JPS6254212A - Aspheric surface single lens - Google Patents

Aspheric surface single lens

Info

Publication number
JPS6254212A
JPS6254212A JP19458985A JP19458985A JPS6254212A JP S6254212 A JPS6254212 A JP S6254212A JP 19458985 A JP19458985 A JP 19458985A JP 19458985 A JP19458985 A JP 19458985A JP S6254212 A JPS6254212 A JP S6254212A
Authority
JP
Japan
Prior art keywords
lens
aberration
image
radius
single lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19458985A
Other languages
Japanese (ja)
Inventor
Shigeyuki Suda
須田 繁幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP19458985A priority Critical patent/JPS6254212A/en
Priority to US06/901,414 priority patent/US4768867A/en
Priority to DE19863629875 priority patent/DE3629875A1/en
Publication of JPS6254212A publication Critical patent/JPS6254212A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To secure the action distance and the image-forming performance and to execute the aberration correction over the visual field with the image forming-scale factor of about -1/4--1/6 and the focus distance of about 4-5mm by using the aspheric surface single lens to satisfy the special conditions. CONSTITUTION:The lens is the double aspheric surface lens used by the reduction scale factor, has the shape where the radius of curvature comes to be gradually large from the center to the circumference for both surfaces, the light source side is the first surface, the disk side is the second surface, the curvature radius near the optical axis is gamma1 at the first surface, the radius is gamma2 at the second surface, the wall thickness of the equivalent lens is (d), the focus distance is (f) and the image-forming scale factor is beta, and then, the lens is the aspheric surface single lens to satisfy the conditions of the formula. Thus, while the action distance and the image-forming performance are held, the correction of the sphere aberration, the frame aberration and the astigmatism can be executed over the wide visual field.

Description

【発明の詳細な説明】 (1)技術分野 本発明は、ビデオ及びオーディオディスク、光メモリ装
置等に用いられる結像光学系に関し、特に結像倍率が一
1/4〜−176、NAが0.45程度で比較的広視野
にわたって収差補正を行なった有限結像用の両面非球面
単レンズに関するものである。
DETAILED DESCRIPTION OF THE INVENTION (1) Technical Field The present invention relates to an imaging optical system used for video and audio discs, optical memory devices, etc., and particularly relates to an imaging optical system with an imaging magnification of 11/4 to -176 and an NA of 0. This relates to a double-sided aspherical single lens for finite imaging that corrects aberrations over a relatively wide field of view with a diameter of about 45.

(2)従来技術 従来、光メモリ用結像光学系の低コスト化を目的とした
光学系として、コリメータレンズと対物レンズを一体化
し結像倍率−1/4.33で用いる有限結像の光学系が
特開昭60−26917に於て開示されている。ここで
開示された光学系は4群4枚のレンズ系であり、通常1
群2枚のコリメータレンズと3群3枚の対物レンズとで
構成されるレンズ構成に対しては鏡筒数を1つに出来る
利点を有している。しかしながら、通常のレンズ構成と
比較してレンズ枚数を1枚低減したにすぎず、充分なコ
ストの低減化は出来なかった。
(2) Prior art Conventionally, as an optical system aimed at reducing the cost of an imaging optical system for optical memory, a finite imaging optical system that integrates a collimator lens and an objective lens and uses an imaging magnification of -1/4.33 is disclosed in Japanese Patent Application Laid-Open No. 60-26917. The optical system disclosed here is a lens system with 4 elements in 4 groups, and usually 1
This has the advantage that the number of lens barrels can be reduced to one compared to a lens configuration consisting of two groups of collimator lenses and three groups of three objective lenses. However, compared to a normal lens configuration, the number of lenses was reduced by only one, and the cost could not be reduced sufficiently.

