of polyurea, and the other is diisocyanate 4,4'-diisocyanic acid, a raw material monomer b of polyurea. The total pressure inside the vacuum processing chamber 41 was 1.3 × 1 with the vacuum distilling system 42 filled with methyldiphenyl and the shutter 49 closed.
Set to 0 -3 Pa (1 × 10 -5 Torr).

【0077】次に、蒸発モニター47,47で蒸発用容
器46,46からの各原料モノマーa,bの蒸発量を測
定しながらヒーター48,48によって4,4′−ジア
ミノフェニルエーテルを温度135±2℃に、また、ジイソ
シアネート4,4′−ジイソシアン酸メチルジフェニル
を温度75±2に夫々加熱する。
Next, while measuring the amount of evaporation of each of the raw material monomers a and b from the evaporation containers 46 and 46 by the evaporation monitors 47 and 47, the heaters 48 and 48 were used to heat the 4,4'-diaminophenyl ether to a temperature of 135 ±. The diisocyanate 4,4'-methyldiphenyl diisocyanate is heated to 2 DEG C. and to a temperature of 75. +-. 2.

【0078】次いで、原料モノマーa,bが所定温度に
達して所要の蒸発量が得られた後にシャッター49を開
き、真空処理室41内のホルダー44で保持された基板
43(大きさ25cm×25cmのスライドガラスの表面に下部
電極として膜厚0.1μmのアルミニウムが蒸着されてい
る)上に該原料モノマーa,bを2Å/分の析出速度で
厚さ2000Åに堆積させた後、シャッター49を閉じ、基
板43上でポリ尿素(ポリユリアともいう)の重合反応
を起こさせて該基板43上にポリ尿素膜を形成する。
Next, after the raw material monomers a and b have reached a predetermined temperature and a required amount of evaporation has been obtained, the shutter 49 is opened, and the substrate 43 (size 25 cm × 25 cm) held by the holder 44 in the vacuum processing chamber 41 is opened. Aluminum having a film thickness of 0.1 μm is vapor-deposited on the surface of the slide glass as a lower electrode), and the raw material monomers a and b are deposited at a deposition rate of 2Å / min to a thickness of 2000Å, and then the shutter 49 is closed. A polymerization reaction of polyurea (also referred to as polyurea) is caused on the substrate 43 to form a polyurea film on the substrate 43.

【0079】尚、原料モノマーa,bは化学量論的にポ
リ尿素膜が形成されるように蒸発量の調製によって1:
1のモル比で蒸発するようにした。また、原料モノマー
a,bの蒸発時における真空処理室41内の圧力は4×1
0-3Pa(3×10-5Torr)とした。また、図中50は両蒸発用
容器46間に設けた仕切板を示す。
The raw material monomers a and b are adjusted to 1: by adjusting the evaporation amount so that a polyurea film is stoichiometrically formed.
Evaporation was carried out at a molar ratio of 1. The pressure in the vacuum processing chamber 41 during the evaporation of the raw material monomers a and b is 4 × 1.
It was set to 0 −3 Pa (3 × 10 −5 Torr). Further, reference numeral 50 in the figure denotes a partition plate provided between both evaporation containers 46.

【0080】尚、前記特開平2-284485号(特願平1-1045
62号)で提案の有機圧焦電体膜の形成方法では、ポーリ
ング(分極処理)をコロナ法ではなく、ポリ尿素膜の両
面に設けた上下電極に電界を直接かける手段を用いてい
るが、本発明では、上下電極は設けない。
The above-mentioned Japanese Patent Laid-Open No. 2-284485 (Japanese Patent Application No. 1-1045)
In the method of forming an organic piezoelectric pyroelectric film proposed in No. 62), poling (polarization treatment) is not a corona method, but a method of directly applying an electric field to upper and lower electrodes provided on both surfaces of a polyurea film is used. In the present invention, the upper and lower electrodes are not provided.

【0081】このようにポリ尿素膜が形成された基板を
真空処理室内より取出し、基板上に形成されたポリ尿素
膜を被分極材料とし、次のような方法で被分極材料にコ
ロナ放電による分極処理を施した。
The substrate having the polyurea film thus formed is taken out from the vacuum processing chamber, and the polyurea film formed on the substrate is used as the material to be polarized. The material to be polarized is polarized by corona discharge by the following method. Treated.

【0082】分極処理には図7に示す装置を用いた。The device shown in FIG. 7 was used for the polarization treatment.

【0083】図中、21はコロナ分極装置を示し、該コ
ロナ分極装置21は、アルミニウム製の下部電極22
と、その上方に配置されたタングステン製の径1mm、長
さ100mmの針状電極23と、下部電極22と針状電極2
3との間に配置したステンレス製の網状のグリッド電極
27とから成り、下部電極22と、針状電極23を電源
24を介して接続すると共に、下部電極22とグリッド
電極27を電源28を介して接続した。
In the figure, reference numeral 21 denotes a corona polarization device, which is a lower electrode 22 made of aluminum.
And a needle-shaped electrode 23 made of tungsten and having a diameter of 1 mm and a length of 100 mm, which is arranged above the lower electrode 22, and the needle-shaped electrode 2.
3 and a mesh grid electrode 27 made of stainless steel disposed between the lower electrode 22 and the needle electrode 23 via a power source 24, and the lower electrode 22 and the grid electrode 27 via a power source 28. Connected.

【0084】また、下部電極22の背面側に被分極材料
25をポーリング中所定温度に加熱し、該温度を維持す
るヒーター26を配置した。尚、かかるコロナ分極装置
の構成は前記図4装置と同一である。
Further, a heater 26 for heating the material 25 to be polarized to a predetermined temperature during poling and maintaining the temperature on the back surface side of the lower electrode 22 is arranged. The configuration of the corona polarization device is the same as that of the device shown in FIG.

【0085】また、グリッド電極27を図8に示すよう
なステンレス製の線径0.85mmφ、網目の開目間隔は5.55
mm、開口率75%とした。
Further, the grid electrode 27 is made of stainless steel as shown in FIG. 8 and has a wire diameter of 0.85 mmφ and the mesh spacing is 5.55.
mm, aperture ratio 75%.

