JPH08179195A - Objective lens for optical disk - Google Patents

Objective lens for optical disk

Info

Publication number
JPH08179195A
JPH08179195A JP31702394A JP31702394A JPH08179195A JP H08179195 A JPH08179195 A JP H08179195A JP 31702394 A JP31702394 A JP 31702394A JP 31702394 A JP31702394 A JP 31702394A JP H08179195 A JPH08179195 A JP H08179195A
Authority
JP
Japan
Prior art keywords
optical disk
objective lens
light source
optical
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31702394A
Other languages
Japanese (ja)
Inventor
Hiroaki Shimozono
裕明 下薗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP31702394A priority Critical patent/JPH08179195A/en
Publication of JPH08179195A publication Critical patent/JPH08179195A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lenses (AREA)

Abstract

PURPOSE: To improve a wave front aberration when the distance L between object images is 16-20mm so as to reduce the size of an optical pickup device by satisfying specific conditions in the objective lens for the optical disk which is arranged between a light source and the optical disk. CONSTITUTION: This objective lens 2 for the optical disk which is arranged between the light source 1 and optical disk 7 is aspherical on both the sides of the light source 1 and optical disk; and 16<=L<=20 and a1 p+b1 <= log (-1/') <=a2 p+b2 are satisfied, where L is the distance between object images (distance between the light source 1 and the pit surface 3 of the optical disk). Here, a1 =-0.0280L+0.287, b1 =0.0616L-0.262, a2 =0.0084L-0.404, and b2 =0.0178L+0.631, and the unit of the distance is mm. This objective lens 2 for the optical disk has large power (-1/β) and does not deteriorate in wave front aberration even when the distance between the object images is shortened from 16mm to 20mm, which contributes to the size reduction of the optical pickup device.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は,光源からの光束をコリ
メーターレンズを介さずに光ディスク面に集光させるこ
とが可能な有限仕様の光ディスク用対物レンズに関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical disk objective lens having a finite specification capable of condensing a light beam from a light source on an optical disk surface without passing through a collimator lens.

【0002】[0002]

【従来の技術】光ディスク用光学系において、光源から
のレーザー光をコリメーターレンズを介さずに直接光デ
ィスク面に単レンズで集光させることは、コリメーター
レンズが不要なため、構成が単純化され、かつ、生産性
に富む等の多くの利点を有することから、広く一般的に
行われている。一方、システムのコンパクト化の要求が
さらに高まり、光ピックアップ装置に用いられる光ディ
スク用光学系に対しても、より小型軽量のものが求めら
れるようになってきた。
2. Description of the Related Art In an optical system for an optical disk, a laser beam from a light source is directly focused on the optical disk surface by a single lens without passing through a collimator lens. Since it has many advantages such as high productivity, it is widely and generally used. On the other hand, the demand for system compactification has further increased, and optical disc optical systems used in optical pickup devices have also been required to be smaller and lighter.

【0003】従来、このような小型軽量を目的とした光
ディスク用光学系に用いる単レンズとして特開昭64−
25113号公報等に記載のものが報告されている。
Conventionally, as a single lens used in such an optical system for an optical disk for the purpose of compactness and lightness, JP-A-64-
Those described in Japanese Patent No. 25113, etc. have been reported.

【0004】上記公報には、物像間距離が15.06m
mの実施例が記載されているが、非球面形状として球面
からの補正項に光軸からの高さの18乗に比例する項ま
で用いるため、レンズの形状が複雑になりすぎ、加工が
困難になる欠点があった。
In the above publication, the distance between objects and images is 15.06 m.
Although the example of m is described, since the correction term from the spherical surface to the term proportional to the 18th power of the height from the optical axis is used as the aspherical shape, the shape of the lens becomes too complicated and the processing is difficult. There was a drawback.

【0005】[0005]

【発明が解決しようとする課題】本発明は、このような
欠点を解消するためになされたものであり、その目的は
物像間距離が20mm以下と短く、結像性能の良好な、
加工性に優れた光ディスク用対物レンズを提供すること
である。
SUMMARY OF THE INVENTION The present invention has been made in order to eliminate such drawbacks, and its object is to achieve a short image-to-image distance of 20 mm or less and a good imaging performance.
An object of the present invention is to provide an objective lens for an optical disc that is excellent in workability.