一方、光メモリ用対物レンズとして両面非球面化した単
レンズが特開昭57−64714、特開昭57−765
12.特開昭57−201210、特開昭58−687
11.特開昭59−26714、特開昭60=1203
10等に開示されている。これらの両面非球面単レンズ
は最大でも−1717,7の結像倍率のものしか開示さ
れておらず、この種のレンズを結像倍率−1/4〜−1
/6、開口数NAを0.45程度で適用した際には結像
性能の著しい劣化を伴なう。更に特開昭57−7651
2、特開昭57−201210、特開昭58−6871
1、特開昭59−26712、特開昭60−12031
0は主として球面収差とコマ収差に注目し、ディスク面
上で0.1〜0.2 m mφ程度の軸上近傍の収差補
正を目的としていた。即ちこれらはいずれもコリメータ
レンズとの併用を前提収差補正の必要な領域は軸上近傍
の微少領域で充分であった。しかしながら結像倍率−1
/4〜−1/6程度の有限結像系では、トラッキングの
際のレンズの平行移動はレンズに対しては大きな軸外結
像となる為、従来の無限遠結像系に比ベレンズ自体の収
差補正範囲を広く設計しておく必要が生じる。即ちディ
スク面で0.4〜0、5 m mφ程度にわたって回折
限界に近い結像性能が必要となり、従来の球面収差とコ
マ収差の補正に加え非点収差の補正が必須となる。前述
の特開昭57−64714に於いては非点収差及び像面
湾曲がそれぞれ零に等しくなる修正条件について記述が
なされ、実施例として結像倍率−1/17.7〜−1 
/ 20.2で用いられるメニスカス形状のレンズ2例
が開示されている。しかしながらこれらのレンズは焦点
距離を7、5 m m程度に設計されたもので、小型化
の為焦点距離を4〜5mm程度とすると、特に第2面が
ディスク面に対して凹面形状となっている為に充分な作
動距離が得られなくなる欠点を有している。
On the other hand, a single lens with aspherical surfaces on both sides as an objective lens for optical memory was disclosed in Japanese Patent Application Laid-open No. 57-64714 and Japanese Patent Laid-open No. 57-765.
12. JP-A-57-201210, JP-A-58-687
11. JP-A-59-26714, JP-A-60=1203
10 etc. These double-sided aspherical single lenses have only been disclosed with an imaging magnification of -1717.7 at the maximum, and this type of lens has an imaging magnification of -1/4 to -1.
/6, and when a numerical aperture NA of about 0.45 is applied, there is a significant deterioration in imaging performance. Furthermore, JP-A-57-7651
2. Japanese Patent Publication No. 57-201210, Japanese Patent Application Publication No. 58-6871
1. JP-A-59-26712, JP-A-60-12031
0 mainly focused on spherical aberration and coma aberration, and aimed at correcting near-axial aberrations of about 0.1 to 0.2 mmφ on the disk surface. That is, in all of these, it is assumed that a collimator lens is used in combination, and the area in which aberration correction is necessary is sufficient to be a minute area near the axis. However, the imaging magnification -1
In a finite imaging system of about /4 to -1/6, the parallel movement of the lens during tracking results in a large off-axis image to the lens, so compared to a conventional infinity imaging system, the lens itself is It becomes necessary to design a wide aberration correction range. That is, imaging performance close to the diffraction limit is required over a range of approximately 0.4 to 0.5 mmφ on the disk surface, and in addition to the conventional correction of spherical aberration and coma, correction of astigmatism is essential. In the above-mentioned Japanese Patent Application Laid-Open No. 57-64714, correction conditions are described in which astigmatism and field curvature are each made equal to zero, and as examples, the imaging magnification is -1/17.7 to -1.
Two examples of meniscus shaped lenses used in /20.2 are disclosed. However, these lenses are designed with a focal length of about 7.5 mm, and if the focal length is set to about 4 to 5 mm for miniaturization, the second surface in particular becomes concave with respect to the disk surface. This has the disadvantage that a sufficient working distance cannot be obtained because of the

(3)発明の概要 本発明の目的は、上述の問題点に鑑み、結像倍率が一1
/4〜−1/6程度、焦点距離が4〜5mm程度で、動
作距離及び結像性能を確保し且つ広視野にわたり収差補
正を成し得た非球面単レンズを提供することにある。
(3) Summary of the invention In view of the above-mentioned problems, an object of the present invention is to increase the imaging magnification to 11.
The object of the present invention is to provide an aspherical single lens having a focal length of about /4 to -1/6 and a focal length of about 4 to 5 mm, which can ensure operating distance and imaging performance, and can correct aberrations over a wide field of view.