【0086】そして、下部電極22とグリッド電極27
間の間隔を1cmとし、針状電極23とグリッド電極27
間の間隔を1cmとすると共に、下部電極22上に基板を
取り付け、下部電極22を基板(大きさ25cm×25cmガラ
ス製)上に形成されている下部電極(アルミニウム製)
に接続した。
Then, the lower electrode 22 and the grid electrode 27
The space between them is 1 cm, and the needle electrode 23 and the grid electrode 27 are
The distance between the electrodes is 1 cm, the substrate is mounted on the lower electrode 22, and the lower electrode 22 is formed on the substrate (25 cm x 25 cm glass).
Connected to.

【0087】また、ヒーター26で被分極材料25を室
温から200℃まで昇温速度12℃/分で昇温させた後、該
温度を10分間維持しながら、電源24より-10kVの電圧
を下部電極22と針状電極23間に印加すると共に、電
源28より-1.5kVの電圧を下部電極22とグリッド電極
27間に印加し、下部電極22と針状電極23間にコロ
ナ放電を発生させると共に、コロナ放電中にグリッド電
極27を電場に対して水平方向に幅3cmで往復するよう
に速度30cm/分で移動させて、被分極材料にコロナ放電
(10分間)を行って分極処理を施し、その後被分極材料
の温度を100℃まで徐冷(放冷)した後、分極装置より
取り出した。
After heating the polarized material 25 from the room temperature to 200 ° C. at a temperature rising rate of 12 ° C./minute with the heater 26, the voltage of −10 kV is applied to the lower part from the power source 24 while maintaining the temperature for 10 minutes. While applying a voltage of -1.5 kV from the power supply 28 between the lower electrode 22 and the grid electrode 27 while applying the voltage between the electrode 22 and the needle electrode 23, a corona discharge is generated between the lower electrode 22 and the needle electrode 23. During the corona discharge, the grid electrode 27 is moved horizontally at a speed of 30 cm / min so as to reciprocate in the horizontal direction with a width of 3 cm, and the material to be polarized is subjected to corona discharge (10 minutes) to perform polarization treatment, Then, the temperature of the polarized material was gradually cooled (cooled) down to 100 ° C., and then taken out from the polarization device.

【0088】取り出された基板上の被分極材料(ポリ尿
素膜)に図9に示すように、針状電極22の先端の真下
を中心とした大きさ縦、横夫々7.5mmの正方形内に、1mm
間隔で大きさ0.5mm角のアルミニウム製の上部電極Mを
真空蒸着法により被覆(コーティング)し、計25個の焦
電素子Lを作製した後、各素子lの焦電率を測定し、そ
の結果を表1に示す。
As shown in FIG. 9, the material to be polarized (polyurea film) on the substrate thus taken out was placed in a square of 7.5 mm in length and width with the center just below the tip of the needle electrode 22, as shown in FIG. 1 mm
After the upper electrode M made of aluminum having a size of 0.5 mm square at intervals is coated by a vacuum vapor deposition method to make a total of 25 pyroelectric elements L, the pyroelectric coefficient of each element 1 is measured, and The results are shown in Table 1.

【0089】尚、焦電率は次のようにして測定した。The pyroelectric rate was measured as follows.

【0090】即ち、作製した焦電素子を加熱オーブンに
入れ、上下各電極を電流計に接続し、一定の昇温速度で
加熱した。その時に流れる焦電流から次式により焦電率
を求めた。
That is, the prepared pyroelectric element was placed in a heating oven, the upper and lower electrodes were connected to an ammeter, and heated at a constant temperature rising rate. The pyroelectric rate was calculated from the pyroelectric current flowing at that time by the following formula.

【0091】[0091]

【数1】 [Equation 1]

【0092】比較例1 グリッド電極を使用せずに、下部電極と針状電極の間隔
を3cmとした以外は、前記実施例6と同様の方法で、計2
5個の焦電素子を作製した後、各素子の焦電率を測定
し、その結果を表1に示す。
Comparative Example 1 A total of 2 samples were prepared in the same manner as in Example 6 except that the grid electrode was not used and the distance between the lower electrode and the needle electrode was 3 cm.
After producing five pyroelectric elements, the pyroelectric rate of each element was measured, and the results are shown in Table 1.

【0093】比較例2 グリッド電極を固定状態とし、コロナ放電を行った以外
は、前記実施例6と同様の方法で、計25個の焦電素子を
作製した後、各素子の焦電率を測定し、その結果を表1
に示す。
Comparative Example 2 Twenty-five pyroelectric elements in total were produced by the same method as in Example 6 except that the grid electrode was fixed and corona discharge was performed. Measured and the results are shown in Table 1.
Shown in

【0094】[0094]

【表1】 [Table 1]

【0095】表1から明らかなように、本発明の実施例
6では全ての素子において同等の焦電率が得られたが、
グリッド電極が配置されていない比較例1、グリッド電
極を固定状態とした比較例2は何れも焦電率に大きな差
異があった。
As is clear from Table 1, in Example 6 of the present invention, the same pyroelectric rate was obtained in all the elements,
Both Comparative Example 1 in which the grid electrode was not arranged and Comparative Example 2 in which the grid electrode was in a fixed state had large differences in pyroelectric rates.

【0096】また、比較例1では針状電極の真下の素子
から離れた位置の素子程焦電率は小さい焦電率を示す傾
向にあった。また、下部電極から針状電極の先端位置の
真下から2cm(20mm)離れた位置の素子の焦電率は0であ
った。
In Comparative Example 1, the element located farther from the element directly below the needle electrode tended to have a smaller pyroelectric coefficient. The pyroelectric coefficient of the element at a position 2 cm (20 mm) away from the position just below the tip of the needle electrode from the lower electrode was 0.

