JPH08180893A - Solid electrolytic fuel cell - Google Patents
Solid electrolytic fuel cellInfo
- Publication number
- JPH08180893A JPH08180893A JP6335672A JP33567294A JPH08180893A JP H08180893 A JPH08180893 A JP H08180893A JP 6335672 A JP6335672 A JP 6335672A JP 33567294 A JP33567294 A JP 33567294A JP H08180893 A JPH08180893 A JP H08180893A
- Authority
- JP
- Japan
- Prior art keywords
- cell
- fuel cell
- frame
- heat
- solid electrolytic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Fuel Cell (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】この発明は固体電解質を用い電気
化学反応によってそのギブスの自由エネルギーを電気エ
ネルギーに変換する固体電解質型燃料電池に係り、特に
平板型固体電解質型燃料電池のセル基板に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid electrolyte fuel cell which converts a Gibbs free energy into electric energy by an electrochemical reaction using a solid electrolyte, and more particularly to a cell substrate of a flat plate solid electrolyte fuel cell.
【0002】[0002]
【従来の技術】ジルコニア等の酸化物固体電解質を用い
る燃料電池は、その作動温度が800〜1000℃と高
温であるため、発電効率が高く、触媒も不要であり、改
質系の簡素化も期待でき、また電解質が固体であるため
取扱いが容易であるなどの特徴を有し、さらにガスター
ビン等との複合発電も期待されるなど、第三世代の燃料
電池としてその開発が有望視されている。2. Description of the Related Art A fuel cell using an oxide solid electrolyte such as zirconia has a high operating temperature of 800 to 1000 ° C., and therefore has high power generation efficiency, requires no catalyst, and simplifies the reforming system. It is expected to be developed, and it has the characteristics that it is easy to handle because the electrolyte is a solid, and further, combined power generation with a gas turbine, etc. is also expected, and its development is expected as a third generation fuel cell. There is.
【0003】しかしながら固体電解質型燃料電池は、電
解質をはじめとして主な電池構成部材がセラミックスと
なるためにセルそのものが熱的に破損しやすく、また適
切なガスシール方法もないため特に平板型固体電解質型
燃料電池の実現が困難であった。そのためリン酸型など
の燃料電池と比較して形状が異なる円筒型固体電解質型
燃料電池がウエステイングハウス社によって考案され、
それらの問題を構造的に解決した25kWのプロトタイ
プの開発が進んでいる。しかし円筒型固体電解質型燃料
電池は、原理的に平板型と比較して電池単位体積あたり
の出力密度が低い。そのために高出力密度が期待される
平板型のセル開発が近年盛んである。However, in the solid oxide fuel cell, the cell itself is liable to be thermally damaged because the main battery constituent members including the electrolyte are ceramics, and there is no suitable gas sealing method. It has been difficult to realize a type fuel cell. Therefore, a cylindrical solid oxide fuel cell with a different shape compared to phosphoric acid type fuel cells was devised by Westinghouse,
Development of a 25 kW prototype that structurally solves these problems is in progress. However, in principle, the cylindrical solid oxide fuel cell has a lower output density per unit volume of the cell than the flat plate type fuel cell. For this reason, flat plate type cells, which are expected to have high power density, have been actively developed in recent years.
【0004】[0004]
【発明が解決しようとする課題】平板型の固体電解質型
燃料電池では、前述のガスシール法の他にセルの大面積
化が開発課題となっている。セルの大面積化についてセ
ル基板に電極、電解質を形成する支持膜方式が提案さ
れ、適度な機械的強度と多孔性とガス透過率を有する、
酸化ニッケルNiO とイットリア安定化ジルコニアYSZ か
らなるセル基板の開発が検討されている。In the flat plate type solid oxide fuel cell, the development subject is to increase the area of the cell in addition to the above-mentioned gas sealing method. For increasing the area of the cell, an electrode on the cell substrate, a supporting membrane method for forming an electrolyte is proposed, which has appropriate mechanical strength, porosity and gas permeability,
Development of a cell substrate composed of nickel oxide NiO and yttria-stabilized zirconia YSZ is under consideration.
