JPH08179044A - Manufacture of cdte radioactive ray detector - Google Patents

Manufacture of cdte radioactive ray detector

Info

Publication number
JPH08179044A
JPH08179044A JP6335148A JP33514894A JPH08179044A JP H08179044 A JPH08179044 A JP H08179044A JP 6335148 A JP6335148 A JP 6335148A JP 33514894 A JP33514894 A JP 33514894A JP H08179044 A JPH08179044 A JP H08179044A
Authority
JP
Japan
Prior art keywords
cdte
heat
temperature
wafer
epoxy resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6335148A
Other languages
Japanese (ja)
Inventor
Tsutomu Ozaki
勉 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Japan Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Energy Corp filed Critical Japan Energy Corp
Priority to JP6335148A priority Critical patent/JPH08179044A/en
Publication of JPH08179044A publication Critical patent/JPH08179044A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Radiation (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE: To reduce a dark current, decrease dispersion, and improve the resolution of the pulse wave height spectrum analysis by sticking a CdTe radioactive ray detecting element fitted with electrodes to an insulating substrate formed with a conducting pattern with a conducting epoxy resin, then heat-treating it. CONSTITUTION: A CdTe crystal added with chlorine is machined to manufacture a CdTe monocrystal wafer polished on both faces. The wafer is etched with a Br-methanol solution to remove a processed alteration layer on the surface, then electrodes are formed on the surface and the back face by electroless platinum plating. The wafer is diced at the prescribed size, it is stuck to an alumina substrate formed with a conducting pattern with a silver epoxy resin, then it is heat-treated at the temperature of 55-85 deg.C, preferably 60-80 deg.C. The heat treating time differs according to the heat treating temperature, the heat treatment for less than 2hr at the heat treating temperature of 60 deg.C is ineffective, and the heat treatment for 30min or above at 80 deg.C is effective, for example.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、CdTe放射線検出器
の製造方法に関するものである。
FIELD OF THE INVENTION The present invention relates to a method of manufacturing a CdTe radiation detector.

【0002】[0002]

【従来の技術】CdTe放射線検出器は、半導体内を放
射線が透過する際に生じる電子と空孔をその表面に設け
た電極にバイアス電圧をかけておいて電流として測定す
るものである。CdTeはバンドギャップが広いため室
温での動作が可能であり、また構成元素の原子番号が大
きいためX線やγ線の吸収係数が大きく、高い感度が得
られる。このようなCdTe放射線検出器は、放射線使
用施設のモニタ−やスペクトルサ−ベイメ−タなどに用
いられている。また、検出器の小型化、アレイ化が可能
であり、医療用診断機器や産業用の非破壊検査装置など
に応用され始めている。しかしながら、このようにして
作成したCdTe放射線検出器は、検出器に放射線が当
たらなくても流れる電流である暗電流が平均20nAと
高く、そのばらつきが大きい(σ=6nA)という問題
があった。暗電流値は、厚さ2mmで4mm角のCdT
e放射線検出素子に電圧100Vのバイアス電圧を印加
して30分経過した時点で測定したものである。なお、
暗電流は、パルス波高スペクトル分析においてノイズ成
分となり、スペクトル形状をブロ−ドにし、分解能を低
減させる。
2. Description of the Related Art A CdTe radiation detector is a device in which electrons and vacancies generated when radiation is transmitted through a semiconductor are subjected to a bias voltage on an electrode provided on the surface thereof and measured as a current. Since CdTe has a wide band gap, it can operate at room temperature, and since the atomic numbers of the constituent elements are large, the absorption coefficient of X-rays and γ-rays is large and high sensitivity can be obtained. Such a CdTe radiation detector is used for a monitor of a radiation use facility, a spectrum survey meter, or the like. In addition, the detectors can be miniaturized and arrayed, and they are beginning to be applied to medical diagnostic devices and industrial nondestructive inspection devices. However, the CdTe radiation detector thus produced has a problem that the dark current, which is a current flowing even if the detector is not hit by radiation, is as high as 20 nA on average, and its variation is large (σ = 6 nA). The dark current value is 4 mm square CdT with a thickness of 2 mm.
e A bias voltage of 100 V was applied to the radiation detecting element, and the measurement was performed after 30 minutes had elapsed. In addition,
The dark current becomes a noise component in the pulse height spectrum analysis, makes the spectrum shape broad and reduces the resolution.

【0003】[0003]

【発明が解決しようとする課題】本発明は上記の問題を
解決したもので、本発明の目的は暗電流を下げ、そのば
らつきを小さくすることにある。
SUMMARY OF THE INVENTION The present invention solves the above problems, and an object of the present invention is to reduce the dark current and reduce its variation.