【0097】実施例7 図1装置(グリッド電極なし)を用い、針状電極を2cm
間隔で縦、横計各3本づつ計/9本(被分極材料の大き
さ5cm×5cmに対して)配置し、グリッド電極を使用せ
ず、また、針状電極を固定状態とした以外は、前記実施
例6と同様の方法で、計25個の焦電素子Lを作製した
後、各素子の焦電率を測定したところ、最大22(μC/m2
K)、最小18(μC/m2K)、平均19(μC/m2K)であった。
Example 7 Using the apparatus shown in FIG. 1 (without grid electrode), the needle electrode was 2 cm.
A total of 9 vertical / horizontal and 3 horizontal (total 5cm x 5cm of the material to be polarized) are arranged, no grid electrode is used, and the needle electrode is fixed. After producing 25 pyroelectric elements L in total by the same method as in Example 6, the pyroelectric rate of each element was measured and found to be 22 (μC / m 2
K), minimum 18 (μC / m 2 K), average 19 (μC / m 2 K).

【0098】実施例8 図2装置を用い、針状電極を2cm間隔で縦、横計9本(被
分極材料の大きさ5cm×5cmに対して)配置し、グリッド
電極を固定状態とし、また、針状電極を固定状態とした
以外は、前記実施例6と同様の方法で、計25個の焦電素
子Lを作製した後、各素子の焦電率を測定したところ、
最大23(μC/m2K)、最小18(μC/m2K)、平均19(μC/m2
K)であった。
Example 8 Using the apparatus shown in FIG. 2, nine needle electrodes were arranged vertically and horizontally at 2 cm intervals (with respect to the size of the material to be polarized of 5 cm × 5 cm), and the grid electrodes were fixed. In the same manner as in Example 6 except that the needle-shaped electrode was fixed, a total of 25 pyroelectric elements L were produced, and then the pyroelectric rates of the respective elements were measured.
Maximum 23 (μC / m 2 K), Minimum 18 (μC / m 2 K), Average 19 (μC / m 2 K)
K).

【0099】実施例9 図3装置を用い、コロナ放電中に針状電極(針状電極は
1本)を電場に対して水平方向に幅3cmで往復するよう
に速度30cm/分で移動させた以外は、前記実施例6と同
様の方法で、計25個の焦電素子Lを作製した後、各素子
の焦電率を測定したところ、最大21(μC/m2K)、最小18
(μC/m2K)、平均19(μC/m2K)であった。
Example 9 Using the apparatus shown in FIG. 3, the needle electrode (one needle electrode) was moved at a speed of 30 cm / min so as to reciprocate horizontally with a width of 3 cm with respect to the electric field during corona discharge. Except for the above, a total of 25 pyroelectric elements L were produced in the same manner as in Example 6, and the pyroelectric rates of the respective elements were measured. The maximum value was 21 (μC / m 2 K) and the minimum value was 18
(μC / m 2 K) and the average was 19 (μC / m 2 K).

【0100】実施例10 図5装置を用い、コロナ放電中に被分極材料(被分極材
料の大きさ5cm×5cm)を電場に対して水平方向に幅3cm
で往復するように速度30cm/分で移動させた以外は、前
記実施例6と同様の方法で、計25個の焦電素子Lを作製
した後、各素子の焦電率を測定したところ、最大23(μC
/m2K)、最小18(μC/m2K)、平均20(μC/m2K)であっ
た。
Example 10 Using the apparatus shown in FIG. 5, the material to be polarized (the size of the material to be polarized was 5 cm × 5 cm) was 3 cm in the horizontal direction with respect to the electric field during corona discharge.
After a total of 25 pyroelectric elements L were produced by the same method as in Example 6 except that the element was moved back and forth at a speed of 30 cm / min, the pyroelectric rate of each element was measured. 23 (μC
/ M 2 K), minimum 18 (μC / m 2 K), average 20 (μC / m 2 K).

【0101】前記各実施例の結果から明らかなように、
グリッド電極がない場合も被分極材料に分極処理を施す
ことが出来るが、下部電極と針状電極間にグリット電極
を設けることにより、スイープの幅が大きくなるので、
グリッド電極を設けることにより、例えば大きさが500m
m×500mmのような広面積の被分極材料(基板)にも対応
出来る。
As is clear from the results of the above examples,
Even if there is no grid electrode, the polarized material can be subjected to polarization treatment, but by providing the grid electrode between the lower electrode and the needle-shaped electrode, the width of the sweep increases,
By providing a grid electrode, for example, the size is 500m
It can also be used for a wide area of polarized material (substrate) such as m x 500 mm.

【0102】前記実施例6ではコロナ放電中にグリッド
電極を幅3cmの範囲で往復するように移動させたが、グ
リッド電極を被分極材料の上方で電場に対して水平方向
で速度100回転/分で回転させた場合は、何れも各素子
の焦電率は実施例6の焦電率と同等であった。
In Example 6, the grid electrode was moved so as to reciprocate within a width of 3 cm during corona discharge. The grid electrode was moved above the material to be polarized in the horizontal direction to the electric field at a speed of 100 rotations / minute. In each case, the pyroelectric constant of each element was the same as that of Example 6.

【0103】前記実施例7ではコロナ放電中は複数の針
状電極を固定状態としたが、複数の針状電極を同時に夫
々電場に対して水平方向に幅3cmで往復するように速度3
0cm/分で移動させた場合、或いは各針状電極を同時に
被分極材料の上方で電場に対して水平方向で円を描くよ
うに速度100回転/分で旋回させた場合は、何れも各素
子の焦電率は実施例7の焦電率と同等であった。
In Example 7, the plurality of needle-shaped electrodes were fixed during the corona discharge, but the plurality of needle-shaped electrodes were simultaneously reciprocated in the horizontal direction with a width of 3 cm with respect to the electric field at a speed of 3 cm.
When moved at 0 cm / min, or when each needle-shaped electrode is simultaneously swung at a speed of 100 rotations / min so as to draw a circle in a horizontal direction with respect to the electric field above the material to be polarized, each element The pyroelectric constant of was the same as that of Example 7.