【0006】[0006]

【課題を解決するための手段】本発明は前述の課題を解
決すべくなされたものであり、「光源と光ディスクの間
に配される光ディスク用対物レンズにおいて、光源側及
び光ディスク側が共に非球面形状を有し、物像間距離を
L、作動距離をP、横倍率をβとするとき、16≦L≦
20を満足し、かつ、以下の条件を満足することを特徴
とする光ディスク用対物レンズ。
The present invention has been made to solve the above-mentioned problems. "In an optical disk objective lens arranged between a light source and an optical disk, both the light source side and the optical disk side have an aspherical shape. And the object-image distance is L, the working distance is P, and the lateral magnification is β, 16 ≦ L ≦
An objective lens for an optical disk, which satisfies 20 and satisfies the following conditions.

【0007】 a1 P+b1 ≦log(−1/β)≦a2 P+b ただし、 a1 =−0.0280L+0.287、 b1 = 0.0616L−0.262、 a2 = 0.0084L−0.404、 b2 = 0.0178L+0.631 とし、距離の単位をmmとする。」を提供する。A 1 P + b 1 ≦ log (−1 / β) ≦ a 2 P + b 2 where a 1 = −0.0280L + 0.287, b 1 = 0.0616L−0.262, a 2 = 0.0084L− 0.404, b 2 = 0.0178L + 0.631, and the unit of distance is mm. "I will provide a.

【0008】また本発明は、「光軸上に、光源、受光素
子用光学媒体又は透明性を有する板状体、光ディスク用
対物レンズ、光ディスクの順に配されてなる光ピックア
ップ装置に使用される光ディスク用対物レンズにおい
て、光源側及び光ディスク側が共に非球面形状を有し、
物像間距離をL、作動距離をP、横倍率をβ、受光素子
用光学媒体又は透明性を有する板状体の厚さをd0 、屈
折率をn0 とするとき、16≦L≦20を満足し、か
つ、以下の条件を満足することを特徴とする光ディスク
用対物レンズ。
The present invention also relates to an "optical disk used in an optical pickup device in which an optical source, an optical medium for a light receiving element or a transparent plate-like member, an objective lens for an optical disk, and an optical disk are arranged in this order on the optical axis. In the objective lens for use, both the light source side and the optical disc side have an aspherical shape,
When the object-to-image distance is L, the working distance is P, the lateral magnification is β, the thickness of the light receiving element optical medium or the transparent plate is d 0 , and the refractive index is n 0 , 16 ≦ L ≦ An objective lens for an optical disk, which satisfies 20 and satisfies the following conditions.

【0009】 a1 P+b1 ≦log(−1/β)≦a2 P+b2 ただし、 Lc =L−d0 (n0 −1)/n0 、 a1 =−0.0280Lc +0.287、 b1 = 0.0616Lc −0.262、 a2 = 0.0084Lc −0.404、 b2 = 0.0178Lc +0.631 とし、距離及び厚さの単位をmmとする。」を提供す
る。
A 1 P + b 1 ≦ log (−1 / β) ≦ a 2 P + b 2 where L c = L−d 0 (n 0 −1) / n 0 , a 1 = −0.0280L c +0.287 , B 1 = 0.0616L c −0.262, a 2 = 0.0084L c −0.404, b 2 = 0.0178L c +0.631, and the unit of distance and thickness is mm. "I will provide a.

【0010】また本発明は、「光源の光束の半値全角を
θ、像側NA(開口数)をsin∠Bとするとき、以下
の条件を満足することを特徴とする上記光ディスク用対
物レンズ。
According to the present invention, the objective lens for an optical disk described above is characterized in that, when the full angle at half maximum of the luminous flux of the light source is θ and the image side NA (numerical aperture) is sin ∠B, the following conditions are satisfied.

【0011】(−/β)≧(sin∠B)/sin
θ。」を提供する。
(-/ Β) ≧ (sin ∠B) / sin
θ. "I will provide a.

【0012】また本発明は、「光源側及び光ディスク側
の面形状が、数2によって表わされることを特徴とする
上記光ディスク用対物レンズ。」を提供する。
The present invention also provides the above-mentioned optical disk objective lens, characterized in that the surface shapes on the light source side and the optical disk side are expressed by the equation (2).

【0013】[0013]

【数2】 [Equation 2]

【0014】以下、本発明の対物レンズについて図面を
参照して説明する。
The objective lens of the present invention will be described below with reference to the drawings.