上記目的を達成する為に本発明に係る非球面なる形状を
有し、光源側を第1面、ディスク側を第2面とし、光軸
近傍の曲率半径を第1面でγ1、第2面でγ2、該レン
ズの肉厚をd、焦点距離をf、結像倍率をβとした時、 (1)−0,25<β<−0,15 (2)−0,45<γ1/γ2<−0,35(3)1.
5<d/γl<−1,3 (4)1.2<d/f<1.3 を満足することを特徴とする。
In order to achieve the above object, the present invention has an aspherical shape, the light source side is the first surface, the disk side is the second surface, and the radius of curvature near the optical axis is γ1 on the first surface, and γ1 on the second surface. When γ2 is the thickness of the lens, d is the focal length, and β is the imaging magnification, (1) −0,25<β<−0,15 (2) −0,45<γ1/γ2 <-0,35(3)1.
5<d/γl<-1,3 (4) 1.2<d/f<1.3.

尚、本発明に於ては、光メモリの如き装置の必須の構成
として、光源側には光路分岐用の5〜10mm程度のプ
リズム材、ディスク側には情報面保護用の1〜1.5 
m m程度のガラス又はプラスチック等から成る光学媒
質が配置されるものとする。
In addition, in the present invention, as essential components of a device such as an optical memory, a prism material of approximately 5 to 10 mm for optical path branching is provided on the light source side, and a prism material of approximately 1 to 1.5 mm is provided on the disk side for protecting the information surface.
It is assumed that an optical medium made of glass, plastic, etc. of approximately 1.0 mm is arranged.

(4)実施例 以下、実施例を示す前に前述の条件式に関して説明を行
なう。
(4) Examples Below, before showing examples, the above-mentioned conditional expressions will be explained.