【0104】前記実施例8ではコロナ放電中は複数の針
状電極を固定状態としたが、複数の針状電極を同時に夫
々電場に対して水平方向に幅3cmで往復するように速度3
0cm/分で移動させた場合、或いは各針状電極を同時に
被分極材料の上方で電場に対して水平方向で円を描くよ
うに速度100回転/分で旋回させた場合は、何れも各素
子の焦電率は実施例8の焦電率と同等であった。
In Example 8, the plurality of needle-shaped electrodes were fixed during the corona discharge, but the speed was set so that the plurality of needle-shaped electrodes simultaneously reciprocated in the horizontal direction with respect to the electric field at a width of 3 cm.
When moved at 0 cm / min, or when each needle-shaped electrode is simultaneously swung at a speed of 100 rotations / min so as to draw a circle in a horizontal direction with respect to the electric field above the material to be polarized, each element The pyroelectric constant of was equal to that of Example 8.

【0105】前記実施例9ではコロナ放電中に針状電極
を幅3cmの範囲で往復するように移動させたが、針状電
極を被分極材料の上方で円を描くように速度100回転/
分で旋回させた場合は、何れも各素子の焦電率は実施例
9の焦電率と同等であった。
In Example 9, the needle-shaped electrode was moved so as to reciprocate within the width of 3 cm during corona discharge. The needle-shaped electrode was rotated at a speed of 100 revolutions / in a circle above the material to be polarized /
In the case of turning in minutes, the pyroelectric constant of each element was the same as that of Example 9.

【0106】前記実施例10ではコロナ放電中に被分極
材料を幅3cmの範囲で往復するように移動させたが、被
分極材料を針状電極の下方で速度100回転/分で回転さ
せた場合は、何れも各素子の焦電率は実施例10の焦電
率と同等であった。
In Example 10, the material to be polarized was moved so as to reciprocate within the width of 3 cm during corona discharge. However, the material to be polarized was rotated below the needle electrode at a speed of 100 revolutions / minute. In all cases, the pyroelectric constant of each element was the same as that of Example 10.

【0107】勿論、本発明方法は前記実施例に限定され
るものではなく、針状電極を動かす方法と、グリッド電
極を動かす方法とを組み合わせた方法、針状電極を動か
す方法と、基板を動かす方法とを組み合わせた方法等の
ように種々組み合わせてもよい。
Needless to say, the method of the present invention is not limited to the above-mentioned embodiment, and the method of moving the needle electrode and the method of moving the grid electrode are combined, the method of moving the needle electrode, and the substrate are moved. Various combinations such as a method in which the above methods are combined may be used.

【0108】また、針状電極と下部電極間の極性を正
(+)、或いは負(−)にしてコロナ放電を行い、各素
子の焦電率を調べたところ、針状電極と下部電極間の極
性は正(+)、或いは負(−)のどちらであっても被分
極材料の焦電率は何ら変わらなかった。
Corona discharge was performed by setting the polarity between the needle electrode and the lower electrode to be positive (+) or negative (-), and the pyroelectric rate of each element was examined. The polarity of the material to be polarized did not change at all, whether the polarity was positive (+) or negative (-).

【0109】[0109]

【発明の効果】本発明の請求項第1項のコロナ分極処理
方法によるときは、針状電極を複数としたので、被分極
材料の表面が均一帯電し、その結果均一な分極処理が行
えるという効果がある。
According to the corona polarization treatment method of the first aspect of the present invention, since a plurality of needle electrodes are used, the surface of the material to be polarized is uniformly charged, and as a result, uniform polarization treatment can be performed. effective.

【0110】本発明の請求項第2項のコロナ分極処理方
法によるときは、分極、即ち帯電の大きさを均一にする
ために下部電極と針状電極間にグリッド電極を設けると
共に、針状電極を複数配置したので、グリッド電極が針
状電極よりのイオンを被分極材料への入射を妨げないの
で、被分極材料の表面が均一に帯電し、その結果均一な
分極処理がおこなえるという効果がある。
According to the corona polarization treatment method of the second aspect of the present invention, a grid electrode is provided between the lower electrode and the needle electrode in order to make the magnitude of polarization, that is, charging uniform, and the needle electrode Since a plurality of electrodes are arranged, the grid electrode does not prevent ions from the needle-shaped electrode from entering the material to be polarized, so that the surface of the material to be polarized is uniformly charged, and as a result, uniform polarization treatment can be performed. .

【0111】本発明の請求項第3項ないし第6項のコロ
ナ分極処理方法によるときは、分極、即ち帯電の大きさ
を均一にするために下部電極と針状電極間にグリッド電
極を設けると共に、針状電極を複数配置、或いは、針状
電極、グリッド電極、被分極材料の何れかを移動させつ
つ、針状電極よりコロナ放電を行うようにしたので、グ
リッド電極が針状電極よりのイオンを被分極材料への入
射を妨げないので、被分極材料の表面が均一に帯電し、
その結果均一な分極処理がおこなえるという効果があ
る。
According to the corona polarization treatment method of the third to sixth aspects of the present invention, a grid electrode is provided between the lower electrode and the needle-shaped electrode in order to make the magnitude of polarization, that is, charging uniform. , A plurality of needle-shaped electrodes are arranged, or corona discharge is performed from the needle-shaped electrodes while moving any of the needle-shaped electrodes, the grid electrodes, and the material to be polarized. Does not hinder the incident on the polarized material, the surface of the polarized material is uniformly charged,
As a result, there is an effect that uniform polarization treatment can be performed.

【0112】本発明の請求項第7項のコロナ分極装置に
よるときは、針状電極を複数に配置したので、被分極材
料の表面に均一な帯電をせしめ、被分極材料に均一な分
極処理を行える装置を提供する効果がある。
According to the corona-polarizing device of the seventh aspect of the present invention, since a plurality of needle-shaped electrodes are arranged, the surface of the material to be polarized is uniformly charged, and the material to be polarized is uniformly polarized. The effect is to provide a device that can be used.

【0113】本発明の請求項第8項のコロナ分極装置に
よるときは、分極、即ち帯電の大きさを均一にするため
に下部電極と針状電極間にグリッド電極を設けると共
に、針状電極を複数配置したので、被分極材料の表面に
均一な帯電をせしめ、被分極材料に均一な分極処理を行
える装置を提供する効果がある。
According to the corona-polarizing device of the eighth aspect of the present invention, a grid electrode is provided between the lower electrode and the needle electrode in order to make polarization, that is, the magnitude of charging uniform, and the needle electrode is provided. Since a plurality of materials are arranged, the surface of the material to be polarized is uniformly charged, and there is an effect of providing an apparatus capable of performing uniform polarization treatment on the material to be polarized.

