JP2592384B2 - Water treatment method using composite particles of metal hydroxide and superabsorbent polymer - Google Patents

Water treatment method using composite particles of metal hydroxide and superabsorbent polymer

Info

Publication number
JP2592384B2
JP2592384B2 JP4329854A JP32985492A JP2592384B2 JP 2592384 B2 JP2592384 B2 JP 2592384B2 JP 4329854 A JP4329854 A JP 4329854A JP 32985492 A JP32985492 A JP 32985492A JP 2592384 B2 JP2592384 B2 JP 2592384B2
Authority
JP
Japan
Prior art keywords
water
particles
hydrogel
metal hydroxide
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4329854A
Other languages
Japanese (ja)
Other versions
JPH06154597A (en
Inventor
克之 片岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Ebara Research Co Ltd
Original Assignee
Ebara Corp
Ebara Research Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp, Ebara Research Co Ltd filed Critical Ebara Corp
Priority to JP4329854A priority Critical patent/JP2592384B2/en
Publication of JPH06154597A publication Critical patent/JPH06154597A/en
Application granted granted Critical
Publication of JP2592384B2 publication Critical patent/JP2592384B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、上水、各種廃水、ダ
ム、湖沼、河川などの水中に含まれる微量なリン酸イオ
ン(PO4 3- イオンとも記載する)を効果的に吸着除去
する場合などに好適な新規リン吸着材に関する。
BACKGROUND OF THE INVENTION This invention, clean water, various waste water, dam, lake, (also referred to as PO 4 3- ions) traces of phosphoric acid ions contained in water such as a river or the like to effectively adsorb and remove the The present invention relates to a novel phosphorus adsorbent suitable in some cases.

【0002】[0002]

【従来の技術】従来から、活性アルミナ、酸化鉄、骨
炭、ヒドロキシアパタイトなどの各種リン吸着材が知ら
れているが、次のような問題点のいずれかをもっている
ため、より優れた脱リン材(リン吸着材)が望まれる。 リンの飽和吸着量が小さい。
2. Description of the Related Art Conventionally, various phosphorus adsorbents such as activated alumina, iron oxide, bone charcoal, and hydroxyapatite have been known. (Phosphorus adsorbent) is desired. The amount of saturated adsorption of phosphorus is small.

【0003】 吸着材粒子の比重が大きいので、SS
による目詰まりのない流動床に適用して、運転すること
が難しい。 吸着剤の表面でしか、PO4 3- イオンが吸着されな
い。内部が有効に利用できない。 コストが高く、実用が困難である。
Since the specific gravity of the adsorbent particles is large, SS
It is difficult to apply and operate a fluidized bed without clogging. PO 4 3- ions are adsorbed only on the surface of the adsorbent. The inside cannot be used effectively. High cost and difficult to use.

【0004】 処理水のPO4 3- イオン濃度を0.1
mg/リットル以下に低下できない。 廃吸着材の処分が困難である。
The PO 4 3− ion concentration of the treated water is 0.1
It cannot be reduced below mg / liter. Disposal of waste adsorbent is difficult.

【0005】[0005]

【発明が解決しようとする課題】本発明は、従来のリン
吸着材がもつ欠点を解決した新規脱リン材(リン吸着
材)を提供することを課題としている。特に、 1.PO4 3- イオンを極めて低濃度(0.1mg/リッ
トル以下)にまで除去できること。
SUMMARY OF THE INVENTION An object of the present invention is to provide a novel dephosphorizing material (phosphorous adsorbent) which solves the drawbacks of the conventional phosphorus adsorbent. In particular: The ability to remove PO 4 3- ions to an extremely low concentration (0.1 mg / liter or less).

【0006】2.リン吸着材の比重が水に近く、容易に
流動化できること。 3.リン吸着材の内部も吸着に有効に利用でき、リンの
飽和吸着量が大きいこと。 4.廃吸着材の処分が容易であること。 という条件を満足できる新規脱リン材を提供するもので
ある。
[0006] 2. The specific gravity of the phosphorus adsorbent is close to water and can be easily fluidized. 3. The inside of the phosphorus adsorbent can be effectively used for adsorption, and the amount of saturated adsorption of phosphorus is large. 4. Easy disposal of waste adsorbent. It is intended to provide a new dephosphorizing material that can satisfy the above condition.