まず(1)式は本発明に係る結像倍率を示す。これは光
ディスクの情報密度を読み取るのに必要なNAを0.4
5〜0.50程度に想定し、光源に半導体レーザを用い
その発光角をカバーするN A 0.075〜0.12
5を対象とする本発明に係る結像系の仕様を示す。即ち
、上記(1)式の下限値を下まわると(i)焦点距離に
対する瞳径が大きくなり、この為特に高次の球面収差、
非点収差の発生が大きくなって単レンズでの収差補正が
困難となる。(11)半導体レーザ(LD)自体が有す
る非点収差の影響を受ける(i i i)光源側のNA
が大きくなる為半導体レーザ(L D)の発光角が等方
的でない影響が大きくなり結果としてディスク面でのス
ポット形状が楕円となる。又、(1)式の上限値を上ま
わると(i)半導体レーザのカップリング効率が低下し
てディスク面及び受光面でのエネルギーが低下しS/N
の低下をきたす。(ii)光源とディスク間の距離が長
大化しシステムの大型化をもたらす。等の欠点を生じる
。次に上記(2)、(3)、(4)式はこれらを同時に
満足することにより球面収差、コマ収差、非点収差を除
去し、システムに必要な動作距離を得る為の条件式であ
る。以下、各々他の式を満足したとして各条件式を説明
する。(2)式は第1面と第2面の光軸近傍の曲率比を
示し、下限値を下まわると主として非点収差がアンダー
に生じ、上限値を」二まわると特に小型化の為にレンズ
の焦点距離を短くする場合に所望な動作距離を得にくく
なる。又、(3)式は第1面の光軸近傍の曲率半径γ1
とレンズの肉厚dの関係を示すものであり、レンズの屈
折率と焦点距離を決定した後の第1面と第2面のパワー
配置を示すものである。即ち、(3)式に於る下限値を
下まわると非点収差がアンダーに生じ、」−限値を上ま
わると逆にオーバーとなってしまう。更に(4)式は肉
厚dと焦点距111!fに関するものであり、これも下
限値を下まわると非点収差がアンダーに生じ、」−限値
を上まわると所望な動作距離を得にくくなる。尚、球面
収差及びコマ収差は(1)〜(4)式を満足した後、非
球面形状を最適に選択することにより除去可能となる。
First, equation (1) represents the imaging magnification according to the present invention. This means that the NA required to read the information density of an optical disc is 0.4.
N A of 0.075 to 0.12 is assumed to be about 5 to 0.50, and a semiconductor laser is used as a light source to cover the emission angle.
5 shows the specifications of the imaging system according to the present invention, which is aimed at That is, when the lower limit of formula (1) is exceeded, (i) the pupil diameter relative to the focal length becomes large, and therefore, especially high-order spherical aberration,
The occurrence of astigmatism increases, making it difficult to correct the aberration with a single lens. (11) NA on the light source side is affected by the astigmatism of the semiconductor laser (LD) itself (i i i)
As the angle becomes larger, the effect that the emission angle of the semiconductor laser (LD) is not isotropic increases, and as a result, the spot shape on the disk surface becomes elliptical. Moreover, if the upper limit of equation (1) is exceeded, (i) the coupling efficiency of the semiconductor laser decreases, the energy on the disk surface and the light receiving surface decreases, and the S/N
This results in a decrease in (ii) The distance between the light source and the disk increases, resulting in an increase in the size of the system. This results in disadvantages such as: Next, the above equations (2), (3), and (4) are conditional equations to remove spherical aberration, coma aberration, and astigmatism by satisfying these simultaneously, and to obtain the operating distance required for the system. . Each conditional expression will be explained below assuming that each other expression is satisfied. Equation (2) shows the curvature ratio of the first surface and the second surface near the optical axis, and when it is below the lower limit, astigmatism mainly occurs, and when it is below the upper limit, it is particularly difficult to reduce the size. When the focal length of the lens is shortened, it becomes difficult to obtain a desired operating distance. Also, equation (3) is the radius of curvature γ1 near the optical axis of the first surface.
This shows the relationship between the lens thickness d and the lens thickness d, and shows the power arrangement of the first and second surfaces after determining the refractive index and focal length of the lens. That is, when the lower limit value in equation (3) is less than the astigmatism value, the astigmatism will be under-produced, and when it exceeds the -limit value, the astigmatism will be over-produced. Furthermore, equation (4) has thickness d and focal length 111! Regarding f, if it is below the lower limit value, astigmatism will occur too much, and if it is above the - limit value, it will be difficult to obtain the desired operating distance. Note that spherical aberration and comatic aberration can be removed by optimally selecting an aspherical shape after satisfying equations (1) to (4).

非球面形状は、−競゛に著しくアンダーに発生する球面
収差をバランス良く補正する為に、中心から周辺にかけ
て次第に曲率半径が大きくなる形状にて設計が可能とな
る。
The aspherical shape can be designed to have a radius of curvature that gradually increases from the center to the periphery in order to correct in a well-balanced manner the spherical aberration that occurs significantly under the competition.

以下、本発明の実施例を示す。Examples of the present invention will be shown below.