【0114】本発明の請求項第9項ないし第12項のコ
ロナ分極装置によるときは、分極、即ち帯電の大きさを
均一にするために下部電極と針状電極間にグリッド電極
を設けると共に、針状電極を複数配置、或いは、コロナ
放電中に針状電極、グリッド電極、被分極材料の何れか
を移動出来るように配置したので、被分極材料の表面に
均一な帯電をせしめ、被分極材料に均一な分極処理を行
える装置を提供する効果がある。
According to the corona-polarizing device of the ninth to twelfth aspects of the present invention, a grid electrode is provided between the lower electrode and the needle electrode in order to make the magnitude of polarization, that is, charging uniform, A plurality of needle-shaped electrodes are arranged, or one of the needle-shaped electrodes, the grid electrode, and the material to be polarized is arranged so as to be movable during corona discharge. It is effective to provide a device that can perform uniform polarization treatment.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明のコロナ分極装置の1例であり、針状
電極を複数とした装置の説明図、
FIG. 1 is an example of a corona polarization device of the present invention, and is an explanatory view of a device having a plurality of needle electrodes.

【図2】 コロナ分極装置の他の例であり、グリッド電
極を備え、かつ針状電極を複数とした装置の説明図、
FIG. 2 is another example of a corona polarization device, which is an explanatory view of a device including a grid electrode and having a plurality of needle electrodes.

【図3】 コロナ分極装置の他の例であり、グリッド電
極を備え、かつ針状電極を移動させる装置の説明図、
FIG. 3 is another example of the corona polarization device, which is an explanatory view of a device that includes a grid electrode and moves a needle electrode;

【図4】 コロナ分極装置の他の例であり、グリッド電
極を備え、かつグリッド電極を移動させる装置の説明
図、
FIG. 4 is another example of the corona polarization device, which is an explanatory view of a device including a grid electrode and moving the grid electrode;

【図5】 コロナ分極装置の他の例であり、グリッド電
極を備え、かつ被分極材料を移動させる装置の説明図、
FIG. 5 is another example of the corona polarization device, which is an explanatory view of a device including a grid electrode and for moving a material to be polarized,

【図6】 本発明のコロナ分極処理方法における被分極
材料の形成装置の説明図、
FIG. 6 is an explanatory view of an apparatus for forming polarized material in the corona polarization treatment method of the present invention,

【図7】 本発明のコロナ分極処理方法を実施するため
のコロナ分極装置の1例の説明図、
FIG. 7 is an explanatory view of an example of a corona polarization device for carrying out the corona polarization treatment method of the present invention,

【図8】 図7装置に用いるグリッド電極の要部の拡大
図、
FIG. 8 is an enlarged view of a main part of a grid electrode used in the apparatus shown in FIG.

【図9】 図7装置を用いて分極処理された被分極材料
の焦電率を測定するための各素子の位置を示す説明図、
FIG. 9 is an explanatory view showing the position of each element for measuring the pyroelectric constant of the material to be polarized that has been polarized by using the apparatus shown in FIG.

【図10】 従来のコロナ分極装置の説明図、FIG. 10 is an explanatory view of a conventional corona polarization device,

【図11】 従来のグリッド電極を配置したコロナ分極
装置の説明図、
FIG. 11 is an explanatory view of a conventional corona polarization device in which grid electrodes are arranged,

【図12】 従来のグリッド電極を配置したコロナ分極
装置による被分極材料の分極状態の説明図、並びに針状
電極、グリッド電極、被分極材料のイオン状態を示す説
明図。
FIG. 12 is an explanatory view of a polarization state of a polarized material by a corona polarization device in which a conventional grid electrode is arranged, and an explanatory view showing an ionic state of a needle electrode, a grid electrode, and a polarized material.

【符号の説明】[Explanation of symbols]

1、11、21、31 コロナ分極装置、2、12、2
2、32 下部電極、 3、13、23、33 針状
電極、4、14、24、34 電源、5、15、25、
35 被分極材料、7、17、27、37 グリッド電
極、8、18、28、38 電源、 L 素子。
1, 11, 21, 31 Corona polarization device, 2, 12, 2
2, 32 lower electrode, 3, 13, 23, 33 needle-shaped electrode, 4, 14, 24, 34 power source, 5, 15, 25,
35 polarized material, 7, 17, 27, 37 grid electrode, 8, 18, 28, 38 power supply, L element.