【0005】図6は平板型の支持膜方式固体電解質型燃
料電池を示す分解斜視図である。セル基板11の上に固
体電解質体12とカソード13が載置されて単セル集合
体15が形成され、この単セル集合体15がセパレータ
14によりサンドイッチされる。従来のセル基板は、例
えば粒度が100 μm程度の酸化ニッケルNiO の粉体とイ
ットリア安定化ジルコニアYSZ 仮焼粉を、51vol%Ni/YSZ
となるように混合し、プレス成形した後に空気中にて焼
成し、次いで水素中で1000℃の温度で酸化ニッケルNiO
を還元して製作していた。FIG. 6 is an exploded perspective view showing a flat plate type supporting membrane type solid oxide fuel cell. The solid electrolyte body 12 and the cathode 13 are placed on the cell substrate 11 to form a single cell assembly 15, and the single cell assembly 15 is sandwiched by the separator 14. A conventional cell substrate is, for example, nickel oxide NiO powder with a particle size of about 100 μm and yttria-stabilized zirconia YSZ calcined powder with 51 vol% Ni / YSZ.
And press molding, then calcination in air, then in hydrogen at a temperature of 1000 ° C nickel oxide NiO
Was produced by reducing.
【0006】しかしこのような従来のNiO とYSZ からな
るセル基板11は、機械的強度や延性が充分でなく、ま
た電池運転時には金属Niがシンタリングして特性低下を
招き電池寿命が短いなどの問題があった。この発明は上
述の点に鑑みてなされその目的は、シンタリングがない
上に機械的強度や延性が良好なセル基板を開発して、特
性と信頼性に優れる平板型固体電解質型燃料電池を提供
することにある。However, such a conventional cell substrate 11 made of NiO and YSZ has insufficient mechanical strength and ductility, and metallic Ni sinters during battery operation, leading to deterioration in characteristics and a short battery life. There was a problem. The present invention has been made in view of the above points, and an object thereof is to develop a cell substrate having good mechanical strength and ductility without sintering, and provide a flat plate solid oxide fuel cell having excellent characteristics and reliability. To do.
【0007】[0007]
【課題を解決するための手段】上述の目的はこの発明に
よればセル基板上に固体電解質体を積層した単電池を備
える固体電解質型燃料電池において、セル基板が耐熱性
合金の骨格とジルコニアセラミックスの骨格が絡み合っ
たサーメットであるとすることにより達成される。According to the present invention, the above object is to provide a solid oxide fuel cell including a unit cell in which a solid electrolyte body is laminated on a cell substrate, in which the cell substrate is a skeleton of a heat-resistant alloy and zirconia ceramics. This is achieved by the fact that the skeleton of is a cermet in which the skeletons are intertwined.
【0008】上述の発明において耐熱性合金はNiベー
スのNi―Cr―W合金であるとすることが有効であ
る。耐熱性合金の骨格とジルコニアセラミックスの骨格
が絡み合ったサーメットは、耐熱性合金の粉体とジルコ
ニアセラミックスの粉体を混合し、成型し、酸化雰囲気
中で1400〜1550℃の温度範囲で焼成することにより適度
な粒度分布と混合比を持ったYSZ焼結体の骨格が形成
される。In the above invention, it is effective that the heat resistant alloy is a Ni-based Ni-Cr-W alloy. The cermet in which the skeleton of the heat-resistant alloy and the skeleton of the zirconia ceramics are intertwined, the powder of the heat-resistant alloy and the powder of the zirconia ceramics are mixed, molded, and fired in the temperature range of 1400 to 1550 ° C in an oxidizing atmosphere. As a result, the skeleton of the YSZ sintered body having an appropriate particle size distribution and mixing ratio is formed.
【0009】Ni-Cr-W からなる耐熱合金の酸化物は水素
雰囲気下で1000〜1200℃の温度範囲で還元することによ
り適度な粒度分布と混合比を持ったNi-Cr-W 耐熱合金焼
結体の骨格が形成される。The oxide of a heat-resistant alloy composed of Ni-Cr-W is reduced in a temperature range of 1000 to 1200 ° C. in a hydrogen atmosphere to obtain a Ni-Cr-W heat-resistant alloy having an appropriate particle size distribution and mixing ratio. The skeleton of the union is formed.
【0010】[0010]
【作用】YSZ焼結体の骨格形成とNi-Cr-W 耐熱合金焼
結体の骨格形成がセル基板の機械的強度を向上し、Ni-C
r-W ベース耐熱合金の焼結体の骨格形成がセル基板の延
性を向上させる。Ni-Cr-W 耐熱合金は高融点のCr,W
を含有するために難焼結性であり、電池寿命を向上させ
る。[Function] The skeleton formation of the YSZ sintered body and the skeleton formation of the Ni-Cr-W heat-resistant alloy sintered body improve the mechanical strength of the cell substrate, and Ni-C
The skeleton formation of the sintered body of the rW base heat-resistant alloy improves the ductility of the cell substrate. Ni-Cr-W heat-resistant alloys are high melting point Cr, W
It is difficult to sinter because it contains, improving the battery life.
