JPH0818026B2 - Ion removing material and method for removing ions in water using the same - Google Patents
Ion removing material and method for removing ions in water using the sameInfo
- Publication number
- JPH0818026B2 JPH0818026B2 JP35645892A JP35645892A JPH0818026B2 JP H0818026 B2 JPH0818026 B2 JP H0818026B2 JP 35645892 A JP35645892 A JP 35645892A JP 35645892 A JP35645892 A JP 35645892A JP H0818026 B2 JPH0818026 B2 JP H0818026B2
- Authority
- JP
- Japan
- Prior art keywords
- water
- ions
- hydrogel
- dephosphorization
- particles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Removal Of Specific Substances (AREA)
- Water Treatment By Sorption (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、下水、各種廃水、下水
の生物処理水、ダム、湖沼、河川などの水中に含まれる
微量なリン酸イオン(PO4 3- イオンとも記載する)を
効果的に吸着除去できる新規な晶析脱リン材を提供する
ものであリ、また、水中のフッ素や重金属などのイオン
を除去する新規物質を提供するものである。BACKGROUND OF THE INVENTION The present invention is effective for trace amounts of phosphate ions (also referred to as PO 4 3- ions) contained in sewage, various wastewater, biologically treated water of sewage, water such as dams, lakes and rivers. The present invention provides a new crystallization dephosphorization material that can be adsorbed and removed selectively, and also provides a new substance that removes ions such as fluorine and heavy metals in water.
【0002】[0002]
【従来の技術】以下にリン酸イオン(PO4 3- イオン)
の除去を例に挙げて説明する。従来より水中のリン酸イ
オンを除去する晶析脱リン法は知られている。晶析脱リ
ン法はPO4 3- イオンを含む水に必要に応じてCa2+イ
オンやOH-イオンを添加し、この水をヒドロキシアパ
タイト結晶精製の核となる種晶(リン鉱石、骨炭などか
らなる)と接触させると種晶の表面でヒドロキシアパタ
イトの晶析反応が進み、水中のPO4 3- イオンが除去さ
れる現象を利用した脱リン法である。(フッ素や重金属
などのイオンも同様に除去される。)2. Description of the Related Art Phosphate ions (PO 4 3- ions) are described below.
Will be described as an example. A crystallization dephosphorization method for removing phosphate ions in water has been conventionally known. In the crystallization dephosphorization method, Ca 2+ ions and OH − ions are added to water containing PO 4 3− ions as needed, and this water is used as a seed crystal (phosphorus ore, bone charcoal, etc.) that serves as a nucleus for hydroxyapatite crystal purification. consisting essentially) and the contacting crystallization reaction of hydroxyapatite proceeds at the surface of the seed crystal, a dephosphorylation method utilizing a phenomenon that PO 4 3- ions in the water are removed. (Ions such as fluorine and heavy metals are also removed.)
【0003】この晶析脱リン法は、汚泥がほとんど生成
しないという大きな特徴があるが、次のような欠点が克
服されないため、実用化があまり進んでいない。 種晶にリン鉱石を用いるので、リン鉱石の輸入、篩
い分け、装置内への充填作業など煩雑な付随作業が必要
である。従って、必然的に人件費によるコストアップを
招く。 アルカリ度が高い原水(下水がその例)に対して
は、予め酸を添加して、pH4.5の条件にして、エア
ストリップし、アルカリ度成分を炭酸ガス(CO2 )と
して系外に排出させなければならない。この結果、酸の
コスト、エアストリップ用の曝気動力が嵩み、ますます
脱リンコストを引き上げる。This crystallization dephosphorization method has a great feature that sludge is hardly generated, but since the following drawbacks cannot be overcome, it has not been put into practical use. Since phosphorus ore is used as seed crystals, complicated accompanying work such as importing, sieving, and filling of the ore into the equipment is required. Therefore, the labor cost is inevitably increased. For raw water with high alkalinity (sewage is an example), acid is added in advance and the pH is adjusted to 4.5, air stripping is performed, and the alkalinity component is discharged as carbon dioxide (CO 2 ) to the outside of the system. I have to let you. As a result, the cost of acid and aeration power for air strips increase, further increasing the cost of dephosphorization.