【0007】[0007]

【課題を解決するための手段】本発明は、従来例をみな
い新概念に基づいたものである。すなわち、自重の数1
00倍の水を吸収する性質のある高吸水性高分子粒子の
ヒドロゲル粒子内部に、例えばAl、Fe、Zr、Ti
などの水酸化物などの金属水酸化物を生成せしめて、ヒ
ドロゲル粒子内部にこれらの金属水酸化物を閉じ込め固
定化したものを脱リン材として提供することである。
The present invention is based on a new concept not found in the prior art. That is, the number of own weight 1
For example, Al, Fe, Zr, and Ti are contained in the hydrogel particles of the superabsorbent polymer particles having a property of absorbing water by a factor of 00.
It is an object of the present invention to produce a metal hydroxide such as a hydroxide and the like, and to provide as a dephosphorizing material a substance obtained by confining and fixing these metal hydroxides inside the hydrogel particles.

【0008】[0008]

【0009】すなわち、本発明は、 (1) 高吸水性高分子より成り、水中で膨潤して弾性
を示すヒドロゲル粒子内に金属水酸化物を保持させた複
合粒状物を、処理対象水と接触させることにより、被処
理水中のリン酸イオンを該複合粒状物に吸着させること
を特徴とする水の処理方法。である。
That is, the present invention provides: (1) a method in which a composite granular material comprising a highly water-absorbing polymer and holding a metal hydroxide in hydrogel particles which swell in water and exhibit elasticity is brought into contact with water to be treated; Water treatment method, wherein phosphate ions in the water to be treated are adsorbed to the composite particulate matter. It is.

【0010】高吸水性高分子は、自重の数百倍もの水を
吸収できる親水性の高分子であるが、水を吸収して全体
が糊状のヒドロゲルになるものと、弾性を示す定形のヒ
ドロゲルになるものの2種類があり、糊状になるものは
水をろ過によって分離できないが、固有の形状を維持し
て、弾性を示す強度の大きなヒドロゲルになるもの(す
なわち有限膨潤を示すもの)は、粒子とするとゲルに吸
収されなかった水をろ過によって容易に分離できる。本
発明の脱リン材の担体として使用するに適したヒドロゲ
ル粒子は定形を維持して、弾性を示す強度の大きなヒド
ロゲル粒子になるものである。
The superabsorbent polymer is a hydrophilic polymer which can absorb water several hundred times its own weight. There are two types of hydrogels, and those that become pasty cannot separate water by filtration, but those that maintain their unique shape and become elastic and strong hydrogels (ie, those that exhibit finite swelling) In the case of particles, water not absorbed by the gel can be easily separated by filtration. The hydrogel particles suitable for use as the carrier of the dephosphorizing material of the present invention are those that maintain a fixed shape and become elastic and strong hydrogel particles.

【0011】すなわち、本発明にいう水中で膨潤して弾
性を示す「ヒドロゲル粒子」とは、ヒドロゲルが外力に
よりあるいは乾燥して変形しても再び外力が消失したり
あるいは吸水膨潤して可逆的にもとの形に復元するヒド
ロゲルを意味するし、各粒子の形状は必ずしも同一でな
くてもよい。ヒドロゲル粒子の大きさ、すなわち極限膨
潤度は、ヒドロゲル粒子を構成する高吸水性高分子の架
橋度とそれを投入する水溶液の性質による。また、ヒド
ロゲル粒子の示す弾性強度は構成高分子の種類と膨潤度
などによって調節可能である。また、かかる本発明のヒ
ドロゲル同志は互いに融合や接着を起こさない性質を有
している。
That is, the "hydrogel particles" which swell in water and exhibit elasticity as referred to in the present invention are reversible due to disappearance of external force or swelling due to water absorption even if the hydrogel is deformed by external force or by drying. It refers to a hydrogel that returns to its original shape, and the shape of each particle is not necessarily the same. The size of the hydrogel particles, that is, the ultimate swelling degree, depends on the degree of cross-linking of the superabsorbent polymer constituting the hydrogel particles and the properties of the aqueous solution into which it is charged. Also, the elastic strength of the hydrogel particles can be adjusted by the type of constituent polymer and the degree of swelling. Further, the hydrogels of the present invention have a property that they do not fuse or adhere to each other.