【0011】ジルコニアセラミックスはサーメットの熱
膨張率をジルコニアからなる固体電解質体の熱膨張率に
近似させる。Zirconia ceramics makes the coefficient of thermal expansion of cermet approximate the coefficient of thermal expansion of a solid electrolyte body made of zirconia.
【0012】[0012]
【実施例】次にこの発明の実施例を図面に基づいて説明
する。セル基板の原料粉末として、粒度分布が1 μm な
いし50μm で組成がNi-22Cr-14W の耐熱合金粉末と、粒
度分布が5μm ないし50μm となるようにあらかじめ仮
焼したイットリア安定化ジルコニアYSZ 粉末を用意す
る。40vol%となるように配合したNi-22Cr-14W 組成の耐
熱合金粉末を水溶性のバインダーと共に水溶液中におい
てボールミルを用いて混合し、乾燥した後に一軸プレス
成形して直径が75mm、厚さ4mm のグリーン成型体を得
る。Embodiments of the present invention will now be described with reference to the drawings. As the raw material powder for the cell substrate, we prepared a heat-resistant alloy powder with a particle size distribution of 1 μm to 50 μm and a composition of Ni-22Cr-14W, and a yttria-stabilized zirconia YSZ powder that had been pre-calcined to have a particle size distribution of 5 μm to 50 μm. To do. A heat-resistant alloy powder of Ni-22Cr-14W composition that was blended to 40 vol% was mixed with a water-soluble binder in an aqueous solution using a ball mill, dried, and then uniaxially press-formed to a diameter of 75 mm and a thickness of 4 mm. Obtain a green molded body.
【0013】次に空気中において、昇温速度100 ℃/hで
1550℃の温度で焼成し、水素雰囲気中で1200℃の温度で
還元したものをセル基板とする。次に得られたセル基板
につき断面の電子顕微鏡写真を取得した。図1はセル基
板の結晶構造を示し、(a)はこの発明のセル基板の走
査型電子顕微鏡写真、(b)は従来のセル基板の走査型
電子顕微鏡写真である。Next, in air, at a heating rate of 100 ° C./h
A cell substrate is obtained by firing at a temperature of 1550 ° C. and reducing at a temperature of 1200 ° C. in a hydrogen atmosphere. Next, an electron micrograph of a cross section of the obtained cell substrate was obtained. FIG. 1 shows a crystal structure of a cell substrate, (a) is a scanning electron microscope photograph of the cell substrate of the present invention, and (b) is a scanning electron microscope photograph of a conventional cell substrate.
【0014】2つの写真を比較すると、従来の基板はYS
Z およびNi粉末の焼結が不足しているのに対し、本発明
のセル基板はYSZ および耐熱合金粉末がよく焼結してジ
ルコニアセラミックスと耐熱合金のそれぞれが骨格を形
成していることがわかる。表1はこの発明の実施例に係
るセル基板と従来のセル基板の特性を対比して示す。Comparing the two pictures, the conventional substrate is YS
It can be seen that YSZ and the heat-resistant alloy powder are well sintered and the zirconia ceramics and the heat-resistant alloy each form a skeleton, whereas the sintering of Z and Ni powders is insufficient. . Table 1 shows characteristics of the cell substrate according to the embodiment of the present invention and the conventional cell substrate in comparison.
【0015】[0015]
【表1】 この発明のセル基板は、燃料電池に必要なガス透過率を
有している。還元後の曲げ強度が従来に比較して約3倍
の62[MPa] 、また延性すなわち曲げ試験時の破断までの
たわみ量を基にした破断歪み (たわみ量/( 荷重点と支
点間の距離) ×100)が従来の約2.5 倍の2.3[%]であっ
た。[Table 1] The cell substrate of this invention has a gas permeability required for a fuel cell. The bending strength after reduction is about 3 times that of the conventional one, 62 [MPa], and the fracture strain (deflection / (distance between load point and fulcrum) based on the ductility, that is, the amount of deflection up to rupture during bending test. ) × 100) was 2.3 [%], which was about 2.5 times the conventional value.