【0004】 原水にSSが多く含まれる場合は、晶
析脱リン工程の前段で予めろ過装置を設け、SSをろ過
しなければならない。さもないと、脱リン材(リン鉱
石)の表面にSSが付着し、晶析反応を妨げてしまう。
晶析脱リンを固定層ではなく、流動層で操作すればSS
が脱リン材の表面に付着しないので、前段のろ過工程は
不要になるが、比重が大きいのでリン鉱石を流動層とし
て操作するには、上昇水流を大きくしなければならず、
そのため動力費が大きくなってしまう。When the raw water contains a large amount of SS, the SS must be filtered by previously providing a filtration device before the crystallization dephosphorization step. Otherwise, SS will adhere to the surface of the dephosphorization material (phosphorus ore) and hinder the crystallization reaction.
If crystallization dephosphorization is operated in a fluidized bed instead of a fixed bed, SS
Since it does not adhere to the surface of the dephosphorization material, the previous filtration step is unnecessary, but since the specific gravity is large, it is necessary to increase the rising water flow in order to operate the phosphate rock as a fluidized bed.
Therefore, the power cost will increase.
【0005】[0005]
【発明が解決しようとする課題】本発明は、前記問題点
〜を解決することを課題とする。具体的には、 1.脱リン材などイオン除去材の輸入、篩い分け、現場
への運搬を不要にする。 2.イオン除去装置へのイオン除去材の充填を著しく容
易にする。 3.脱炭酸工程を不要にする。 4.流動層を維持する動力を著しく減少にする。 という課題を達成することを目的とする。SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems (1) to (3). Specifically, 1. Eliminates the need to import, screen, and transport ion removal materials such as dephosphorization materials to the site. 2. It significantly facilitates the filling of the ion removing device with the ion removing material. 3. Eliminates the decarbonation step. 4. The power to maintain the fluidized bed is significantly reduced. The purpose is to achieve the task.
【0006】[0006]
【課題を解決するための手段】上記課題は本発明のイオ
ン除去材を用いた水中のイオン除去方法によって達成さ
れる。すなわち、 (1)高吸水性高分子より成り、水中で膨潤して弾性を
示すヒドロゲル粒子内にリン酸カルシウム化合物固相を
保持せしめたことを特徴とするイオン除去材。 (2)上記(1)に記載のイオン除去材を水に接触さ
せ、該水中のイオンを除去することを特徴とする水中の
イオン除去方法。である。The above object can be achieved by a method for removing ions in water using the ion removing material of the present invention. That is, (1) an ion removing material comprising a superabsorbent polymer, wherein hydrogel particles that swell in water and exhibit elasticity retain a calcium phosphate compound solid phase. (2) A method for removing ions in water, which comprises contacting the ion removing material according to (1) with water to remove the ions in the water. Is.
【0007】すなわち本発明は、従来の晶析脱リン材
(リン鉱石、骨炭など)を用いずにこれらに代えて、高
吸水性高分子のヒドロゲル粒子の内部にヒドロキシアパ
タイトなどのリン酸カルシウム化合物固相を保持させた
ものを晶析脱リン法の種晶とする技術である。That is, according to the present invention, the conventional crystallization dephosphorization material (phosphorus ore, bone charcoal, etc.) is used in place of the above, instead of the hydrogel particles of the superabsorbent polymer, a calcium phosphate compound solid phase such as hydroxyapatite is solid phased. This is a technique in which a material holding the above is used as a seed crystal of the crystallization dephosphorization method.
【0008】フッ素イオンを除去する場合も、フッ素イ
オンを含む水と本発明のヒドロゲル粒子の内部にヒドロ
キシアパタイトなどのリン酸カルシウム化合物固相を保
持させたフッ素の除去材を接触させれば、リン酸イオン
(PO4 3- イオン)の除去と同様なメカニズムでフッ素
イオンが除去される。すなわち、ヒドロゲル内のヒドロ
キシアパタイトの有するリン酸基(PO4 3-基)とフッ
素イオンが交換される結果フッ素イオンが除去される。
また、Ca2+イオンと水中の重金属イオンが置換するこ
とにより重金属イオンも除去される。すなわち、重金属
(Hg、Ag、Cr、Cu、Ni、Co、Fe、Mn、
Zn、Pb、Cdなど)のイオンも本発明のヒドロゲル
複合型イオン除去材と接触させると除去される。Also in the case of removing the fluorine ion, if the water containing the fluorine ion and the fluorine removing material in which the solid phase of the calcium phosphate compound such as hydroxyapatite is held inside the hydrogel particles of the present invention are brought into contact with each other, the phosphate ion can be removed. Fluorine ions are removed by the same mechanism as the removal of (PO 4 3- ions). That is, the fluorine ion is removed as a result of exchanging the fluorine ion with the phosphate group (PO 4 3- group) of the hydroxyapatite in the hydrogel.