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 下部電極と針状電極間のコロナ放電を利
用し、下部電極上の被分極材料の表面を帯電させつつ、
同時に被分極材料の温度を上昇させて被分極材料内に含
まれる双極子を配向させるコロナ分極処理方法におい
て、複数の針状電極よりコロナ放電を行うことを特徴と
するコロナ分極処理方法。
1. Utilizing corona discharge between a lower electrode and a needle electrode to charge the surface of a material to be polarized on the lower electrode,
At the same time, in the corona polarization treatment method of raising the temperature of the material to be polarized to orient the dipoles contained in the material to be polarized, corona discharge treatment method is performed by corona discharge from a plurality of needle electrodes.
【請求項2】 グリット電極を介して下部電極と針状電
極間のコロナ放電を利用し、下部電極上の被分極材料の
表面を帯電させつつ、同時に被分極材料の温度を上昇さ
せて被分極材料内に含まれる双極子を配向させるコロナ
分極処理方法において、複数の針状電極よりコロナ放電
を行うことを特徴とするコロナ分極処理方法。
2. The surface of the material to be polarized on the lower electrode is charged by using corona discharge between the lower electrode and the needle-shaped electrode via the grid electrode, and at the same time, the temperature of the material to be polarized is increased to polarize the material to be polarized. A corona polarization treatment method for orienting dipoles contained in a material, characterized in that corona discharge is performed from a plurality of needle electrodes.
【請求項3】 グリット電極を介して下部電極と針状電
極間のコロナ放電を利用し、下部電極上の被分極材料の
表面を帯電させつつ、同時に被分極材料の温度を上昇さ
せて被分極材料内に含まれる双極子を配向させるコロナ
分極処理方法において、針状電極を電場に対して水平方
向に移動させながらコロナ放電を行うことを特徴とする
コロナ分極処理方法。
3. The surface of the material to be polarized on the lower electrode is charged by utilizing corona discharge between the lower electrode and the needle-shaped electrode via the grid electrode, and at the same time, the temperature of the material to be polarized is increased to be polarized. A corona polarization treatment method for orienting dipoles contained in a material, which comprises performing corona discharge while moving a needle electrode in a horizontal direction with respect to an electric field.
【請求項4】 グリット電極を介して下部電極と針状電
極間のコロナ放電を利用し、下部電極上の被分極材料の
表面を帯電させつつ、同時に被分極材料の温度を上昇さ
せて被分極材料内に含まれる双極子を配向させるコロナ
分極処理方法において、グリット電極を電場に対して水
平方向に移動させながら針状電極よりコロナ放電を行う
ことを特徴とするコロナ分極処理方法。
4. A corona discharge between a lower electrode and a needle-shaped electrode via a grit electrode is used to charge the surface of the material to be polarized on the lower electrode while at the same time increasing the temperature of the material to be polarized to be polarized. In a corona polarization treatment method for orienting dipoles contained in a material, corona discharge treatment is performed from a needle electrode while moving a grit electrode in a horizontal direction with respect to an electric field.
【請求項5】 グリット電極を介して下部電極と針状電
極間のコロナ放電を利用し、下部電極上の被分極材料の
表面を帯電させつつ、同時に被分極材料の温度を上昇さ
せて被分極材料内に含まれる双極子を配向させるコロナ
分極処理方法において、被分極材料を電場に対して水平
方向に移動させながら針状電極よりコロナ放電を行うこ
とを特徴とするコロナ分極処理方法。
5. A corona discharge between a lower electrode and a needle-shaped electrode via a grit electrode is used to charge the surface of the material to be polarized on the lower electrode while at the same time increasing the temperature of the material to be polarized to be polarized. A corona polarization treatment method for orienting dipoles contained in a material, which comprises performing corona discharge from a needle electrode while moving a material to be polarized in a horizontal direction with respect to an electric field.
【請求項6】 前記針状電極は複数の針状電極であるこ
とを特徴とする請求項第3項ないし第5項のいずれか1
項に記載のコロナ分極処理方法。
6. The needle-shaped electrode is a plurality of needle-shaped electrodes, according to any one of claims 3 to 5.
The method of corona polarization treatment according to item.
【請求項7】 下部電極と、下部電極の対向位置に配置
された針状電極とから成り、下部電極と針状電極間のコ
ロナ放電を利用して、下部電極上の被分極材料内に含ま
れる双極子を配向させるコロナ分極装置において、針状
電極を複数の針状電極で構成したことを特徴とするコロ
ナ分極装置。
7. A lower electrode and a needle-shaped electrode arranged at a position opposite to the lower electrode, and contained in a material to be polarized on the lower electrode by utilizing corona discharge between the lower electrode and the needle-shaped electrode. A corona polarization device for orienting dipoles, wherein the needle electrode is composed of a plurality of needle electrodes.
【請求項8】 下部電極と、下部電極の対向位置に配置
された針状電極と、下部電極と針状電極間に配置された
グリット電極とから成り、グリット電極を介して下部電
極と針状電極間のコロナ放電を利用して、下部電極上の
被分極材料内に含まれる双極子を配向させるコロナ分極
装置において、針状電極を複数の針状電極で構成したこ
とを特徴とするコロナ分極装置。
8. A lower electrode, a needle-shaped electrode arranged at a position opposite to the lower electrode, and a grit electrode arranged between the lower electrode and the needle-shaped electrode. The lower electrode and the needle-shaped electrode via the grit electrode. A corona-polarizing device for orienting dipoles contained in a material to be polarized on a lower electrode by utilizing corona discharge between electrodes, characterized in that the needle-shaped electrode is composed of a plurality of needle-shaped electrodes. apparatus.
【請求項9】 下部電極と、下部電極の対向位置に配置
された針状電極と、下部電極と針状電極間に配置された
グリット電極とから成り、グリット電極を介して下部電
極と針状電極間のコロナ放電を利用して、下部電極上の
被分極材料内に含まれる双極子を配向させるコロナ分極
装置において、針状電極を電場に対して水平方向に移動
自在に配置したことを特徴とするコロナ分極装置。
9. A lower electrode, a needle electrode arranged at a position opposite to the lower electrode, and a grit electrode arranged between the lower electrode and the needle electrode, wherein the lower electrode and the needle electrode are interposed via the grit electrode. In a corona polarization device that uses a corona discharge between electrodes to orient the dipoles contained in the polarized material on the lower electrode, the needle electrodes are arranged so that they can move horizontally with respect to the electric field. Corona polarization device.
【請求項10】 下部電極と、下部電極の対向位置に配
置された針状電極と、下部電極と針状電極間に配置され
たグリット電極とから成り、グリット電極を介して下部
電極と針状電極間のコロナ放電を利用して、下部電極上
の被分極材料内に含まれる双極子を配向させるコロナ分
極装置において、グリット電極を電場に対して水平方向
に移動自在に配置したことを特徴とするコロナ分極装
置。
10. A lower electrode, a needle electrode arranged at a position opposite to the lower electrode, and a grit electrode arranged between the lower electrode and the needle electrode, wherein the lower electrode and the needle electrode are interposed via the grit electrode. In a corona polarization device that uses a corona discharge between electrodes to orient the dipoles contained in the material to be polarized on the lower electrode, the grit electrode is arranged so as to be movable in the horizontal direction with respect to the electric field. Corona polarization device.
【請求項11】 下部電極と、下部電極の対向位置に配
置された針状電極と、下部電極と針状電極間に配置され
たグリット電極とから成り、グリット電極を介して下部
電極と針状電極間のコロナ放電を利用して、下部電極上
の被分極材料内に含まれる双極子を配向させるコロナ分
極装置において、被分極材料を電場に対して水平方向に
移動自在に配置したことを特徴とするコロナ分極装置。
11. A lower electrode, a needle-shaped electrode arranged at a position opposite to the lower electrode, and a grit electrode arranged between the lower electrode and the needle-shaped electrode. The lower electrode and the needle-shaped electrode via the grit electrode. In the corona polarization device that uses the corona discharge between the electrodes to orient the dipoles contained in the material to be polarized on the lower electrode, the material to be polarized is arranged horizontally movable with respect to the electric field. Corona polarization device.
【請求項12】 前記針状電極は複数の針状電極である
ことを特徴とする請求項第9項ないし第11項のいずれ
か1項に記載のコロナ分極装置。
12. The corona polarization device according to claim 9, wherein the needle electrode is a plurality of needle electrodes.
JP31730694A 1994-12-20 1994-12-20 Corona polarization treating method and corona polarization device Pending JPH08180959A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31730694A JPH08180959A (en) 1994-12-20 1994-12-20 Corona polarization treating method and corona polarization device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31730694A JPH08180959A (en) 1994-12-20 1994-12-20 Corona polarization treating method and corona polarization device