【0016】ここで上述の延性 (たわみ量/( 荷重点と
支点間の距離) ×100)は以下の方法で測定した。図2は
延性測定方法を示し、(a)は試料16に荷重Pを印加
した状態の断面図、(b)は試料16に荷重Pを印加し
て試料が破断した状態の断面図である。JISR160
1にセラミックスの4点曲げ試験方法が規定されてい
る。試料のサイズは3×4×40mmであり、クロスヘ
ッドは0.5mm/min.の速度で移動した。a=l
=10mmである。延性εはクラック発生時のデルタを
測定しε=δ/a(%)で定義される。The above-mentioned ductility (deflection amount / (distance between load point and fulcrum) × 100) was measured by the following method. 2A and 2B show a ductility measuring method. FIG. 2A is a cross-sectional view of a sample 16 in which a load P is applied, and FIG. JISR160
1 stipulates a four-point bending test method for ceramics. The sample size is 3 × 4 × 40 mm, and the crosshead is 0.5 mm / min. Moved at the speed of. a = 1
= 10 mm. Ductility ε is defined by ε = δ / a (%), which is obtained by measuring the delta when cracks occur.
【0017】本発明のセル基板に電解質であるYSZと
カソードであるランタンマンガナイトLaMnO3をプラズマ
溶射法により積層し燃料電池を構成して運転した。図3
はこの発明の実施例に係る固体電解質型燃料電池につき
電池電圧の電流密度依存性(◇)を従来の電池(○)と
対比して示す線図である。セル基板が直径70[mm]で電極
有効面積が38cm2 、運転温度1000℃、燃料ガスは加湿3%
水素を使用し、利用率は60% 、酸化剤は空気を使用し、
利用率は20% で運転した。また測定を終了した後に温度
を室温まで戻し、再び1000℃まで昇温して運転してヒー
トサイクル特性を調べた。昇降温の速度は100/℃で
ある。本発明のセル基板を用いた電池は電池特性が従来
のものと同等であり且つヒートサイクル性が向上してい
ることがわかる。即ち、従来の電池は3回のヒートサイ
クル後にセル基板に割れが見られたのに対して、本発明
のセル基板を用いた電池は10回のヒートサイクル後にお
いても割れが見られなかった。On the cell substrate of the present invention, YSZ as an electrolyte and lanthanum manganite LaMnO 3 as a cathode were laminated by a plasma spraying method to construct a fuel cell for operation. FIG.
FIG. 4 is a diagram showing the current density dependence (⋄) of the cell voltage of the solid oxide fuel cell according to the example of the present invention in comparison with the conventional cell (∘). The cell substrate has a diameter of 70 mm, the effective electrode area is 38 cm 2 , the operating temperature is 1000 ° C, and the fuel gas is humidified 3%.
Uses hydrogen, utilization rate is 60%, oxidant uses air,
The operation rate was 20%. After the measurement was completed, the temperature was returned to room temperature, the temperature was raised to 1000 ° C. again, and the operation was performed to examine the heat cycle characteristics. The rate of temperature increase / decrease is 100 / ° C. It can be seen that the battery using the cell substrate of the present invention has the same battery characteristics as the conventional one and improved heat cycle property. That is, in the conventional battery, cracks were found in the cell substrate after three heat cycles, whereas in the battery using the cell substrate of the present invention, no crack was found after 10 heat cycles.
【0018】図4はこの発明の実施例に係る固体電解質
型燃料電池につき電池電圧の運転時間依存性(◇)を従
来の電池(○)と対比して示す線図である。試験条件
は、電極有効面積38cm2 、運転温度1000℃、燃料ガスは
加湿3%水素で利用率は60% 、酸化剤は空気で利用率は20
% 、負荷は0.3A/ cm2 である。従来のNi-YSZからなるセ
ル基板を用いた燃料電池の劣化率が30 [μV/h]であるの
に対し、本発明のセル基板を用いたものは5[μV/h]であ
った。Niは電池の運転により焼結が進行するが耐熱性合
金を用いると焼結が抑制され、劣化が抑制され電池寿命
が延びる。FIG. 4 is a diagram showing the operating time dependence (⋄) of the cell voltage of the solid oxide fuel cell according to the embodiment of the present invention in comparison with the conventional cell (∘). The test conditions are: electrode effective area 38cm 2 , operating temperature 1000 ℃, fuel gas humidified 3% hydrogen, utilization 60%, oxidizer air, utilization 20
%, The load is 0.3 A / cm 2 . The deterioration rate of the fuel cell using the conventional Ni-YSZ cell substrate was 30 [μV / h], while that using the cell substrate of the present invention was 5 [μV / h]. Sintering of Ni progresses as the battery operates, but when a heat-resistant alloy is used, sintering is suppressed, deterioration is suppressed, and battery life is extended.