Further, the heavy metal ions are also removed by replacing the Ca 2+ ions with the heavy metal ions in the water. That is, heavy metals (Hg, Ag, Cr, Cu, Ni, Co, Fe, Mn,
Ions (Zn, Pb, Cd, etc.) are also removed by contact with the hydrogel composite type ion removing material of the present invention.
【0009】(作用)高吸水性高分子とは、水中に投入
すると水を極めて多量に吸収し(自重の100〜400
倍程度の水を吸収する)著しく膨潤し、ヒドロゲルを形
成する高分子をいい、従来紙おむつなどの分野で多用さ
れている物質である。高吸水性高分子は親水性の高分子
であるが、水を吸収して全体が糊状のヒドロゲルになる
ものと、弾性を示すヒドロゲル(定形のヒドロゲル粒
子)になるものの2種類があり、糊状になるものは水を
ろ過によって分離できないが、固有の形状を維持して弾
性を示す強度の大きなヒドロゲルになるもの(すなわち
有限膨潤を示すもの)は、粒子とするとゲルに吸収され
なかった水をろ過によって容易に分離できる。本発明の
脱リン材またはフッ素除去材に使用される高吸水性高分
子は弾性を示す弾性を示す強度の大きなヒドロゲルにな
る種類のものである。(Function) A superabsorbent polymer means that when it is put into water, it absorbs an extremely large amount of water (100 to 400 of its own weight).
A polymer that absorbs twice as much water) and swells remarkably to form a hydrogel, which is a substance that has been widely used in the field of conventional diapers. Super absorbent polymers are hydrophilic macromolecules, but there are two types: one that absorbs water to form a paste-like hydrogel, and one that forms an elastic hydrogel (shaped hydrogel particles). Water that cannot be separated by filtration cannot be separated into water, but a hydrogel with high strength that maintains its unique shape and exhibits elasticity (that is, that that exhibits finite swelling) is water that is not absorbed by the gel when made into particles. Can be easily separated by filtration. The superabsorbent polymer used in the dephosphorizing material or the fluorine removing material of the present invention is of a kind that becomes a hydrogel having elasticity and high elasticity.
【0010】すなわち、本発明にいう水中で膨潤して弾
性を示す「ヒドロゲル粒子」とは、ヒドロゲル粒子が、
外力によりあるいは乾燥して、変形しても再び外力が消
失したりあるいは吸水膨潤すると可逆的にもとの形に復
元するヒドロゲル粒子を意味し、各粒子の形状は必ずし
も同一でなくてもよい。ヒドロゲル粒子の大きさ、すな
わち極限膨潤度は、ヒドロゲル粒子を構成する高吸水性
高分子の架橋度とそれを投入する水溶液の性質による。
また、ヒドロゲル粒子の示す弾性強度は構成高分子の種
類と膨潤度などによって調節可能である。また、かかる
本発明のヒドロゲル同志は互いに融合や接着を起こさな
い性質を有している。That is, the "hydrogel particles" referred to in the present invention which are swollen in water and exhibit elasticity are the following:
It means a hydrogel particle that reversibly returns to its original shape when the external force disappears again after being deformed by an external force or when it is deformed, or when it swells due to water absorption, and the shape of each particle is not necessarily the same. The size of the hydrogel particles, that is, the ultimate swelling degree, depends on the degree of cross-linking of the superabsorbent polymer constituting the hydrogel particles and the properties of the aqueous solution into which it is charged.
Also, the elastic strength of the hydrogel particles can be adjusted by the type of constituent polymer and the degree of swelling. Further, the hydrogels of the present invention have a property that they do not fuse or adhere to each other.