【0015】図1は、本発明のレンズの使用状態を示す
側面図であり、1は光源すなわち物点、2は本発明の光
ディスク用対物レンズ、3は光ディスクのピット面(デ
ータが形成されている光ディスクの面)すなわち像面、
4は光ディスクの保護層、5は光学媒体、6は受光素
子、Lは物像間距離、Pはレンズ2の作動距離、dはレ
ンズ2の中心厚、tは光ディスク保護層の厚み、θ(角
度)は光源1の光束の半値全角である。
FIG. 1 is a side view showing a usage state of the lens of the present invention. Reference numeral 1 is a light source, that is, an object point, 2 is an objective lens for an optical disk of the present invention, and 3 is a pit surface of an optical disk (data is formed). Surface of the optical disk), that is, the image plane,
Reference numeral 4 is a protective layer of the optical disc, 5 is an optical medium, 6 is a light receiving element, L is a distance between object images, P is a working distance of the lens 2, d is a center thickness of the lens 2, t is a thickness of the optical disc protective layer, and θ ( The angle is the full angle at half maximum of the light flux of the light source 1.

【0016】また、図1において、物点側NA(NAは
開口数を意味する)はsin∠A、像側NAはsin∠
Bによって、それぞれ表される。すなわち、角度A及び
角度Bで表される外側の線がレンズ2を通る最外光線の
光束である。また、物像間距離Lは、図1に示すように
光源1とピット面3との距離とする。
Further, in FIG. 1, the object side NA (NA means NA) is sin∠A, and the image side NA is sin∠.
Each is represented by B. That is, the outer line represented by the angle A and the angle B is the light flux of the outermost ray passing through the lens 2. Further, the object-image distance L is the distance between the light source 1 and the pit surface 3 as shown in FIG.

【0017】点光源に近い光源1の光を有効に利用する
ためには、光源1がレーザー等である場合、光源1の光
束の半値全角θの倍角、すなわち2θの拡がり角までは
光源1の光として有効に利用できる。したがって、角度
Aがθより大きいと光源1の主な光束がレンズ2の中心
部付近しか通過せず、実質上の像側NAが小さくなって
しまう。そのため、光ディスクのピット面3のデータの
正確な読取りを行うための分解能を確保するために必要
であるとされている像側NAの値であるほぼ0.45程
度を、実質上のNAが満足できない結果となる。
In order to effectively use the light of the light source 1 close to a point light source, when the light source 1 is a laser or the like, the light source 1 is up to a double angle of the full angle at half maximum θ, that is, a divergence angle of 2θ. It can be effectively used as light. Therefore, when the angle A is larger than θ, the main light flux of the light source 1 passes only in the vicinity of the central portion of the lens 2, and the substantial image-side NA becomes small. Therefore, the practical NA satisfies about 0.45 which is the value of the image side NA which is required to secure the resolution for accurately reading the data on the pit surface 3 of the optical disc. The result is impossible.

【0018】そこで、好ましい分解能を確保すべく、実
質上の像側NAをほぼ0.45以上にすることを要す
る。そのためには、角度Aがθより小さいことが好まし
く、この条件から、sinθ≧sin Aが要請され
る。
Therefore, in order to secure a preferable resolution, it is necessary to set the substantial image side NA to approximately 0.45 or more. For that purpose, it is preferable that the angle A is smaller than θ, and from this condition, sin θ ≧ sin A is required.

【0019】また、(−1/β)=(sin∠B)/
(sin∠A)[ただし、(−1/β)は単レンズの倍
率、βは横倍率]であることから、sinθ≧sin∠
Aは、(−1/β)≧(sin∠B)/sinθのよう
になる。
Further, (−1 / β) = (sin ∠B) /
Since (sin ∠A) (where (−1 / β) is the magnification of the single lens and β is the lateral magnification), sin θ ≧ sin ∠
A is such that (−1 / β) ≧ (sin ∠B) / sin θ.

【0020】したがって、実質上の像側NAをほぼ0.
45以上にすることを確保するためには、(−1/β)
≧(sin∠B)/sinθであることが好ましい。
Therefore, the effective image-side NA is substantially 0.
To ensure that it is 45 or more, (-1 / β)
It is preferable that ≧ (sin ∠B) / sin θ.