【0004】[0004]

【課題を解決するための手段および作用】本発明者は、
上記の問題を解決するために種々検討した結果、電極を
付けたCdTe放射線検出素子を、導電性パタ−ンが形
成された絶縁性基板上に、導電性エポキシ樹脂で接着さ
せた後、熱処理することで、上記の目的を達成できるこ
とを見出だした。
Means and Actions for Solving the Problems
As a result of various studies to solve the above problems, a CdTe radiation detecting element with an electrode is adhered with an electrically conductive epoxy resin on an insulating substrate having an electrically conductive pattern, and then heat treated. By doing so, they have found that the above objectives can be achieved.

【0005】すなわち、本発明は、CdTe放射線検出
器の製造方法において、その表面および裏面に電極を付
けたCdTe放射線検出素子を、導電性パタ−ンが形成
された絶縁性基板上に、導電性エポキシ樹脂で接着させ
た後、55℃以上85℃以下、より好ましくは60℃以
上80℃以下の温度で熱処理することを特徴とするCd
Te放射線検出器の製造方法を提供するものである。
That is, according to the present invention, in a method of manufacturing a CdTe radiation detector, a CdTe radiation detection element having electrodes on its front and back surfaces is electrically conductive on an insulating substrate on which a conductive pattern is formed. Cd characterized by being bonded with an epoxy resin and then heat-treated at a temperature of 55 ° C. or higher and 85 ° C. or lower, more preferably 60 ° C. or higher and 80 ° C. or lower.
A method for manufacturing a Te radiation detector is provided.

【0006】熱処理の温度については、55℃以上85
℃以下、より好ましくは60℃以上80℃以下とするの
は、この下限未満の温度、例えば50℃では暗電流を低
減する効果はなく、上限を超える温度、例えば90℃で
も効果がないからである。
The temperature of the heat treatment is 55 ° C. or more and 85
The temperature is lower than or equal to 80 ° C., more preferably 60 ° C. or higher and lower than or equal to 80 ° C., because the temperature lower than the lower limit, for example, 50 ° C., has no effect of reducing the dark current, and the temperature higher than the upper limit, for example, 90 ° C. has no effect. is there.

【0007】さらに、熱処理時間については、熱処理温
度60℃の場合には2時間以上保持しないと効果がない
が、一方熱処理温度80℃の場合には30分以上保持す
れば効果があり、熱処理温度により必要な熱処理時間が
異なる。
Regarding the heat treatment time, if the heat treatment temperature is 60 ° C., it is not effective unless it is kept for 2 hours or more. On the other hand, if the heat treatment temperature is 80 ° C., it is effective if it is kept for 30 minutes or more. Therefore, the required heat treatment time varies.

【0008】[0008]

【実施例】以下、CdTe放射線検出器の製造を実施例
として、本発明を説明する。THM法で成長した塩素添
加のCdTe結晶を加工し、厚さ2mmの両面研磨加工
したCdTe単結晶ウェハを作製した。このウェハを1
%のBr−メタノ−ル溶液でエッチングして表面の加工
変質層を除いた後、表面および裏面に無電解白金めっき
で電極を形成した。このウエハ−を2mm角にダイシン
グし、導電性パタ−ンが形成されたアルミナ基板に銀エ
ポキシ樹脂で接着し、銀エポキシ樹脂が硬化した後、7
0℃の温度で24時間保持した。このようにして製造し
たCdTe放射線検出器の暗電流を測定した結果、平均
13nA、ばらつきσ=0.6nAであり、熱処理を行
わないものに比べ、暗電流値を低減し、そのばらつきを
小さくできた。なお、暗電流値は、電圧100Vのバイ
アス電圧を印加して30分経過した時点で測定した。
The present invention will be described below with reference to the manufacture of a CdTe radiation detector as an example. The CdTe crystal added with chlorine grown by the THM method was processed to prepare a CdTe single crystal wafer having a thickness of 2 mm and having both sides polished. This wafer is 1
% Br-methanol solution to remove the work-affected layer on the surface, and then electrodes were formed on the front and back surfaces by electroless platinum plating. This wafer is diced into a 2 mm square and adhered to an alumina substrate on which a conductive pattern is formed with a silver epoxy resin. After the silver epoxy resin is cured, 7
Hold at a temperature of 0 ° C. for 24 hours. As a result of measuring the dark current of the CdTe radiation detector manufactured in this way, the average is 13 nA and the variation σ = 0.6 nA, and the dark current value can be reduced and the variation can be reduced as compared with the case where the heat treatment is not performed. It was The dark current value was measured after 30 minutes had passed after applying a bias voltage of 100V.