【0011】本発明において使用する高吸水性高分子と
しては種々の高分子が利用できるが、特に好適なのはイ
ソブチレンと無水マレイン酸共重合体、ビニルアルコー
ルと無水マレイン酸共重合体、ポリアクリル酸重合体な
どが好例として挙げられる。これらの高吸水性高分子よ
り成り、水中で膨潤して弾性を示す定形の粒子となるヒ
ドロゲル粒子は、その乾燥した粒子を水溶液中に投入す
ると、個々の粒子は水溶液を多量に吸収して膨潤しヒド
ロゲル粒子に復元される。なお、これらヒドロゲル粒子
は吸水膨潤した時、個々の粒子は球状、角状などの定形
状を持った強度の大きな粒子(粒径が数mmオーダー)
に変化する性質を持っているので、取扱が容易であり、
リン酸イオンを含む水と、本脱リン材を接触させる際、
脱リン材粒子が破壊しないという利点がある。Various polymers can be used as the superabsorbent polymer used in the present invention. Particularly preferred are isobutylene and maleic anhydride copolymers, vinyl alcohol and maleic anhydride copolymers, and polyacrylic acid copolymers. A good example is coalescing. Hydrogel particles, which consist of these super absorbent polymers and become swellable elastic particles of fixed size, when the dried particles are put into an aqueous solution, the individual particles absorb a large amount of the aqueous solution and swell. It is then restored to hydrogel particles. When these hydrogel particles absorb water and swell, each particle has a fixed shape such as a spherical shape or a square shape and has high strength (particle size is on the order of several mm).
It has the property of changing to
When bringing the dephosphorizing material into contact with water containing phosphate ions,
There is an advantage that the dephosphorization material particles do not break.
【0012】本発明はこの高吸水性高分子より成り、水
中で膨潤して弾性を示す定形の粒子となる、ヒドロゲル
粒子内にヒドロキシアパタイトなどのリン酸カルシウム
化合物固相を保持したものによって、リンまたはフッ素
を除去する技術である。本発明の脱リン材によって、水
中のリン酸イオン(PO4 3- イオン)を除去するには、
基本的には従来の晶析脱リン法と同様な操作を行えばよ
いが、脱炭酸工程は不要である。The present invention consists of this superabsorbent polymer, which forms swellable elastic particles in water to form a fixed particle, and hydrophobite particles having a solid phase of calcium phosphate compound such as hydroxyapatite are used. Is a technology for removing. In order to remove phosphate ions (PO 4 3- ions) in water with the dephosphorizing material of the present invention,
Basically, the same operation as in the conventional crystallization dephosphorization method may be performed, but the decarboxylation step is unnecessary.
【0013】以下に本発明の脱リン材、フッ素除去材の
製法の1例を詳しく説明する。 (脱リン材又はフッ素除去材の製造法) 乾燥状態にある高吸水性高分子粉末(又は顆粒)を、
塩化カルシウム(CaCl2 )水溶液に添加、分散させ
る。数分後に塩化カルシウム水溶液を吸収した高吸水性
高分子のヒドロゲル粒子(粒径2〜4mm程度)が生成
する。 次に塩化カルシウム水溶液を取り込んだヒドロゲル粒
子をNa3 PO4 のアルカリ水溶液(pH9〜10)内
に数時間から24時間程度浸漬させる。この結果、高吸
水性高分子のヒドロゲル粒子内において 10Ca2++6PO4 3- +2OH- −→Ca10(OH)2 (PO4 )6 ↓ {Ca10(OH)2 (PO4 )6 はヒドロキシアパタイ
トである} の固相生成反応が進み、ヒドロキシアパタイトが高吸水
性高分子からなるヒドロゲル粒子内に保持される。An example of the method for producing the dephosphorizing material and the fluorine removing material of the present invention will be described in detail below. (Manufacturing method of dephosphorization material or fluorine removal material) The super absorbent polymer powder (or granules) in a dry state is
Add and disperse in an aqueous solution of calcium chloride (CaCl 2 ). A few minutes later, hydrogel particles (particle diameter of about 2 to 4 mm) of a superabsorbent polymer that has absorbed the calcium chloride aqueous solution are generated. Next, the hydrogel particles incorporating the calcium chloride aqueous solution are immersed in an alkaline aqueous solution of Na 3 PO 4 (pH 9 to 10) for several hours to 24 hours. As a result, 10Ca 2+ + 6PO 4 3 + 2OH − − → Ca 10 (OH) 2 (PO 4 ) 6 ↓ {Ca 10 (OH) 2 (PO 4 ) 6 is hydroxy in the hydrogel particles of the superabsorbent polymer. The solid phase formation reaction of apatite} proceeds, and the hydroxyapatite is retained in the hydrogel particles made of the superabsorbent polymer.