【0021】さらに優れた分解能を確保するためには、
光源1の光束の半値全角θ内の、より明るい光束を有効
に利用することがより望ましい。そのためには、角度A
がθ/2より小さいことが好ましく、この条件から、 (−1/β)≧(sin∠B)/sin(θ/2) であることが、より望ましい。
In order to secure a further excellent resolution,
It is more desirable to effectively use a brighter light beam within the full angle at half maximum θ of the light beam of the light source 1. For that, the angle A
Is preferably smaller than θ / 2, and from this condition, (−1 / β) ≧ (sin ∠B) / sin (θ / 2) is more preferable.

【0022】特に優れた分解能を確保するためには、通
常、光源1の半値全角θの80%内に特に明るい光束が
存在するため、かかる特に明るい光束を有効に利用する
ことが特に望ましい。そのためには、角度Aが(θ/
2)・0.8、すなわち、0.4・θより小さいことが
好ましく、この条件から、 (−1/β)≧(sin∠B)/sin(0.4θ) であることが、特に望ましい。
In order to ensure a particularly excellent resolution, since a particularly bright light beam exists within 80% of the full-width half-maximum angle θ of the light source 1, it is particularly desirable to effectively use such a particularly bright light beam. For that, the angle A is (θ /
2) · 0.8, that is, smaller than 0.4 · θ, and from this condition, (−1 / β) ≧ (sin ∠B) / sin (0.4θ) is particularly desirable. .

【0023】上記したように、必要な分解能を確保すべ
く、ほぼ0.45以上の高い像側NAを得るためには、
単レンズの倍率(−1/β)を(sin∠B)/sin
θ以上にすることが好ましいが、log(−1/β)<
1 P+b1 では、軸外波面収差の特に非点収差の発生
が大となることから、与えられた物像間距離Lに対し、
単レンズの倍率(−1/β)を(sin∠B)/sin
θ以上にすることが困難となる。
As described above, in order to obtain a high image side NA of approximately 0.45 or more in order to secure the necessary resolution,
The magnification of the single lens (-1 / β) is (sin ∠B) / sin
It is preferable to set θ or more, but log (−1 / β) <
At a 1 P + b 1 , the occurrence of off-axis wavefront aberration, especially astigmatism, becomes large, so for a given object-image distance L,
The magnification of the single lens (-1 / β) is (sin ∠B) / sin
It will be difficult to set θ or more.

【0024】log(−1/β)>a2 P+b2 では、
レンズの中心厚を薄くしなければならず、レンズの縁厚
の確保が困難となり実用的なレンズを製造できなくなる
ばかりでなく、軸外波面収差が大きくなりすぎ、好まし
くない。
For log (-1 / β)> a 2 P + b 2 ,
The center thickness of the lens has to be made thin, it is difficult to secure the edge thickness of the lens, it becomes impossible to manufacture a practical lens, and the off-axis wavefront aberration becomes too large, which is not preferable.

【0025】なお、光源1とレンズ2との間に厚さd
0 、屈折率n0 の光学媒体5を配した場合には、物像間
距離Lからd0 (n0 −1)/n0 を引き、物像間距離
Lを見かけ上修正する必要がある。
The thickness d between the light source 1 and the lens 2 is
When the optical medium 5 having a refractive index n 0 is arranged, it is necessary to apparently correct the object-image distance L by subtracting d 0 (n 0 −1) / n 0 from the object-image distance L. .

【0026】光学媒体5としては、例えば、ビームスプ
リッター、ハーフミラー等の受光素子用光学媒体、アク
リル等の合成樹脂、ガラス等からなる透明性を有する板
状体が挙げられる。
The optical medium 5 includes, for example, a beam splitter, an optical medium for a light receiving element such as a half mirror, a synthetic resin such as acryl, and a transparent plate-like body made of glass or the like.

【0027】[0027]

【実施例】以下、実施例を図1を参照しつつ説明する。
以下の各表に各実施例及び比較例の諸数値を示す。各表
中、fは焦点距離、nはレンズの屈折率であり、「E−
1」は10-1、「E−2」は10-2を表す。各実施例、
比較例において、光ディスクの保護層は屈折率1.5
5、厚み1.20mmのものを使用した。また、非球面
形状は、数3で表すこととし、各係数を表に示した。
EXAMPLE An example will be described below with reference to FIG.
The following tables show various numerical values of each example and comparative example. In each table, f is the focal length, n is the refractive index of the lens, and "E-
"1" represents 10 " 1 and" E-2 "represents 10 -2 . Examples,
In the comparative example, the protective layer of the optical disc has a refractive index of 1.5.
5, having a thickness of 1.20 mm was used. In addition, the aspherical shape is represented by Equation 3, and each coefficient is shown in the table.