【0012】このような性質を有する高吸水性高分子と
しては例えば、増田房義著「高吸水性ポリマー」共立出
版23〜50頁に記載されているものが挙げられ、アク
リル酸−ビニルアルコール共重合体、またはイソブチレ
ン−無水マレイン酸共重合体などが好例として挙げられ
る。
Examples of superabsorbent polymers having such properties include those described in "Superabsorbent Polymers" by Fumiyoshi Masuda, Kyoritsu Shuppan, pp. 23-50, and acrylic acid-vinyl alcohol copolymers. Preferred examples include a polymer and an isobutylene-maleic anhydride copolymer.

【0013】高吸水性高分子より成り、水中で膨潤して
弾性を示す定形の粒子となるヒドロゲル粒子は、その乾
燥した粒子を水溶液中に投入すると、粒子は水溶液を多
量に吸収して膨潤しヒドロゲル粒子に復元される。な
お、これらヒドロゲル粒子は吸水膨潤時種々の形、大き
さとなるのものが使用できるが通常は球形で、粒径が数
mmオーダーとなるものが好ましい。
The hydrogel particles, which are made of superabsorbent polymer and swell in water to form elastic shaped particles, when the dried particles are put into an aqueous solution, the particles absorb a large amount of the aqueous solution and swell. Reconstituted into hydrogel particles. The hydrogel particles may have various shapes and sizes upon water absorption and swelling, but are preferably spherical and have a particle size on the order of several mm.

【0014】すなわち、本発明のヒドロゲル粒子はその
粒径が1〜9mm、好ましくは3〜6mmのものであ
る。
That is, the hydrogel particles of the present invention have a particle size of 1 to 9 mm, preferably 3 to 6 mm.

【0015】以下に本発明の脱リン材の製法を詳しく説
明する。金属水酸化物としては、水酸化カルシウム、水
酸化マグネシウム、水酸化アルミニウム、水酸化鉄、水
酸化ニッケル、水酸化ジルコニウム、水酸化チタニウム
など種々挙げることができるが、以下に水酸化アルミニ
ウムを例に取り上げて説明する。
Hereinafter, the method for producing the dephosphorizing material of the present invention will be described in detail. Examples of the metal hydroxide include calcium hydroxide, magnesium hydroxide, aluminum hydroxide, iron hydroxide, nickel hydroxide, zirconium hydroxide, titanium hydroxide and the like. Take it up and explain.

【0016】ヒドロゲル粒子となり得る高吸水性高分子
より成る乾燥粒子を硫酸アルミニウム〔Al2 (S
4 3 〕水溶液中に投入すると、粒子は硫酸アルミニ
ウム水溶液を吸収して膨潤し、数mmの粒径の粒子の内
部に硫酸アルミニウム水溶液を吸収保持したヒドロゲル
粒子を生成する。
The dry particles composed of a superabsorbent polymer which can be hydrogel particles are treated with aluminum sulfate [Al 2 (S
O 4 ) 3 ] When introduced into an aqueous solution, the particles absorb the aluminum sulfate aqueous solution and swell to form hydrogel particles having the aluminum sulfate aqueous solution absorbed and retained inside the particles having a particle diameter of several mm.

【0017】このヒドロゲル粒子の生成時間は10分程
度で完了する。しかる後このヒドロゲル粒子を硫酸アル
ミニウム水溶液から分離して、苛性ソーダなどのアルカ
リ水溶液中に浸漬するとOH- イオンがヒドロゲル粒子
内部に侵入し、ゲルの内部で以下の反応により水酸化ア
ルミニウムの沈殿を生成する。 Al3++3OH- −−→Al(OH)3 かくしてヒドロゲル粒子内部に水酸化アルミニウム〔A
l(OH)3 〕の沈殿が固定化される。このヒドロゲル
粒子の強度は大きく、ピンセットで摘み上げることがで
き、強い外力を与えないかぎり破壊することはない。従
って硫酸アルミニウム水溶液より分離して、アルカリ水
溶液中に投入する操作を行ってもヒドロゲル粒子が破壊
されることはない。
The generation time of the hydrogel particles is completed in about 10 minutes. Thereafter, when the hydrogel particles are separated from the aqueous aluminum sulfate solution and immersed in an aqueous alkaline solution such as caustic soda, OH - ions penetrate inside the hydrogel particles, and precipitate aluminum hydroxide by the following reaction inside the gel. . Al 3+ + 3OH −− → Al (OH) 3 Thus, aluminum hydroxide [A
1 (OH) 3 ] is immobilized. The hydrogel particles have high strength, can be picked up with tweezers, and do not break unless a strong external force is applied. Therefore, the hydrogel particles are not destroyed even if the operation of separating from the aqueous aluminum sulfate solution and throwing it into the aqueous alkaline solution is performed.