【0014】以上が本発明の脱リン材又はフッ素除去材
の製造法の1例であり、本発明は図1に示す如くこのヒ
ドロキシアパタイト2を内部に析出保持した高吸水性高
分子ヒドロゲル粒子1を晶析脱リン法又は脱フッ素法の
種晶とする。ただし、本発明は上記のようにヒドロキシ
アパタイトを析出させる方法だけでなく、元よりヒドロ
キシアパタイトをヒドロゲル粒子内に固定化せしめる方
法によって脱リン材又はフッ素除去材を製造しても良
い。The above is one example of the method for producing the dephosphorization material or the fluorine removal material of the present invention. In the present invention, as shown in FIG. 1, superabsorbent polymer hydrogel particles 1 in which hydroxyapatite 2 is deposited and retained therein. Is a seed crystal of the crystallization dephosphorization method or the defluorination method. However, in the present invention, the dephosphorization material or the fluorine removal material may be produced not only by the method of precipitating hydroxyapatite as described above but also by the method of immobilizing hydroxyapatite in the hydrogel particles.
【0015】以下に図2を参照しながら本発明による代
表的な水処理の実施例を説明する。リン酸イオンを含む
原水に必要に応じCa2+イオンとOH- イオンを添加
し、pHを8.5〜9.0に調整し、本発明のヒドロゲ
ル脱リン材と接触させ、ヒドロゲル粒子の内部と表面に
おいて、アパタイトの晶析反応を進行させ、原水中のP
O4 3- イオンを除去する。本発明のヒドロゲル脱リン材
と原水とを接触させ方は、原水を上向流で流し、ヒドロ
ゲル脱リン材の膨張層(Expanded Bed)と
して接触させるのが最も好ましい。なお、膨張層とは固
定層と流動層の中間的な状態を指す。本発明のヒドロゲ
ル脱リン材は比重が水にほぼ等しく、比重1.01〜
1.09のオーダーであり、低い上昇流速でも、極めて
容易に膨張層を形成できる。従って、前段にSSのろ過
装置を設ける必要はない。A typical embodiment of water treatment according to the present invention will be described below with reference to FIG. If necessary, Ca 2+ ions and OH − ions are added to raw water containing phosphate ions to adjust the pH to 8.5 to 9.0, and the hydrogel dephosphorization material of the present invention is brought into contact with the inside of the hydrogel particles. The crystallization reaction of apatite proceeds on the
Remove O 4 3− ions. The method of contacting the hydrogel dephosphorization material of the present invention with the raw water is most preferably such that the raw water is caused to flow in an upward flow and brought into contact with the hydrogel dephosphorization material as an expanded bed (Expanded Bed). The expanded bed refers to an intermediate state between the fixed bed and the fluidized bed. The hydrogel dephosphorization material of the present invention has a specific gravity almost equal to that of water, and a specific gravity of 1.01 to 1.01.
It is on the order of 1.09, and the expansion layer can be formed very easily even at a low rising flow rate. Therefore, it is not necessary to provide the SS filtration device in the previous stage.