【0028】[0028]

【数3】 (Equation 3)

【0029】実施例1から実施例8及び比較例1から比
較例5のレンズの波面収差をそれぞれ順に図2から図1
4に示す。各図の横軸は像高であり、単位はmmであ
る。縦軸はRMS波面収差値で、波長λ=780nmと
し、単位は波長である。
Wavefront aberrations of the lenses of Examples 1 to 8 and Comparative Examples 1 to 5 are sequentially shown in FIGS. 2 to 1, respectively.
4 shows. The horizontal axis of each figure is the image height, and the unit is mm. The vertical axis represents the RMS wavefront aberration value, the wavelength λ = 780 nm, and the unit is the wavelength.

【0030】実施例1から実施例8に挙げたように、横
倍率β、物像間距離L及び作動距離Pを適切に選ぶこと
により、4次以上の高次非球面を用いることなく軸外ま
で結像性能の良好なレンズを得ることができ、従来高次
非球面を用いた設計に比較し、加工性に優れ、射出成形
により容易に成形できる。
As described in Embodiments 1 to 8, by properly selecting the lateral magnification β, the object-image distance L and the working distance P, the off-axis can be realized without using a higher-order aspherical surface of 4th order or higher. In addition, it is possible to obtain a lens with excellent image forming performance, excellent workability as compared with the conventional design using a high-order aspherical surface, and easy molding by injection molding.

【0031】なお、吸水率0.01%以下、ガラス転移
温度140℃以上のポリマーを用いることにより、耐
熱、耐湿性能に優れたレンズが提供できる。
By using a polymer having a water absorption of 0.01% or less and a glass transition temperature of 140 ° C. or more, a lens excellent in heat resistance and moisture resistance can be provided.

【0032】以下に条件を満足しない比較例と比較す
る。
A comparison will be made below with a comparative example which does not satisfy the conditions.

【0033】実施例1(表1)では、(a2 P+b2
/log(−1/β)が、1.05であり、図2に示す
通り、RMS波面収差値は悪い値ではないが、比較例1
(表9)では、(a2 P+b2 )/log(−1/β)
が0.95であり、図10に示す通り、実施例1と比較
すると軸外のRMS波面収差値はきわめて悪い値とな
る。また比較例1は、レンズの中心厚が薄く、実用的な
レンズの形状とはならない。
In Example 1 (Table 1), (a 2 P + b 2 )
/ Log (-1 / β) is 1.05, and as shown in FIG. 2, the RMS wavefront aberration value is not a bad value, but Comparative Example 1
In (Table 9), (a 2 P + b 2 ) / log (−1 / β)
Is 0.95, and as shown in FIG. 10, when compared with Example 1, the off-axis RMS wavefront aberration value is a very bad value. Further, in Comparative Example 1, the center thickness of the lens is thin, and the shape of the lens is not practical.

【0034】実施例2(表2)では、(a1 P+b1
/log(−1/β)が、0.95であり、図3に示す
通り、RMS波面収差値は悪い値ではないが、比較例2
(表10)では、(a1 P+b1 )/log(−1/
β)が1.05であり、図11に示す通り、実施例2と
比較すると軸外のRMS波面収差値はきわめて悪い値と
なる。
In Example 2 (Table 2), (a 1 P + b 1 )
/ Log (−1 / β) is 0.95, and as shown in FIG. 3, the RMS wavefront aberration value is not a bad value, but Comparative Example 2
In Table 10, (a 1 P + b 1 ) / log (-1 /
β) is 1.05, and as shown in FIG. 11, the off-axis RMS wavefront aberration value is extremely poor as compared with Example 2.

【0035】実施例7(表7)では、(a2 P+b2
/log(−1/β)が、1.05であり、図8に示す
通り、RMS波面収差値は悪い値ではないが、比較例3
(表11)では、(a2 P+b2 )/log(−1/
β)が0.95であり、図12に示す通り、実施例7と
比較すると軸外のRMS波面収差値はきわめて悪い値と
なる。
In Example 7 (Table 7), (a 2 P + b 2 )
/ Log (−1 / β) is 1.05, and as shown in FIG. 8, the RMS wavefront aberration value is not a bad value, but Comparative Example 3
In Table 11, (a 2 P + b 2 ) / log (-1 /
β) is 0.95, and as shown in FIG. 12, the off-axis RMS wavefront aberration value is extremely poor as compared with Example 7.