【0009】[0009]

【発明の効果】以上説明したように、本発明によれば、
電極を付けたCdTe放射線検出素子を、導電性パタ−
ンが形成された絶縁性基板上に、導電性エポキシ樹脂で
接着させた後、熱処理することにより、暗電流を低減で
き、またそのばらつきを小さくできる。したがって、パ
ルス波高スペクトル分析における分解能を向上できる。
As described above, according to the present invention,
A CdTe radiation detecting element with an electrode is attached to a conductive pattern.
The dark current can be reduced and its variation can be reduced by heat-treating it after adhering it to the insulating substrate on which the conductive film is formed with a conductive epoxy resin. Therefore, the resolution in the pulse height spectrum analysis can be improved.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 CdTe放射線検出器の製造方法におい
て、その表面および裏面に電極を付けたCdTe放射線
検出素子を、導電性パタ−ンが形成された絶縁性基板上
に、導電性エポキシ樹脂で接着させた後、55℃以上8
5℃以下、より好ましくは60℃以上80℃以下の温度
で熱処理することを特徴とするCdTe放射線検出器の
製造方法。
1. A method of manufacturing a CdTe radiation detector, wherein a CdTe radiation detection element having electrodes on its front and back surfaces is bonded with an electrically conductive epoxy resin onto an insulating substrate on which a conductive pattern is formed. After making it 55 ℃ or more 8
A method for manufacturing a CdTe radiation detector, which comprises performing heat treatment at a temperature of 5 ° C. or lower, more preferably 60 ° C. or higher and 80 ° C. or lower.
JP6335148A 1994-12-21 1994-12-21 Manufacture of cdte radioactive ray detector Pending JPH08179044A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6335148A JPH08179044A (en) 1994-12-21 1994-12-21 Manufacture of cdte radioactive ray detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6335148A JPH08179044A (en) 1994-12-21 1994-12-21 Manufacture of cdte radioactive ray detector

Publications (1)

Publication Number Publication Date
JPH08179044A true JPH08179044A (en) 1996-07-12

Family

ID=18285305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6335148A Pending JPH08179044A (en) 1994-12-21 1994-12-21 Manufacture of cdte radioactive ray detector

Country Status (1)

Country Link
JP (1) JPH08179044A (en)

Similar Documents

Publication Publication Date Title
Yon et al. Sodium distribution in thermal oxide on silicon by radiochemical and MOS analysis
JP5174995B2 (en) Pyroelectric element
RU2573609C2 (en) Detection method using electrochemically-assisted alpha-particle detector for nuclear measurements in liquid medium
JP2001208743A (en) Method for evaluating concentration of metal impurity in silicon wafer
Pekarek et al. Long-term stable surface treatments on CdTe and CdZnTe radiation detectors
Keddy et al. Synthetic diamonds as ionisation chamber radiation detectors in biological environments
US6645787B2 (en) Gamma ray detector
JPH08179044A (en) Manufacture of cdte radioactive ray detector
JP2981712B2 (en) Manufacturing method of semiconductor radiation detector
Egarievwe et al. Fabrication and Characterization of CdZnTeSe Nuclear Detectors
Mellet et al. I (t), I (V) and surface effect studies of vapor grown and solution grown HgI2 detectors
JPH08166462A (en) Fabrication of semiconductor radiation detector
Byer et al. Complementary domain pyroelectric detectors with reduced sensitivity to mechanical vibrations and temperature changes
JP2001177141A (en) Semiconductor device and method of manufacturing the same, and radioactive detector
JP2922098B2 (en) Semiconductor radiation detector
Carlos Effects of BIAS on radiation induced defects in mos oxides: An ESR study
JP3496058B2 (en) Semiconductor substrate surface passivation method and semiconductor substrate
Kim et al. Long Term Stability of Thallium Bromide Gamma-Ray Spectrometers
JPH06260671A (en) Semiconductor radiation detector and manufacture thereof
US3935457A (en) Dielectric material for dosimeters
JPS61187375A (en) Semiconductor radiation detector
JPH0738132A (en) Radiation detecting element, manufacture thereof, and radiation detector
JPH03201487A (en) Manufacture of semiconductor radiation sensor
Walton et al. Silicon radiation detectors-materials and applications
JPH01132172A (en) Semiconductor radiation detector

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040506