【0016】[0016]
【実施例】(実施例1) 1.脱リン材又は脱フッ素材の製造 イソブチレンと無水マレイン酸の共重合物で、顆粒状の
高吸水性高分子粒子5gを、5%の塩化カルシウム(C
aCl2 )水溶液に添加して分散させ、10分間放置し
たところ、高吸水性高分子粒子はCaCl2 水溶液を吸
収し、著しく膨潤し、球状のヒドロゲル粒子(粒径2〜
3mm程度)が得られた。ゲル全体の容積は1.1リッ
トルとなった。乾燥状態の高吸水性高分子粒子の容積は
5gで6mlであったので、180倍に膨潤したことに
なる。このヒドロゲル粒子を篩で分離して、1%Na3
PO4 のアルカリ水溶液(pH9.5)中に浸漬させ、
24時間放置した結果、前記ヒドロゲル粒子内部にPO
4 3- イオンおよびOH- イオンが拡散し、ヒドロゲル粒
子内部でヒドロキシアパタイト生成反応が進み、ヒドロ
キシアパタイトを内部に保持したヒドロゲル粒子が得ら
れた。これを脱リン材又はフッ素除去材として以下の処
理を行った。[Example] (Example 1) 1. Manufacture of dephosphorization material or defluorination material 5g of granular superabsorbent polymer particles, which is a copolymer of isobutylene and maleic anhydride, and 5% of calcium chloride (C
aCl 2 ) aqueous solution and dispersed for 10 minutes, the superabsorbent polymer particles absorb the CaCl 2 aqueous solution and swell remarkably, resulting in spherical hydrogel particles (particle size 2 to 2).
About 3 mm) was obtained. The total volume of the gel was 1.1 liter. Since the volume of the superabsorbent polymer particles in the dry state was 5 g and 6 ml, it means that the particles were swollen 180 times. The hydrogel particles were separated by sieving to give 1% Na 3
Immerse in an alkaline aqueous solution of PO 4 (pH 9.5),
As a result of being left for 24 hours, PO was formed inside the hydrogel particles.
4 3− ions and OH − ions were diffused, the hydroxyapatite formation reaction proceeded inside the hydrogel particles, and hydrogel particles having hydroxyapatite held inside were obtained. The following treatment was performed using this as a dephosphorization material or a fluorine removal material.
【0017】2.リン酸イオン除去 前記ヒドロゲル脱リン材を直径2.5cmのアクリルカ
ラムに高さ30cmに充填し、リン原子換算1.3mg
/リットルのPO4 3- イオンを含む下水の活性汚泥処理
水をカラムの下から上向流で供給した。下水の活性汚泥
処理水にCaCl2 水溶液をCa原子換算40〜50m
g/リットルの濃度で添加し、NaOHでpHを8.8
に調整して、ヒドロゲル脱リン材カラムに供給した。ヒ
ドロゲル脱リン材は膨張層となった。原水のM−アルカ
リ度は98mg/リットルであり、従来のリン鉱石を脱
リン材とする晶析脱リン法においては、脱炭酸が不可欠
の水質であったが、本発明は脱炭酸を行わずにそのまま
ヒドロゲル脱リン材カラムに原水を供給した。2. Removal of Phosphate Ion The hydrogel dephosphorization material was packed in an acrylic column with a diameter of 2.5 cm to a height of 30 cm, and converted into phosphorus atom of 1.3 mg.
Sewage activated sludge treated water containing 1 / liter of PO 4 3− ions was fed from below the column in an upward flow. CaCl 2 aqueous solution in activated sludge treated water of sewage 40 to 50 m in terms of Ca atom
g / l concentration and pH adjusted to 8.8 with NaOH.
And was supplied to a hydrogel dephosphorization material column. The hydrogel dephosphorization material became the expansion layer. The M-alkalinity of the raw water was 98 mg / liter, and in the conventional crystallization dephosphorization method using phosphorus ore as the dephosphorization material, decarboxylation was an essential water quality, but the present invention does not perform decarboxylation. The raw water was directly supplied to the hydrogel dephosphorization column.
【0018】以上の条件で8ヶ月間の連続処理を行った
結果、ヒドロゲル脱リン材層流出水のPO4 3- イオン含
有量は常に0.2mg/リットル以下であり、良好な結
果が得られた。なお、ヒドロゲル脱リン材層流出水中に
はSS性のリン酸カルシウムが含まれていたので、これ
はろ過によって除去した。As a result of continuous treatment for 8 months under the above conditions, the content of PO 4 3− ions in the hydrogel dephosphorization layer effluent was always 0.2 mg / liter or less, and good results were obtained. It was Since the hydrogel dephosphorized material layer outflow water contained SS calcium phosphate, it was removed by filtration.