【0036】実施例8(表8)では、(a1 P+b1
/log(−1/β)が、0.95であり、図9に示す
通り、RMS波面収差値は悪い値ではないが、比較例4
(表12)では、(a1 P+b1 )/log(−1/
β)が1.05であり、図13に示す通り、実施例8と
比較すると軸外のRMS波面収差値はきわめて悪い値と
なる。
In Example 8 (Table 8), (a 1 P + b 1 )
/ Log (-1 / β) is 0.95, and as shown in FIG. 9, the RMS wavefront aberration value is not a bad value, but Comparative Example 4
In Table 12, (a 1 P + b 1 ) / log (−1 /
β) is 1.05, and as shown in FIG. 13, the off-axis RMS wavefront aberration value is extremely poor as compared with Example 8.

【0037】比較例5は物像間距離L=15mmの例で
あるが、図14に示すように軸外のRMS波面収差がき
わめて悪い値となる。
Comparative Example 5 is an example in which the object-image distance L = 15 mm, but as shown in FIG. 14, the off-axis RMS wavefront aberration has a very bad value.

【0038】比較例1〜5のレンズの場合には、以上示
したように軸外の収差の劣化が激しいため、実際にレン
ズを製造しても、レンズの光ピックアップ装置への取付
け誤差に対する波面収差の特性変動が非常に大きくな
り、実用的でないレンズとなる。
In the case of the lenses of Comparative Examples 1 to 5, since the off-axis aberration is severely deteriorated as described above, even if the lens is actually manufactured, the wavefront due to the mounting error of the lens in the optical pickup device is generated. The variation of the aberration characteristic becomes very large, which makes the lens impractical.

【0039】物像間距離L>20mmでは、本発明の目
的であるピックアップのコンパクト化に反する。
When the object-image distance L> 20 mm, it is against the object of the present invention to make the pickup compact.

【0040】[0040]

【表1】 [Table 1]

【0041】[0041]

【表2】 [Table 2]

【0042】[0042]

【表3】 [Table 3]

【0043】[0043]

【表4】 [Table 4]

【0044】[0044]

【表5】 [Table 5]

【0045】[0045]

【表6】 [Table 6]

【0046】[0046]

【表7】 [Table 7]

【0047】[0047]

【表8】 [Table 8]

【0048】[0048]

【表9】 [Table 9]

【0049】[0049]

【表10】 [Table 10]

【0050】[0050]

【表11】 [Table 11]

【0051】[0051]

【表12】 [Table 12]

【0052】[0052]

【表13】 [Table 13]

【0053】[0053]

【発明の効果】本発明によって、レーザー光を有効に利
用し、0.45以上の高い開口数が得られる光ディスク
用対物レンズが提供される。
According to the present invention, there is provided an objective lens for an optical disk, which effectively utilizes laser light and can obtain a high numerical aperture of 0.45 or more.

【0054】また、本発明の光ディスク用対物レンズは
レンズの倍率(−1/β)が大きく物像間距離を16m
mから20mmと短くしても、波面収差が悪化しないの
で、光ディスクの光ピックアップ装置の小型化に大きく
貢献できる。
The objective lens for an optical disc of the present invention has a large lens magnification (-1 / β) and an object-image distance of 16 m.
Even if the length is shortened from m to 20 mm, the wavefront aberration is not deteriorated, which can greatly contribute to downsizing of the optical pickup device for the optical disc.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明レンズの使用状態を示す側面図FIG. 1 is a side view showing a usage state of a lens of the present invention.

【図2】実施例1のレンズの波面収差特性図FIG. 2 is a wavefront aberration characteristic diagram of the lens of Example 1.

【図3】実施例2のレンズの波面収差特性図FIG. 3 is a wavefront aberration characteristic diagram of the lens of Example 2.

【図4】実施例3のレンズの波面収差特性図FIG. 4 is a wavefront aberration characteristic diagram of the lens of Example 3.

【図5】実施例4のレンズの波面収差特性図5 is a wavefront aberration characteristic diagram of the lens of Example 4. FIG.

【図6】実施例5のレンズの波面収差特性図FIG. 6 is a wavefront aberration characteristic diagram of the lens of Example 5.

【図7】実施例6のレンズの波面収差特性図FIG. 7 is a wavefront aberration characteristic diagram of the lens of Example 6.

【図8】実施例7のレンズの波面収差特性図FIG. 8 is a wavefront aberration characteristic diagram of the lens of Example 7.