Publications (1)

Publication Number Publication Date
JPH08180959A true JPH08180959A (en) 1996-07-12

Family

ID=18086747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31730694A Pending JPH08180959A (en) 1994-12-20 1994-12-20 Corona polarization treating method and corona polarization device

Country Status (1)

Country Link
JP (1) JPH08180959A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006203190A (en) * 2004-12-24 2006-08-03 Fuji Photo Film Co Ltd Polling processing method of inorganic piezoelectric body, and manufacturing method of piezoelectric element
JP2010504562A (en) * 2006-09-26 2010-02-12 キン シュウ,チャン Method and apparatus for forming domain inversion structure on nonlinear ferroelectric substrate
JP2011192665A (en) * 2010-03-11 2011-09-29 Kureha Corp Additive-free non-stretched piezoelectric material containing pvdf, and piezoelectric sensor
JP2014060291A (en) * 2012-09-18 2014-04-03 Ricoh Co Ltd Manufacturing method of electromechanical conversion element, electromechanical conversion element, droplet discharge head including electromechanical conversion element, and droplet discharger
JP5493856B2 (en) * 2007-08-18 2014-05-14 コニカミノルタ株式会社 Organic piezoelectric film, method for forming the same, ultrasonic transducer using the same, ultrasonic probe, and ultrasonic medical diagnostic imaging apparatus
JP2014175551A (en) * 2013-03-11 2014-09-22 Ricoh Co Ltd Manufacturing apparatus of electromechanical conversion element, method of manufacturing electromechanical conversion element, electromechanical conversion element, droplet discharge head, droplet discharge device
JP2014177039A (en) * 2013-03-15 2014-09-25 Ricoh Co Ltd Liquid droplet discharge head, liquid discharge device, image formation device, polarization processing method of electromechanical conversion element, and method of manufacturing liquid droplet discharge head
JP2014179549A (en) * 2013-03-15 2014-09-25 Ricoh Co Ltd Method for manufacturing electromechanical conversion element, electromechanical conversion element, droplet discharge head, droplet discharge device and device for manufacturing electromechanical conversion element
JP2014241317A (en) * 2013-06-11 2014-12-25 株式会社リコー Polarization processing device, piezoelectric device, droplet discharge head and ink jet recording device
JP2015015316A (en) * 2013-07-03 2015-01-22 株式会社リコー Polarization processing device, electromechanical conversion element, droplet discharge head, and image forming apparatus
JP2015018968A (en) * 2013-07-11 2015-01-29 株式会社リコー Electromechanical conversion element manufacturing method, electromechanical conversion element, liquid droplet discharge head, liquid droplet discharge device, and electromechanical conversion element manufacturing device
JP2015032671A (en) * 2013-08-01 2015-02-16 株式会社リコー Device for manufacturing electromechanical conversion element, method for manufacturing electromechanical conversion element, electromechanical conversion element, droplet discharge head, and droplet discharge device
JP2015088502A (en) * 2013-10-28 2015-05-07 株式会社リコー Corona polarization processing apparatus, corona polarization processing method, electromechanical conversion element, ink jet recording head and ink jet recorder
JP2015127665A (en) * 2013-12-27 2015-07-09 国立大学法人山形大学 Charging and discharging device, and surface physical property measuring apparatus using the same
CN104849496A (en) * 2015-04-27 2015-08-19 哈尔滨工业大学深圳研究生院 High impact acceleration detecting method and sensor based on corona discharge principle
JP2015159192A (en) * 2014-02-24 2015-09-03 株式会社リコー Electromechanical conversion member and manufacturing method therefor, and droplet discharge head including electromechanical conversion member and image formation apparatus
JP2015164149A (en) * 2014-02-28 2015-09-10 株式会社リコー Pre-polarization processing substrate, actuator substrate, manufacturing method of actuator substrate, droplet discharge head, and image forming apparatus
CN105036065A (en) * 2015-07-13 2015-11-11 北京理工大学 Ray based electret polarization device and method
KR20160080556A (en) * 2014-12-30 2016-07-08 한국기계연구원 Apparatus for poling piezoelectric element
CN110739389A (en) * 2019-11-27 2020-01-31 湖南声仪测控科技有限责任公司 high-voltage uniform electric field polarization device
CN111326650A (en) * 2020-05-13 2020-06-23 三三智能科技(苏州)有限公司 Multifunctional PVDF (polyvinylidene fluoride) film polarization device, polarization method and application thereof