【0018】但し、上記ヒドロゲル粒子内に金属水酸化
物を生成させることは、必ずしも金属塩水溶液からヒド
ロゲル粒子を分離して行う必要はなく、該金属塩水溶液
にアルカリ水溶液を添加する方法によってヒドロゲル粒
子内に金属水酸化物を生成させることも可能である。な
お、Fe(OH)3 、Zr(OH)4 、Ti(OH)4
などの金属水酸化物も同様な方法で製造することができ
る。
However, it is not always necessary to separate the hydrogel particles from the aqueous metal salt solution to form the metal hydroxide in the hydrogel particles, and the hydrogel particles are formed by adding an aqueous alkali solution to the aqueous metal salt solution. It is also possible to generate a metal hydroxide therein. Note that Fe (OH) 3 , Zr (OH) 4 , Ti (OH) 4
And the like can be produced in the same manner.

【0019】本発明でいう「金属水酸化物」とは、例え
ば水酸化アルミニウム〔Al(OH)3 〕のような単体
の化合物からなるものでなく、水酸基を含む複塩や錯塩
をも含めたものを意味する。従って、Al4 (OH)6
(SO4 3 のような複雑な組成の複塩も含めたものを
意味する。
The "metal hydroxide" in the present invention does not consist of a simple compound such as aluminum hydroxide [Al (OH) 3 ], but also includes double salts and complex salts containing a hydroxyl group. Means things. Therefore, Al 4 (OH) 6
(SO 4 ) 3 means a double salt having a complex composition.

【0020】次に本発明の金属水酸化物を含有するヒド
ロゲル複合粒状物を利用して脱リンする方法について説
明する。基本的には、リン酸イオンを含んだ水(例えば
下水など)を本発明の脱リン材(ヒドロゲル製リン吸着
材)と接触させれば目的は達せられる。1例を挙げれ
ば、図1に示すように本発明のヒドロゲル製のリン吸着
材A(ヒドロゲル複合粒状物)を処理槽1底部の原水供
給管2より供給した原水の流れによって懸濁流動させ処
理槽1中に均一にリン吸着材Aと原水を接触させればよ
い。その結果、原水中のリン酸イオンはリン吸着材Aの
内部に拡散し、粒状物内部に固定された水酸化アルミニ
ウム〔Al(OH)3 〕に吸着して原水から除去され、
処理水として処理槽1上部の処理水流出管3より系外に
流出する。
Next, the method of dephosphorization using the hydrogel composite particles containing a metal hydroxide of the present invention will be described. Basically, the object can be achieved by contacting water containing phosphate ions (for example, sewage) with the phosphorus removing material (phosphorous adsorbent made of hydrogel) of the present invention. As an example, as shown in FIG. 1, the phosphorus adsorbent A (hydrogel composite granular material) made of a hydrogel of the present invention is suspended and fluidized by the flow of raw water supplied from a raw water supply pipe 2 at the bottom of the processing tank 1 for treatment. What is necessary is just to make the phosphorus adsorbent A and the raw water uniformly contact in the tank 1. As a result, the phosphate ions in the raw water diffuse into the phosphorus adsorbent A, are adsorbed by the aluminum hydroxide [Al (OH) 3 ] fixed inside the granular material, and are removed from the raw water.
The treated water flows out of the system from the treated water outflow pipe 3 in the upper part of the treatment tank 1.

【0021】原水内で膨潤した本発明の脱リン材の比重
は水の比重よりやや大きいだけであり、極めて容易に懸
濁流動するという利点がある。なお、原水中にPO4 3-
イオンの他にCOD成分が含まれている場合は、COD
成分の一部も本発明のリン吸着材によって吸着除去され
る。
The specific gravity of the dephosphorizing material of the present invention swollen in raw water is only slightly larger than the specific gravity of water, and has the advantage that it can be suspended and flow extremely easily. In addition, PO 4 3-
When COD components are contained in addition to ions, COD
Some of the components are also adsorbed and removed by the phosphorus adsorbent of the present invention.