【図9】実施例8のレンズの波面収差特性図FIG. 9 is a wavefront aberration characteristic diagram of the lens of Example 8.

【図10】比較例1のレンズの波面収差特性図10 is a wavefront aberration characteristic diagram of the lens of Comparative Example 1. FIG.

【図11】比較例2のレンズの波面収差特性図11 is a wavefront aberration characteristic diagram of the lens of Comparative Example 2. FIG.

【図12】比較例3のレンズの波面収差特性図FIG. 12 is a wavefront aberration characteristic diagram of the lens of Comparative Example 3.

【図13】比較例4のレンズの波面収差特性図13 is a wavefront aberration characteristic diagram of the lens of Comparative Example 4. FIG.

【図14】比較例5のレンズの波面収差特性図FIG. 14 is a wavefront aberration characteristic diagram of the lens of Comparative Example 5.

【符号の説明】[Explanation of symbols]

1:光源 2:光ディスク用対物レンズ 3:光ディスクのピット面 4:光ディスクの保護層 5:光学媒体 6:受光素子 L:物像間距離 P:作動距離 d:光ディスク用対物レンズの中心厚 t:光ディスク保護層の厚み 1: Light source 2: Objective lens for optical disc 3: Pit surface of optical disc 4: Protective layer of optical disc 5: Optical medium 6: Light receiving element L: Object-image distance P: Working distance d: Center thickness of objective lens for optical disc t: Optical disc protection layer thickness

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】光源と光ディスクの間に配される光ディス
ク用対物レンズにおいて、光源側及び光ディスク側が共
に非球面形状を有し、物像間距離をL、作動距離をP、
横倍率をβとするとき、16≦L≦20を満足し、か
つ、以下の条件を満足することを特徴とする光ディスク
用対物レンズ。 a1 P+b1 ≦log(−1/β)≦a2 P+b2 ただし、 a1 =−0.0280L+0.287、 b1 = 0.0616L−0.262、 a2 = 0.0084L−0.404、 b2 = 0.0178L+0.631 とし、距離の単位をmmとする。
1. An optical disk objective lens arranged between a light source and an optical disk, wherein both the light source side and the optical disk side have an aspherical shape, the object-image distance is L, the working distance is P,
An objective lens for an optical disk, which satisfies 16 ≦ L ≦ 20 when a lateral magnification is β, and also satisfies the following conditions. a 1 P + b 1 ≦ log (−1 / β) ≦ a 2 P + b 2 where a 1 = -0.0280L + 0.287, b 1 = 0.0616L-0.262, a 2 = 0.0084L-0.404 , B 2 = 0.0178L + 0.631, and the unit of distance is mm.
【請求項2】光軸上に、光源、受光素子用光学媒体又は
透明性を有する板状体、光ディスク用対物レンズ、光デ
ィスクの順に配されてなる光ピックアップ装置に使用さ
れる光ディスク用対物レンズにおいて、光源側及び光デ
ィスク側が共に非球面形状を有し、物像間距離をL、作
動距離をP、横倍率をβ、受光素子用光学媒体又は透明
性を有する板状体の厚さをd0 、屈折率をn0 とすると
き、16≦L≦20を満足し、かつ、以下の条件を満足
することを特徴とする光ディスク用対物レンズ。 a1 P+b1 ≦log(−1/β)≦a2 P+b2 ただし、 Lc =L−d0 (n0 −1)/n0 、 a1 =−0.0280Lc +0.287、 b1 = 0.0616Lc −0.262、 a2 = 0.0084Lc −0.404、 b2 = 0.0178Lc +0.631 とし、距離及び厚さの単位をmmとする。
2. An optical disk objective lens used in an optical pickup device, which comprises a light source, an optical medium for a light receiving element or a transparent plate-like member, an optical disk objective lens, and an optical disk arranged in this order on an optical axis. Both the light source side and the optical disk side have an aspherical shape, the object-image distance is L, the working distance is P, the lateral magnification is β, the thickness of the optical medium for the light receiving element or the transparent plate is d 0. An objective lens for an optical disk, which satisfies 16 ≦ L ≦ 20 when the refractive index is n 0 and satisfies the following conditions. a 1 P + b 1 ≦ log (−1 / β) ≦ a 2 P + b 2 where L c = L−d 0 (n 0 −1) / n 0 , a 1 = −0.0280L c +0.287, b 1 = 0.0616L c -0.262, a 2 = 0.0084L c -0.404, and b 2 = 0.0178L c +0.631, distance and the unit of thickness and mm.
【請求項3】光源の光束の半値全角をθ、像側NA(開
口数)をsin∠Bとするとき、以下の条件を満足する
ことを特徴とする請求項1又は2の光ディスク用対物レ
ンズ。 (−/β)≧(sin∠B)/sinθ。
3. The objective lens for an optical disk according to claim 1 or 2, wherein the following conditions are satisfied when the full-width half-maximum angle of the light source is θ and the image-side NA (numerical aperture) is sin ∠B. . (− / Β) ≧ (sin ∠B) / sin θ.
【請求項4】光源側及び光ディスク側の面形状が、数1
によって表されることを特徴とする請求項1、2又は3
の光ディスク用対物レンズ。 【数1】
4. The surface shape on the light source side and the optical disk side is the number 1
It is represented by
Objective lens for optical disks. [Equation 1]
JP31702394A 1994-12-20 1994-12-20 Objective lens for optical disk Pending JPH08179195A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31702394A JPH08179195A (en) 1994-12-20 1994-12-20 Objective lens for optical disk