第1図は本発明に係る非球面単レンズの第1実施例を示
す図で、光ディスクの光学系に配した際の光路図を示す
。又、第2図は第1実施例に於る近軸像面の軸上及び像
高0.2 m mでの波面収差を示す。第1図に於て、
Lは本発明に係る非球面レンズ、Cは情報面保護用の媒
質、Pは光路分岐用プリズム、γ1はレンズLの第1面
に於る光軸近傍の曲率半径、ア2はレンズLの第2面に
於る光軸近傍の曲率半径、dはレンズLの肉厚、nはレ
ンズLの波長入=780nmに於る屈折率、WDは作動
距離、n、 pは光路分岐用プリズムPの屈折率、tp
は光路分岐用プリズムPの肉厚、nc、は情報面保護用
媒質Cの屈折率、tcは情報面保護用媒質Cの肉厚、L
Dは半導体レーザの光線出射位置を示す。
FIG. 1 is a diagram showing a first embodiment of the aspherical single lens according to the present invention, and shows an optical path diagram when it is arranged in an optical system of an optical disc. Further, FIG. 2 shows the wavefront aberration on the axis of the paraxial image plane and at an image height of 0.2 mm in the first embodiment. In Figure 1,
L is the aspherical lens according to the present invention, C is the medium for protecting the information surface, P is the optical path branching prism, γ1 is the radius of curvature near the optical axis on the first surface of the lens L, and A2 is the radius of the lens L. The radius of curvature near the optical axis on the second surface, d is the thickness of the lens L, n is the refractive index of the lens L at wavelength input = 780 nm, WD is the working distance, n and p are the optical path branching prism P refractive index, tp
is the thickness of the optical path branching prism P, nc is the refractive index of the information surface protection medium C, tc is the thickness of the information surface protection medium C, and L
D indicates the light beam emission position of the semiconductor laser.

尚、木非球講ンズの焦点距離はf、開口数はNA、結像
倍率はβとして表わす。又、第2図に於て、hは像高、
Sはサジタル方向の波面収差、Mはメリジオナル方向の
波面収差を示す。
Note that the focal length of the wooden non-ball lens is expressed as f, the numerical aperture as NA, and the imaging magnification as β. Also, in Figure 2, h is the image height,
S indicates wavefront aberration in the sagittal direction, and M indicates wavefront aberration in the meridional direction.

尚、レンズLの非球面の形状はレンズLの各面の頂点を
原点とし、光軸を光軸、入射高をHとする時、回転対称
2次曲面ベースでHの10乗までの項を含む次の(5)
式で表わす。
The shape of the aspherical surface of the lens L is defined by the terms up to the 10th power of H based on a rotationally symmetric quadratic curved surface, when the origin is the vertex of each surface of the lens L, the optical axis is the optical axis, and the incident height is H. Contains the following (5)
Expressed by the formula.

(5)式に於てKはP[定数、B、C,D、E、A’、
B’。
In equation (5), K is P [constant, B, C, D, E, A',
B'.

C’、D’は全て各次数の定数である。(以下、K、B
C' and D' are all constants of each order. (Hereinafter, K, B
.

C,D、E、A’、B’、C’、D’を非球面係数と記
す。)+BH4+CH6+DH8+EH10 +A’lH13+B′lH15十〇’lHI 7+D’
lHI 9−−−− (5)尚、上式に於る次数の制限
は便宜的なものであり、これに限られるものではない。
C, D, E, A', B', C', and D' are written as aspheric coefficients. )+BH4+CH6+DH8+EH10 +A'lH13+B'lH15 〇'lHI 7+D'
lHI 9--- (5) Note that the order restriction in the above equation is for convenience and is not limited to this.

下記の表IA及び表IBに夫々第1図で示す各パラメー
タの値(レンズデータを含む。)と(5)式に於る非球
面収差係数の値を示す。尚、第1B中の符号に於る添字
1及び2は夫々レンズLの第1面、第2面に対応してい
る。
Table IA and Table IB below show the values of each parameter (including lens data) shown in FIG. 1 and the value of the aspherical aberration coefficient in equation (5), respectively. Incidentally, the subscripts 1 and 2 in the numbers in 1B correspond to the first and second surfaces of the lens L, respectively.