【0022】本発明のヒドロゲル複合粒状物は高吸水性
高分子のネットワーク構造全体の中にリン吸着サイトと
して作用する金属水酸化物を固定化して閉じ込めてお
り、原水中のPO4 3- イオンは拡散して該ヒドロゲル複
合粒状物の内部全体に存在する金属水酸化物をPO4 3-
イオンの吸着サイトに利用できる。従来のヒドロキシア
パタイトなどではその表面だけしかPO4 3- イオンの吸
着サイトに利用できないので、それらに比較すれば本発
明のヒドロゲル複合粒状物は高吸着性能を有することが
わかる。
The hydrogel composite particulate material of the present invention is confined to immobilize the metal hydroxide that acts as a phosphate adsorption sites in the overall network structure of the superabsorbent polymer, PO 4 3- ions in the raw water The metal hydroxide that diffuses and exists throughout the inside of the hydrogel composite particles is converted to PO 4 3-.
Can be used for ion adsorption sites. In the case of conventional hydroxyapatite or the like, only the surface thereof can be used for the adsorption site of PO 4 3− ions, so that it can be seen from the comparison that the hydrogel composite granules of the present invention have high adsorption performance.

【0023】リンを飽和吸着したヒドロゲル脱リン材を
乾燥すると、容積が数百分の一に収縮するので、廃棄処
分が極めて容易であり、しかも土壌に散布することによ
って保水剤、リン肥料として有効利用できる。さらに、
本発明のヒドロゲル複合粒状物はそのネットワーク構造
全体の中に金属水酸化物を固定化保持したまま乾燥でき
る。
When a hydrogel dephosphorizing material having a saturated adsorption of phosphorus is dried, its volume shrinks to several hundredths, so that it is extremely easy to dispose of it, and it is effective as a water retention agent and a phosphorus fertilizer by being sprayed on soil. Available. further,
The hydrogel composite particles of the present invention can be dried while the metal hydroxide is immobilized and held in the entire network structure.

【0024】本発明のヒドロゲル脱リン材は軽量であ
り、比重が水に近いので、例えば、ダム、湖沼に流入す
る河川中のPO4 3- イオンを除去する場合に特に効果的
に利用できる。すなわち、このような河川は大雨の際に
多量の濁質を含んだ濁流になるが、本発明の脱リン材は
河の流れによって流動状態になるので濁質が脱リン材充
填層を閉塞して目詰まりを起こすというトラブルを発生
しない。図2には本発明の脱リン材充填層を河川に設置
した1例を示したものである。
Since the hydrogel dephosphorizing material of the present invention is lightweight and has a specific gravity close to that of water, it can be used particularly effectively, for example, when removing PO 4 3- ions in rivers flowing into dams and lakes. That is, such a river becomes a turbid flow containing a large amount of turbidity during heavy rain, but the dephosphorized material of the present invention becomes a fluidized state by the flow of the river, so that the turbidity blocks the dephosphorized material packed layer. The trouble of clogging does not occur. FIG. 2 shows an example in which the dephosphorization material-filled layer of the present invention is installed in a river.

【0025】これに対し、従来の吸着材(脱リン材な
ど)はすべて比重が2.5程度と大きいので、吸着材は
河の流れによって流動状態にならないので濁質によって
脱リン材充填層が閉塞して目詰まりが発生してしまう。
なお、本発明のヒドロゲル複合粒状物は処理槽中に懸濁
流動状態として使用する他、流動床として、また固定床
に充填して使用することができることはいうまでもな
い。
On the other hand, all the conventional adsorbents (such as dephosphorized materials) have a specific gravity of about 2.5, and the adsorbent does not flow due to the river flow. Blockage occurs and clogging occurs.
Needless to say, the hydrogel composite granules of the present invention can be used as a suspension fluidized state in a treatment tank, or as a fluidized bed or filled in a fixed bed.

【0026】[0026]

【実施例】【Example】

(実施例1) 1.吸着材の製造 粉末状態をしている、イソブチレン、無水マレイン酸の
共重合物である高吸水性高分子粒子5gを、0.5%の
硫酸アルミニウム水溶液1000mg中に投入して、1
5分間放置したところ平均粒径2mmのヒドロゲル粒子
を得た。
(Example 1) 1. Production of adsorbent 5 g of powdery superabsorbent polymer particles, which is a copolymer of isobutylene and maleic anhydride, are put into 1000 mg of a 0.5% aluminum sulfate aqueous solution, and 1
After standing for 5 minutes, hydrogel particles having an average particle size of 2 mm were obtained.