【0019】(実施例2) 1.フッ素イオンの除去 前記製造法によって製造したアパタイト固定化ヒドロゲ
ルを直径2.5cmのアクリルカラムに高さ30cmに
充填し、2mg/リットルのフッ素イオンを添加した水
道水をカラムの下からSV5(1/時間)で上向流で供
給した結果、カラム流出水中のフッ素イオン濃度は0.
08mg/リットルであった。(Example 2) 1. Removal of Fluoride Ion Apatite-immobilized hydrogel produced by the above-mentioned production method was packed in an acrylic column having a diameter of 2.5 cm to a height of 30 cm, and tap water containing 2 mg / liter of fluoride ion was added from the bottom of the column to SV5 (1 / As a result, the fluorine ion concentration in the column effluent water was 0.
It was 08 mg / liter.
【0020】(実施例3) 1.重金属イオンの除去 前記リン酸イオンの除去試験に使用したものと同じアパ
タイト固定化ヒドロゲル5gを6mg/リットルのCr
6+イオンを含む水200mlに添加し、30分間攪拌し
た結果、処理水中のCr6+イオンは検出されず、Cr6+
イオンが効果的に吸着されたことが認められた。(Example 3) 1. Removal of heavy metal ions 5 g of the same apatite-immobilized hydrogel as used in the phosphate ion removal test was added to 6 mg / liter of Cr.
As a result of adding to 200 ml of water containing 6+ ions and stirring for 30 minutes, Cr 6+ ions in the treated water were not detected, and Cr 6+
It was found that the ions were effectively adsorbed.
【0021】[0021]
【発明の効果】本発明は、次のような工業上の大きな効
果がある。 リン鉱石の輸入、各種運搬作業、リン鉱石の篩分け
作業が不要であり、脱リン材製造の手間が著しく容易に
なる。 脱リン材の充填にはクレーン作業が必要であった
が、本発明の脱リン材は、従来の脱リン材と異なり使用
時比重が水にほぼ等しいので、流動性が良く、ポンプに
よって容易に脱リン装置内に充填できる。The present invention has the following great industrial effects. It eliminates the need for importing phosphorus ore, various transportation operations, and sieving of phosphorus ore, which greatly facilitates the production of dephosphorized materials. Crane work was required to fill the dephosphorizing material, but the dephosphorizing material of the present invention, unlike the conventional dephosphorizing material, has a specific gravity which is almost equal to that of water when used, so that it has good fluidity and can be easily pumped. It can be filled in the dephosphorization device.
【0022】 脱炭酸工程を省略できるので、プロセ
スが著しく簡略化できる。この理由は、従来の晶析脱リ
ン法ではリン鉱石や骨炭の表面でのみアパタイト生成反
応が進むのに対し、本発明ではヒドロゲル粒子の内部に
PO4 3- イオンが拡散し、そこで反応が進むという相違
があることが関係しているのではないかと考えられる。 本発明の脱リン材は使用中の比重が水より僅かに大
きいだけであるので、原水の僅かの上昇流速で、容易に
膨張層を形成できるので、原水SSの妨害を受けない。
従って、プロセスがさらにシンプルになる。 ヒドロゲル脱リン材を交換する場合、ヒドロゲル粒
子内部には有用肥料であるアパタイトが取り込まれてい
ること、またヒドロゲル粒子を森林や土壌にまくと保水
林として働くので、肥料、保水材として一石二鳥の効果
があり、ヒドロゲル脱リン材を有効利用できる。Since the decarboxylation step can be omitted, the process can be significantly simplified. The reason for this is that in the conventional crystallization dephosphorization method, the apatite formation reaction proceeds only on the surface of phosphate rock or bone charcoal, whereas in the present invention, PO 4 3− ions diffuse inside the hydrogel particles and the reaction proceeds there. It is thought that this is related to the difference. Since the dephosphorizing material of the present invention has a specific gravity which is only slightly higher than that of water during use, it can easily form an expansion layer with a slight rising flow rate of raw water, and therefore does not suffer from the disturbance of raw water SS.
Therefore, the process becomes simpler. When replacing the hydrogel dephosphorization material, apatite, which is a useful fertilizer, is incorporated inside the hydrogel particles, and when the hydrogel particles are spread on the forest or soil, it acts as a water retention forest, so the effect of two birds with one stone as a fertilizer and water retention material Therefore, the hydrogel dephosphorization material can be effectively used.