表  IA 表  IB 表IA及び第2図の波面収差図から解る様に、本実施例
に係る非球面単レンズは前記(1)〜(4)式を満たす
為に、焦点圧@ f = 4.2mmで結像倍率β=−
1/4.7にて用いた際にも良好な結像性能と動作距離
を有している。
Table IA Table IB As can be seen from Table IA and the wavefront aberration diagram in FIG. 2, the aspheric single lens according to this example has a focal pressure @ f = 4. Imaging magnification β=- at 2mm
Even when used at 1/4.7, it has good imaging performance and operating distance.

即ち、像面に於る軸上の波面収差は殆ど無いといってよ
く軸外の収差も要求される性能を十分溝たし、広視野に
わたり良好な結像性能を保っている。
That is, it can be said that there is almost no axial wavefront aberration on the image plane, and even off-axis aberrations sufficiently meet the required performance, and good imaging performance is maintained over a wide field of view.

続いて、下記の表2A 、2B〜5A、5Bに本発明に
係る非球面単レンズの第2実施例から第5実施例までの
レンズデータを含む各パラメータの値と非球面係数の値
を示す。又、第3図〜第6図は第1実施例同様夫々第2
実施例から第5実施例に於る波面収差を示す図である。
Subsequently, Tables 2A, 2B to 5A, and 5B below show the values of each parameter and the value of the aspheric coefficient, including lens data from the second example to the fifth example of the aspheric single lens according to the present invention. . Also, FIGS. 3 to 6 are similar to the first embodiment, respectively.
It is a figure which shows the wavefront aberration in 5th Example from an Example.

従って、図中及び表中の符号は前記実施例同様の意味を
有し、記載形式も同じである。
Therefore, the symbols in the figures and tables have the same meanings as in the embodiments described above, and the description formats are also the same.

表  2  A 表  2B 表  3  A 表  3  B 表  4  A 表  4  B 表  5  A 表  5B (5)発明の効果 以」−説明した様に本発明に係る非球面単レンズは、動
作距離及び結像性能を保持したままで広視野にわたり球
面収差、コマ収差、非点収差の補正を成し得るものであ
り、光ディスク等の光ヘツド光学系の低コスi・化を図
る上でも極めて有用な単レンズである。
Table 2 A Table 2B Table 3 A Table 3 B Table 4 A Table 4 B Table 5 A Table 5B (5) Effects of the Invention As explained, the aspheric single lens according to the present invention has the following advantages: A single lens that can correct spherical aberration, coma aberration, and astigmatism over a wide field of view while maintaining performance, and is extremely useful in reducing the cost of optical head optical systems such as optical discs. It is.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る非球面単レンズを光ディスクの光
学系に配した第1実施例に於る光路図、第2図〜第6図
は各々第1〜第5の実施例の近軸像面」二での軸」−及
び像高0.2 m mに於ける波面収差を示す図。 P ・・・光路分岐用プリズム、 S ・・・サジタル方向での波面収差、L ・・・両面
非球面単レンズ、 M ・・・ メリジオナル方向での波面収差、C・・・
情報面保護媒質、 LD ・・・半導体レーザの光線出射位置。
FIG. 1 is an optical path diagram of a first embodiment in which an aspherical single lens according to the present invention is arranged in an optical system of an optical disk, and FIGS. 2 to 6 are paraxial diagrams of the first to fifth embodiments, respectively. A diagram showing wavefront aberration at an image plane "axis" and an image height of 0.2 mm. P: Optical path branching prism, S: Wavefront aberration in the sagittal direction, L: Double-sided aspherical single lens, M: Wavefront aberration in the meridional direction, C...
Information surface protection medium, LD... Light beam emission position of semiconductor laser.