【0027】このヒドロゲル粒子を水溶液から取り出し
て、1リットルの水道水中に懸濁させ、攪拌し、pHを
測定しながら苛性ソーダを少しずつ添加し、pH6に維
持して、30分間攪拌した。その結果ヒドロゲル粒子内
に白色の水酸化アルミニウム〔Al(OH)3 〕が沈殿
析出し、ヒドロゲル粒子内に固定化された。この粒子を
吸着材とする。
The hydrogel particles were taken out of the aqueous solution, suspended in 1 liter of tap water, stirred, and caustic soda was added little by little while measuring the pH, and the mixture was maintained at pH 6 and stirred for 30 minutes. As a result, white aluminum hydroxide [Al (OH) 3 ] precipitated in the hydrogel particles and was fixed in the hydrogel particles. These particles are used as an adsorbent.

【0028】2.リン酸イオン除去処理 前記吸着材を直径3cmのカラムに、高さ30cmに充
填し、1.0mg/リットルのPO4 3- イオンを含む水
道水を該カラムに上向流でSV5で供給したところ、処
理水のPO4 3- イオン濃度は0.03mg/リットルと
極めて微量であった。
2. Phosphate ion removal treatment The above adsorbent was packed in a column having a diameter of 3 cm to a height of 30 cm, and tap water containing 1.0 mg / liter of PO 4 3- ion was supplied to the column in an upward flow at SV5. The PO 4 3− ion concentration of the treated water was as extremely small as 0.03 mg / liter.

【0029】また、処理水のPO4 3- イオン濃度が0.
8mg/リットルに達した時点でのリン吸着量はヒドロ
ゲル粒子内のアリミニウムの単位重量当たり(Al2
3 イオン当たり)のリン吸着量は、30.6mg/gA
2 3 と極めて大きい値であり、本発明の吸着材のリ
ンの吸着容量が大きいことが認められた。
Further, the PO 4 3− ion concentration of the treated water is set at 0.1.
When reaching 8 mg / liter, the amount of phosphorus adsorbed per unit weight of aluminum in the hydrogel particles (Al 2 O
The phosphorus adsorption amount (per 3 ions) is 30.6 mg / gA
This is an extremely large value of l 2 O 3, which indicates that the adsorbent of the present invention has a large phosphorus adsorption capacity.

【0030】[0030]

【発明の効果】 本発明のヒドロゲル複合粒状物は粒径が数mmオー
ダーで、比重が水に近い軽量の吸着材であるので、容易
に懸濁流動状態になる。 ヒドロゲル複合粒状物内部の高吸収性高分子のネッ
トワーク構造全体の中に吸着材固相を拡散固定化した構
造なので、ゲル粒子の表面だけでなく、内部全体を吸着
に有効に利用でき、高いリン吸着性能を有する。
EFFECTS OF THE INVENTION The hydrogel composite particles of the present invention have a particle size on the order of several millimeters and have a specific gravity close to that of water. Since the adsorbent solid phase is diffused and immobilized within the entire network structure of the superabsorbent polymer inside the hydrogel composite granules, not only the surface of the gel particles but also the entire interior can be effectively used for adsorption, and high phosphorus Has adsorption performance.

【0031】 コストが安価であり、低ランニングコ
ストを必須とする、廃水処理の分野に極めて適してい
る。また、取扱が容易である。
It is very suitable for the field of wastewater treatment where the cost is low and low running cost is essential. Also, handling is easy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のヒドロゲル吸着材を使用した脱リン処
理の説明図
FIG. 1 is an explanatory diagram of a dephosphorization treatment using the hydrogel adsorbent of the present invention.

【図2】本発明の脱リン材充填層を河川に設置した1例
を示した断面図
FIG. 2 is a cross-sectional view showing an example in which the dephosphorization material-packed layer of the present invention is installed in a river.