【0019】図5はこの発明の実施例に係る固体電解質
型燃料電池につきセル基板線膨張の温度依存性を示す線
図である。試料の初期長さは19.3mmであり図から
線膨張率は11.2×10-6/℃であることがわかる。
これはYSZの線膨張率10.5×10-6/℃に近い。
このためにセル基板上に固体電解質体を積層した際に固
体電解質体のヒートサイクルによる熱破損が防止され
る。FIG. 5 is a diagram showing the temperature dependence of the linear expansion of the cell substrate for the solid oxide fuel cell according to the embodiment of the present invention. The initial length of the sample is 19.3 mm, and the figure shows that the linear expansion coefficient is 11.2 × 10 −6 / ° C.
This is close to the linear expansion coefficient of YSZ of 10.5 × 10 -6 / ° C.
Therefore, when the solid electrolyte body is laminated on the cell substrate, thermal damage to the solid electrolyte body due to heat cycle is prevented.
【0020】[0020]
【発明の効果】この発明によればセル基板が耐熱性合金
の骨格とジルコニアセラミックスの骨格が絡み合ったサ
ーメットであるのでセル基板の機械的強度と延性が向上
し、ヒートサイクルに強い固体電解質型燃料電池が得ら
れる。また耐熱性合金はNiベースのNi―Cr―W合
金であるのでこの合金は難焼結性であり、電池の寿命が
向上する。さらにセル基板のジルコニアセラミックスは
ジルコニアからなる固体電解質体との熱的整合性に優
れ、固体電解質体の破損を防止して固体電解質型燃料電
池の信頼性を向上させる。According to the present invention, since the cell substrate is a cermet in which the skeleton of the heat-resistant alloy and the skeleton of zirconia ceramics are intertwined with each other, the mechanical strength and ductility of the cell substrate are improved, and the solid electrolyte fuel that is resistant to heat cycle is improved. A battery is obtained. Further, since the heat resistant alloy is a Ni-based Ni-Cr-W alloy, this alloy is difficult to sinter and the life of the battery is improved. Further, the zirconia ceramics of the cell substrate has excellent thermal compatibility with the solid electrolyte body made of zirconia, prevents damage to the solid electrolyte body, and improves the reliability of the solid oxide fuel cell.
【図1】セル基板の結晶構造を示し、(a)はこの発明
のセル基板の走査型電子顕微鏡写真、(b)は従来のセ
ル基板の走査型電子顕微鏡写真FIG. 1 shows a crystal structure of a cell substrate, (a) is a scanning electron microscope photograph of the cell substrate of the present invention, and (b) is a scanning electron microscope photograph of a conventional cell substrate.
【図2】延性測定方法を示し、(a)は試料16に荷重
Pを印加した状態の断面図、(b)は試料16に荷重P
を印加して試料が破断した状態の断面図2A and 2B show a method of measuring ductility, where FIG. 2A is a sectional view of a sample 16 in which a load P is applied, and FIG.
Sectional view of the sample fractured by applying
【図3】この発明の実施例に係る固体電解質型燃料電池
につき電圧の電流密度依存性を従来の電池と対比して示
す線図FIG. 3 is a diagram showing the current density dependence of voltage for a solid oxide fuel cell according to an embodiment of the present invention, in comparison with a conventional cell.
【図4】この発明の実施例に係る固体電解質型燃料電池
につき電圧の運転時間依存性を従来の電池と対比して示
す線図FIG. 4 is a diagram showing the operating time dependency of the voltage of the solid oxide fuel cell according to the embodiment of the present invention in comparison with the conventional cell.
【図5】この発明の実施例に係る固体電解質型燃料電池
につきセル基板線膨張の温度依存性を示す線図FIG. 5 is a diagram showing the temperature dependence of the linear expansion of the cell substrate for the solid oxide fuel cell according to the embodiment of the present invention.
【図6】平板型の支持膜方式固体電解質型燃料電池を示
す分解斜視図FIG. 6 is an exploded perspective view showing a flat plate type supporting membrane type solid oxide fuel cell.