【図1】ヒドロキシアパタイトを内部に保持した高吸水
性高分子ヒドロゲル粒子の模式図FIG. 1 is a schematic diagram of superabsorbent polymer hydrogel particles containing hydroxyapatite inside.
【図2】本発明の脱リン材を使用して脱リン処理する工
程のフロー図FIG. 2 is a flow chart of a step of performing a dephosphorization treatment using the dephosphorization material of the present invention.
1 高吸水性高分子ヒドロゲル粒子 2 ヒドロキシアパタイトの微粒子 1 Super absorbent polymer hydrogel particles 2 Hydroxyapatite particles
Claims (2)
て弾性を示すヒドロゲル粒子内に、リン酸カルシウム化
合物固相を保持せしめたことを特徴とするイオン除去
材。1. An ion-removing material comprising a hydrogel particle, which is made of a superabsorbent polymer and swells in water and exhibits elasticity, to hold a solid phase of a calcium phosphate compound.
触させ、該水中のイオンを除去することを特徴とする水
中のイオン除去方法。2. A method for removing ions in water, which comprises contacting the ion removing material according to claim 1 with water to remove ions in the water.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP35645892A JPH0818026B2 (en) | 1992-12-22 | 1992-12-22 | Ion removing material and method for removing ions in water using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP35645892A JPH0818026B2 (en) | 1992-12-22 | 1992-12-22 | Ion removing material and method for removing ions in water using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06182358A JPH06182358A (en) | 1994-07-05 |
JPH0818026B2 true JPH0818026B2 (en) | 1996-02-28 |
Family
ID=18449115
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP35645892A Expired - Lifetime JPH0818026B2 (en) | 1992-12-22 | 1992-12-22 | Ion removing material and method for removing ions in water using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0818026B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5161482B2 (en) * | 2007-05-09 | 2013-03-13 | オリンパス株式会社 | Manufacturing method of biological tissue filling material |
-
1992
- 1992-12-22 JP JP35645892A patent/JPH0818026B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH06182358A (en) | 1994-07-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Aziz et al. | Composites with alginate beads: A novel design of nano-adsorbents impregnation for large-scale continuous flow wastewater treatment pilots | |
US20140138320A1 (en) | Agent for removing phosphorus compounds from water | |
JPH0739754A (en) | Manufacture of phosphate ion adsorbent and water treatment method | |
JPH0818026B2 (en) | Ion removing material and method for removing ions in water using the same | |
Onar et al. | Adsorption of phosphate onto pumice powder | |
JPH06210282A (en) | Phosphorus removing material, its manufacture and treatment of phosphorus containing water | |
JP2592384B2 (en) | Water treatment method using composite particles of metal hydroxide and superabsorbent polymer | |
JPS63264192A (en) | Method and device for purifying sewage | |
JP3388966B2 (en) | Granular phosphorus adsorbent | |
JP3355037B2 (en) | Dephosphorizing material, method for producing and using the same | |
JP3378700B2 (en) | Granular phosphorus adsorbent using tap water sludge and its production method | |
JPH078945A (en) | Material and method for removing simultaneously phosphorus and ammonia in water | |
JPH0871545A (en) | Removal of phosphorus and cod-component in sewage | |
JPH10296284A (en) | Carrier for immobilizing microbe and manufacture thereof | |
JPH0910581A (en) | Phosphorus-adsorbing agent and removing method of phosphorus | |
JPH06277504A (en) | Production of granular dephosphorizing material | |
JP3103473B2 (en) | Water purification material and its production method | |
JPH0751564A (en) | Dephosphorization material, its manufacture, and dephosphorization method | |
JPH0910761A (en) | Phosphorus adsorbent and removal of phosphorus | |
JP3247598B2 (en) | Granular phosphorus adsorbent and method for removing phosphorus | |
JPH0747355A (en) | Process material for water-containing cod, production of processing material, and processing method of water-containing cod | |
JPH0947653A (en) | Granular adsorbent, preparation of granular adsorbent and removing process for phosphorus | |
JPS6130838B2 (en) | ||
JPS59123591A (en) | Treatment of water containing phosphate | |
JPH02207787A (en) | Inclusive immobilized micro-organism |