【符号の説明】[Explanation of symbols]

1 処理槽 5 河川流 2 原水供給管 6 砂防堰 3 処理水流出管 7 徐リン河川流 4 流出防止ネット 8 流出防止ネット A ヒドロゲル吸着材 B 脱リン材 DESCRIPTION OF SYMBOLS 1 Treatment tank 5 River flow 2 Raw water supply pipe 6 Sabo dam 3 Treated water outflow pipe 7 Xu phosphorus river flow 4 Outflow prevention net 8 Outflow prevention net A Hydrogel adsorbent B Dephosphorizing material

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 高吸水性高分子より成り、水中で膨潤し
て弾性を示すヒドロゲル粒子内に金属水酸化物を保持さ
せた複合粒状物を、処理対象水と接触させることによ
り、被処理水中のリン酸イオンを該複合粒状物に吸着さ
せることを特徴とする水の処理方法。
1. A method comprising: contacting a composite granular material comprising a superabsorbent polymer and holding a metal hydroxide in hydrogel particles which swell in water and exhibit elasticity, with the water to be treated, thereby obtaining water to be treated; A method for treating water, comprising adsorbing phosphate ions from the composite particulate matter.
JP4329854A 1992-11-17 1992-11-17 Water treatment method using composite particles of metal hydroxide and superabsorbent polymer Expired - Lifetime JP2592384B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4329854A JP2592384B2 (en) 1992-11-17 1992-11-17 Water treatment method using composite particles of metal hydroxide and superabsorbent polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4329854A JP2592384B2 (en) 1992-11-17 1992-11-17 Water treatment method using composite particles of metal hydroxide and superabsorbent polymer

Publications (2)

Publication Number Publication Date
JPH06154597A JPH06154597A (en) 1994-06-03
JP2592384B2 true JP2592384B2 (en) 1997-03-19

Family

ID=18225979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4329854A Expired - Lifetime JP2592384B2 (en) 1992-11-17 1992-11-17 Water treatment method using composite particles of metal hydroxide and superabsorbent polymer

Country Status (1)

Country Link
JP (1) JP2592384B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4908261B2 (en) * 2007-02-26 2012-04-04 国立大学法人広島大学 Phosphorus collection device unit and phosphorus collection and recovery method using the unit
JP5117433B2 (en) * 2009-03-13 2013-01-16 株式会社東芝 Waste water adsorption equipment
JP4703737B2 (en) * 2009-03-13 2011-06-15 株式会社東芝 Water treatment equipment

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5274588A (en) * 1975-11-02 1977-06-22 Yasumasa Shigetomi Compound adsorbents
JPS63232844A (en) * 1986-10-07 1988-09-28 Ebara Res Co Ltd Absorbent for harmful gas

Also Published As

Publication number Publication date
JPH06154597A (en) 1994-06-03

Similar Documents

Publication Publication Date Title
Luo et al. Phosphorus removal and recovery from water with macroporous bead adsorbent constituted of alginate-Zr4+ and PNIPAM-interpenetrated networks
Muzzarelli et al. Removal of trace metal ions from industrial waters, nuclear effluents and drinking water, with the aid of cross-linked N-carboxymethyl chitosan
JP2004507339A (en) Formation of composite materials with expansive substances
JP4414006B2 (en) Biological treatment carrier
JP2592384B2 (en) Water treatment method using composite particles of metal hydroxide and superabsorbent polymer
JPH0739754A (en) Manufacture of phosphate ion adsorbent and water treatment method
CN112403450A (en) Preparation method of magnetic farmland heavy metal adsorbent
Van Wagenen et al. Activated carbons for medical applications. In vitro microparticle characterization and solute adsorption
Marszałek Encapsulation of halloysite with sodium alginate and application in the adsorption of copper from rainwater
JP2015114315A (en) Method for removing strontium using crystallization
JPH0871545A (en) Removal of phosphorus and cod-component in sewage
JPH06210282A (en) Phosphorus removing material, its manufacture and treatment of phosphorus containing water
JP3388966B2 (en) Granular phosphorus adsorbent
JP3247584B2 (en) Method for producing phosphorus adsorbent and method for removing phosphorus
JP3378700B2 (en) Granular phosphorus adsorbent using tap water sludge and its production method
JP2014206522A (en) Material and method for simultaneously removing radioactive cesium and strontium
US5008224A (en) Adsorbent for phosphorus and method for production of adsorbent for phosphorus
JPH0549694A (en) Adsorber of contrast medium
JPH10296284A (en) Carrier for immobilizing microbe and manufacture thereof
JP3247598B2 (en) Granular phosphorus adsorbent and method for removing phosphorus
JPH0818026B2 (en) Ion removing material and method for removing ions in water using the same
JPH0947653A (en) Granular adsorbent, preparation of granular adsorbent and removing process for phosphorus
JPH07136500A (en) Cod component removing material and method and production of cod component removing material
JP3420838B2 (en) Method for treating phosphorus-containing organic wastewater
JPS6150010B2 (en)