Claims (1)

【特許請求の範囲】 (1)縮小倍率で使用する両面非球面レンズであって、
両面共中心から周辺にかけて次第に曲率半径が大きくな
る形状を有し、 光源側を第1面、ディスク側を第2面とし、光軸近傍の
曲率半径を第1面でγ_1、第2面でγ_2、該レンズ
の肉厚をd、焦点距離をf、結像倍率をβとした時、 (1)−0.25<β<−0.15 (2)−0.45<γ_1/γ_2<−0.35(3)
1.5<d/γ_1<−1.3 (4)1.2<d/f<1.3 を満足することを特徴とする非球面単レンズ。
[Claims] (1) A double-sided aspherical lens used at a reduction magnification,
Both sides have a shape in which the radius of curvature gradually increases from the center to the periphery, with the light source side being the first surface and the disk side being the second surface, and the radius of curvature near the optical axis being γ_1 on the first surface and γ_2 on the second surface. , when the lens thickness is d, the focal length is f, and the imaging magnification is β, (1) −0.25<β<−0.15 (2) −0.45<γ_1/γ_2<− 0.35 (3)
1.5<d/γ_1<-1.3 (4) An aspheric single lens that satisfies 1.2<d/f<1.3.
JP19458985A 1985-09-02 1985-09-02 Aspheric surface single lens Pending JPS6254212A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP19458985A JPS6254212A (en) 1985-09-02 1985-09-02 Aspheric surface single lens
US06/901,414 US4768867A (en) 1985-09-02 1986-08-28 Aspherical single lens
DE19863629875 DE3629875A1 (en) 1985-09-02 1986-09-02 ASPHAERIC SINGLE LENS

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19458985A JPS6254212A (en) 1985-09-02 1985-09-02 Aspheric surface single lens

Publications (1)

Publication Number Publication Date
JPS6254212A true JPS6254212A (en) 1987-03-09

Family

ID=16327056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19458985A Pending JPS6254212A (en) 1985-09-02 1985-09-02 Aspheric surface single lens

Country Status (1)

Country Link
JP (1) JPS6254212A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6310119A (en) * 1986-07-02 1988-01-16 Matsushita Electric Ind Co Ltd Large aperture single lens
JPS6425113A (en) * 1987-07-21 1989-01-27 Mark Kk Finite system large aperture single lens
US7503427B2 (en) 2003-02-20 2009-03-17 Calsonic Kansei Corporation Muffler

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6310119A (en) * 1986-07-02 1988-01-16 Matsushita Electric Ind Co Ltd Large aperture single lens
JPS6425113A (en) * 1987-07-21 1989-01-27 Mark Kk Finite system large aperture single lens
US7503427B2 (en) 2003-02-20 2009-03-17 Calsonic Kansei Corporation Muffler

Similar Documents

Publication Publication Date Title
JP3385213B2 (en) Objective lens for optical head
US7995290B2 (en) Objective lens, optical pickup device, and optical recording/reproducing apparatus
JP2003279851A (en) Single lens having high numerical aperture, optical head device using the same and optical information recording and reproducing device
JP2641514B2 (en) Single group objective lens
US4768867A (en) Aspherical single lens
JP2902435B2 (en) Objective lens system for optical information recording / reproducing device
US4701032A (en) Graded refractive index lens system
JPS61163308A (en) Refractive index distributed single lens
JPH09185836A (en) Optical system for recording and reproducing optical information recording medium
JPS6254212A (en) Aspheric surface single lens
JP3306170B2 (en) Chromatic aberration correction element
JP3108695B2 (en) Optical system of optical information recording / reproducing device
JPH0638130B2 (en) Gradient index lens
JP4422775B2 (en) Optical pickup lens
JPS6254211A (en) Aspheric surface single lens
JPH0453285B2 (en)
JP3014311B2 (en) Objective lens system with variable disk substrate thickness
JPH02150816A (en) Aspherical single lens
JP2004177839A (en) Objective lens for optical information recording and reproducing apparatus
JP2001337269A (en) Optical device for compensating chromatic aberration and optical pickup device
JPS6111721A (en) Collimating lens
JP2622155B2 (en) Aspheric single lens
JP2511279B2 (en) Optical system for recording / reproducing optical information media
JP4240769B2 (en) Optical pickup lens
JPH02106709A (en) Aspherical objective lens