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006203190A (en) * 2004-12-24 2006-08-03 Fuji Photo Film Co Ltd Polling processing method of inorganic piezoelectric body, and manufacturing method of piezoelectric element
JP2010504562A (en) * 2006-09-26 2010-02-12 キン シュウ,チャン Method and apparatus for forming domain inversion structure on nonlinear ferroelectric substrate
JP5493856B2 (en) * 2007-08-18 2014-05-14 コニカミノルタ株式会社 Organic piezoelectric film, method for forming the same, ultrasonic transducer using the same, ultrasonic probe, and ultrasonic medical diagnostic imaging apparatus
JP2011192665A (en) * 2010-03-11 2011-09-29 Kureha Corp Additive-free non-stretched piezoelectric material containing pvdf, and piezoelectric sensor
JP2014060291A (en) * 2012-09-18 2014-04-03 Ricoh Co Ltd Manufacturing method of electromechanical conversion element, electromechanical conversion element, droplet discharge head including electromechanical conversion element, and droplet discharger
JP2014175551A (en) * 2013-03-11 2014-09-22 Ricoh Co Ltd Manufacturing apparatus of electromechanical conversion element, method of manufacturing electromechanical conversion element, electromechanical conversion element, droplet discharge head, droplet discharge device
JP2014177039A (en) * 2013-03-15 2014-09-25 Ricoh Co Ltd Liquid droplet discharge head, liquid discharge device, image formation device, polarization processing method of electromechanical conversion element, and method of manufacturing liquid droplet discharge head
JP2014179549A (en) * 2013-03-15 2014-09-25 Ricoh Co Ltd Method for manufacturing electromechanical conversion element, electromechanical conversion element, droplet discharge head, droplet discharge device and device for manufacturing electromechanical conversion element
JP2014241317A (en) * 2013-06-11 2014-12-25 株式会社リコー Polarization processing device, piezoelectric device, droplet discharge head and ink jet recording device
JP2015015316A (en) * 2013-07-03 2015-01-22 株式会社リコー Polarization processing device, electromechanical conversion element, droplet discharge head, and image forming apparatus
JP2015018968A (en) * 2013-07-11 2015-01-29 株式会社リコー Electromechanical conversion element manufacturing method, electromechanical conversion element, liquid droplet discharge head, liquid droplet discharge device, and electromechanical conversion element manufacturing device
JP2015032671A (en) * 2013-08-01 2015-02-16 株式会社リコー Device for manufacturing electromechanical conversion element, method for manufacturing electromechanical conversion element, electromechanical conversion element, droplet discharge head, and droplet discharge device
JP2015088502A (en) * 2013-10-28 2015-05-07 株式会社リコー Corona polarization processing apparatus, corona polarization processing method, electromechanical conversion element, ink jet recording head and ink jet recorder
JP2015127665A (en) * 2013-12-27 2015-07-09 国立大学法人山形大学 Charging and discharging device, and surface physical property measuring apparatus using the same
JP2015159192A (en) * 2014-02-24 2015-09-03 株式会社リコー Electromechanical conversion member and manufacturing method therefor, and droplet discharge head including electromechanical conversion member and image formation apparatus
JP2015164149A (en) * 2014-02-28 2015-09-10 株式会社リコー Pre-polarization processing substrate, actuator substrate, manufacturing method of actuator substrate, droplet discharge head, and image forming apparatus
KR20160080556A (en) * 2014-12-30 2016-07-08 한국기계연구원 Apparatus for poling piezoelectric element
CN104849496A (en) * 2015-04-27 2015-08-19 哈尔滨工业大学深圳研究生院 High impact acceleration detecting method and sensor based on corona discharge principle
CN105036065A (en) * 2015-07-13 2015-11-11 北京理工大学 Ray based electret polarization device and method
CN105036065B (en) * 2015-07-13 2016-08-17 北京理工大学 A kind of electret polarization device based on ray and polarization method thereof
CN110739389A (en) * 2019-11-27 2020-01-31 湖南声仪测控科技有限责任公司 high-voltage uniform electric field polarization device
CN111326650A (en) * 2020-05-13 2020-06-23 三三智能科技(苏州)有限公司 Multifunctional PVDF (polyvinylidene fluoride) film polarization device, polarization method and application thereof
CN111326650B (en) * 2020-05-13 2023-03-24 三三智能科技(苏州)有限公司 Multifunctional PVDF (polyvinylidene fluoride) film polarization device, polarization method and application thereof

Similar Documents

Publication Publication Date Title
JPH08180959A (en) Corona polarization treating method and corona polarization device
DE2614951C3 (en) Method of manufacturing a liquid crystal cell
DE69016538T2 (en) Method for producing an orientation film for a liquid crystal display device.
EP2553135B1 (en) Method for the production of functionalized elastomeric manufactured articles and manufactured articles thus obtained
EP3326436A1 (en) Electrode assembly and plasma source for generating a non-thermal plasma, and method for operating a plasma source
CN111326650B (en) Multifunctional PVDF (polyvinylidene fluoride) film polarization device, polarization method and application thereof
CN103510048A (en) Preparation method of copper nanowire arrays with porous structure and film conductivity measuring method thereof
DE60103048T2 (en) METHOD FOR PRODUCING ULTRA-THIN POLYMER FOILS
JP2006201042A (en) Ionization substrate for mass analysis and mass analyzer
JPH07122132B2 (en) Thin film forming method and thin film forming apparatus
JP3406347B2 (en) Method and apparatus for manufacturing organic pyroelectric / piezoelectric material
US5932295A (en) Method and apparatus for misted liquid source deposition of thin films with increased yield
SE431139B (en) PROCEDURE FOR POLISHING POLYMER MOVIES BY CORONA CHARGING TO GRANT THE PIEZOELECTRIC ACTIVITY MOVIES
US4055878A (en) Stabilization of piezoelectric resin elements
JP6176110B2 (en) Hydrotreating method
EP0754167A1 (en) Process and installation for the targeted formation of germs or crystals
JP4231196B2 (en) Method for producing crystalline alignment layered compound film by electrophoresis
DE102018004257B4 (en) Micromechanical structure and method for manufacturing the micromechanical structure
CN117702086A (en) Electro-spray atomic layer vapor deposition film making device
CN107451520A (en) The preparation method of ultrasonic fingerprint recognizer component electrode pattern
Bharti et al. Quantitative analysis of piezoelectricity in simultaneously stretched and corona poled polyvinyl chloride films
KR100743318B1 (en) Structurally oriented piezoelectric ceramics and synthesizing method with the application of electric field by non-contact way during heat treatment of amorphous
Martin Development of electrochemical sensors for sensing of Dopamine
JP2537349B2 (en) Method for forming liquid crystal alignment film
DE69310504T2 (en) METHOD AND DEVICE FOR PRODUCING PIEZOELECTRIC RESONATORS