11 セル基板 12 固体電解質体 13 カソード 14 セパレータ 15 単セル集合体 16 試料 11 Cell Substrate 12 Solid Electrolyte Body 13 Cathode 14 Separator 15 Single Cell Assembly 16 Sample
Claims (2)
池を備える固体電解質型燃料電池において、セル基板が
耐熱性合金の骨格とジルコニアセラミックスの骨格が絡
み合ったサーメットであることを特徴とする固体電解質
型燃料電池。1. A solid electrolyte fuel cell comprising a unit cell in which a solid electrolyte body is laminated on a cell substrate, wherein the cell substrate is a cermet in which a skeleton of a heat-resistant alloy and a skeleton of zirconia ceramics are intertwined. Solid oxide fuel cell.
いて、耐熱性合金はNiベースのNi―Cr―W合金で
あることを特徴とする固体電解質型燃料電池。2. The solid oxide fuel cell according to claim 1, wherein the heat resistant alloy is a Ni-based Ni—Cr—W alloy.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6335672A JPH08180893A (en) | 1994-12-21 | 1994-12-21 | Solid electrolytic fuel cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6335672A JPH08180893A (en) | 1994-12-21 | 1994-12-21 | Solid electrolytic fuel cell |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH08180893A true JPH08180893A (en) | 1996-07-12 |
Family
ID=18291224
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6335672A Pending JPH08180893A (en) | 1994-12-21 | 1994-12-21 | Solid electrolytic fuel cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH08180893A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002134131A (en) * | 2000-10-23 | 2002-05-10 | Toho Gas Co Ltd | Supporting membrane type solid electrolyte fuel cell |
-
1994
- 1994-12-21 JP JP6335672A patent/JPH08180893A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002134131A (en) * | 2000-10-23 | 2002-05-10 | Toho Gas Co Ltd | Supporting membrane type solid electrolyte fuel cell |
JP4605885B2 (en) * | 2000-10-23 | 2011-01-05 | 東邦瓦斯株式会社 | Support membrane type solid oxide fuel cell |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Bao et al. | Effect of NiO/YSZ compositions on the co-sintering process of anode-supported fuel cell | |
KR20120047305A (en) | Fuel cell, cell stack, fuel cell module, and fuel cell device | |
JP3617814B2 (en) | Air electrode material for alkaline-earth-added nickel-iron perovskite-type low-temperature solid fuel cell | |
JP4399698B2 (en) | Air electrode current collector and solid electrolyte fuel cell incorporating the air electrode current collector | |
JP2513920B2 (en) | Fuel electrode for solid electrolyte fuel cell and method for manufacturing the same | |
EP2851985A1 (en) | Solid electrolyte laminate, method for producing solid electrolyte laminate, and fuel cell | |
KR20100137477A (en) | Electrolyte for an inexpensive, electrolyte-supported high-temperature fuel cell having high power and high mechanical strength | |
JP2002216807A (en) | Air electrode collector for solid electrolyte type fuel cell | |
JP5226656B2 (en) | Solid oxide fuel cell and method for producing solid oxide fuel cell | |
JP2002280026A (en) | Air electrode current collector for solid electrolyte fuel cell | |
JP2024510216A (en) | Metal support metal substrate for electrochemical cells | |
JP5051741B2 (en) | Fabrication method of flat plate type solid oxide fuel cell | |
JP2003346843A (en) | Cylindrical solid oxide fuel battery and method of operating the fuel battery | |
JP2011060695A (en) | Solid oxide fuel cell | |
JPWO2011138915A1 (en) | High-temperature structural material, structure for solid oxide fuel cell, and solid oxide fuel cell | |
JP4428946B2 (en) | Fuel electrode for solid oxide fuel cell | |
JP2005187241A (en) | Composite ceramic and solid electrolyte fuel cell | |
JPH08180893A (en) | Solid electrolytic fuel cell | |
JPH0963605A (en) | Solid electrolyte fuel cell | |
JP5030747B2 (en) | Method for producing solid oxide fuel cell and firing jig used in the method | |
US20100297527A1 (en) | Fast Ion Conducting Composite Electrolyte for Solid State Electrochemical Devices | |
KR102109730B1 (en) | Method for fabricating solid oxide fuel cell | |
JP5137416B2 (en) | Current collecting material for fuel electrode, solid oxide fuel cell unit cell and solid oxide fuel cell | |
JP2002050370A (en) | Current collector | |
JPH09241076A (en) | Electrically conductive ceramic and solid electrolyte type fuel cell |