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31702394A JPH08179195A (en) 1994-12-20 1994-12-20 Objective lens for optical disk

Publications (1)

Publication Number Publication Date
JPH08179195A true JPH08179195A (en) 1996-07-12

Family

ID=18083566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31702394A Pending JPH08179195A (en) 1994-12-20 1994-12-20 Objective lens for optical disk

Country Status (1)

Country Link
JP (1) JPH08179195A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5835473A (en) * 1996-01-17 1998-11-10 Asahi Glass Company Ltd. Optical pick-up, optical data recording apparatus and objective lens for optical data recording material
US6097691A (en) * 1997-09-05 2000-08-01 Asahi Glass Company Ltd. Optical device for recording or reading data to an optical disk
US6285645B1 (en) 1997-05-27 2001-09-04 Asahi Glass Company Ltd. Optical device
JP2001337270A (en) * 2000-05-29 2001-12-07 Hideaki Ishizuki Aspherical single lens for multipurpose observation having high depth of field
US6556534B2 (en) 2000-03-31 2003-04-29 Asahi Glass Company, Limited Objective lens and optical device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5835473A (en) * 1996-01-17 1998-11-10 Asahi Glass Company Ltd. Optical pick-up, optical data recording apparatus and objective lens for optical data recording material
US6285645B1 (en) 1997-05-27 2001-09-04 Asahi Glass Company Ltd. Optical device
US6097691A (en) * 1997-09-05 2000-08-01 Asahi Glass Company Ltd. Optical device for recording or reading data to an optical disk
US6556534B2 (en) 2000-03-31 2003-04-29 Asahi Glass Company, Limited Objective lens and optical device
JP2001337270A (en) * 2000-05-29 2001-12-07 Hideaki Ishizuki Aspherical single lens for multipurpose observation having high depth of field

Similar Documents

Publication Publication Date Title
US4610515A (en) Objective lens for an optical disc
JPH06258573A (en) Optical system for recording and reproducing optical information medium
JPH0772386A (en) Objective lens for optical disk
JPH08179195A (en) Objective lens for optical disk
JPS60140309A (en) Refractive index distribution type single lens
JPS61163308A (en) Refractive index distributed single lens
JP2003157567A (en) Deformable mirror for optical pickup
JP4364328B2 (en) Objective lens for high-density optical recording media
JP2004258310A (en) Wide angle lens equipped with gradient index lens
JPH0823626B2 (en) Objective lens for optical disc
JPH0248886B2 (en) KORIMEETAARENZUKEI
JPH11258497A (en) Objective lens optical system
JPH0217085B2 (en)
JP2004177839A (en) Objective lens for optical information recording and reproducing apparatus
JP3014311B2 (en) Objective lens system with variable disk substrate thickness
JP2511275B2 (en) Optical system for recording / reproducing optical information media
JP2003167189A (en) Objective lens for optical disk
JP4081857B2 (en) Optical device
JPS6254212A (en) Aspheric surface single lens
JPS5962815A (en) Distributed refractive index lens
JP4427986B2 (en) Catadioptric objective lens
JPH0313910A (en) Collimator lens for optical recording and reproducing device
JPH02106709A (en) Aspherical objective lens
JPH11144291A (en) Objective lens whose off-axis characteristic is improved
SU587434A1 (en) Autocollimation objective lens