JPH0738132A - Radiation detecting element, manufacture thereof, and radiation detector - Google Patents

Radiation detecting element, manufacture thereof, and radiation detector

Info

Publication number
JPH0738132A
JPH0738132A JP5200205A JP20020593A JPH0738132A JP H0738132 A JPH0738132 A JP H0738132A JP 5200205 A JP5200205 A JP 5200205A JP 20020593 A JP20020593 A JP 20020593A JP H0738132 A JPH0738132 A JP H0738132A
Authority
JP
Japan
Prior art keywords
radiation
detector
crystal
dimensionally
radiation detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5200205A
Other languages
Japanese (ja)
Inventor
Akikazu Tanaka
明和 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP5200205A priority Critical patent/JPH0738132A/en
Publication of JPH0738132A publication Critical patent/JPH0738132A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a method of manufacturing a new radiation detecting element of CdTe crystal and a radiation detector formed of detecting elements and high in sensitivity. CONSTITUTION:A metal layer is provided to each of the front and rear of a radiation detecting element CdTe crystal of a resistivity of 10<7> to 5X10<9>OMEGA/cm, the CdTe crystal is cut into radiation detecting elements whose side faces are all covered with an ultrahigh resistive layer 10<10>OMEGA/cm or above in resistivity, and the radiation detecting elements are so arranged in one dimension or two dimensions as to come into contact with each other. By this setup, a two- dimensioanlly integrated radiation detector having a higher performance than a conventional one can be manufactured at a low cost.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はX線やγ線などの放射線
を利用した非破壊画像検査装置のためめの集積型放射線
検出器とその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an integrated radiation detector for a non-destructive image inspection apparatus utilizing radiation such as X-rays and γ-rays, and a manufacturing method thereof.

【0002】[0002]

【従来の技術】放射線画像検査等の非破壊画像検査法は
例えば、溶接部の欠陥検査、コンピュータ断層撮影、手
荷物検査等に利用され、特に近年の医療分野での利用範
囲の拡大には見るべきものがある。この方法は、X線や
γ線などの放射線が被検査物体を透過する際に、放射線
の吸収能力が物体の構造材料により異なることを利用し
たものである。
2. Description of the Related Art Non-destructive image inspection methods such as radiographic image inspection are used, for example, for defect inspection of welded parts, computed tomography, baggage inspection, etc., and should be seen especially in recent years in expanding the range of use in the medical field. There is something. This method utilizes the fact that when radiation such as X-rays and γ-rays passes through an object to be inspected, the absorption capacity of the radiation differs depending on the structural material of the object.

【0003】従来よりこの放射線の検出には種々の検出
器があり、目的や装置の用途に応じ最適な物が選定さ
れ、採用されている。画像検査装置に用いる検出器とし
ては集積化が望まれることから半導体検出器が最適とさ
れ、CdTe結晶が半導体として用いられている。この
半導体検出器は高抵抗な微小CdTe結晶の相対抗する
2面に電極を設けた単位素子を単独、あるいは集積して
用いる物であり、使用に際しては該電極間にバイアス電
圧をかける。この状態で放射線がCdTe結晶中に入射
すると、放射線と結晶中の原子との相互作用によりその
一部が吸収され結晶内部に電子と正孔とが生じ、この電
子と正孔とがドリフトし、電流パルスが発生する。この
電流パルスの高さと単位時間当たりの数とを計測して結
晶内に入射した放射線のエネルギーと強度とを知る。
Conventionally, there are various detectors for detecting this radiation, and an optimum one is selected and adopted according to the purpose and the use of the apparatus. Since a detector used in an image inspection apparatus is desired to be integrated, a semiconductor detector is optimum, and a CdTe crystal is used as a semiconductor. This semiconductor detector is a unit element in which electrodes are provided on two opposite surfaces of a high-resistance minute CdTe crystal, which are used individually or in an integrated manner, and a bias voltage is applied between the electrodes during use. When the radiation enters the CdTe crystal in this state, a part of the radiation is absorbed by the interaction between the radiation and the atoms in the crystal to generate electrons and holes, and the electrons and holes drift, A current pulse is generated. The height and the number of this current pulse per unit time are measured to know the energy and intensity of the radiation incident on the crystal.

【0004】前記単位素子を用いて物体を透過してきた
放射線を測定し、画像化する方法としては3種の方法が
あり、1つは単位素子自体をX−Y方向に2次元走査す
る方法であり、測定に要する時間は最も長いものとな
る。2つめの方法は前記単位素子を例えばX軸方向に積
層し、得た積層体をY軸方向に1次元走査する方法であ
る。この方法は前記第1の方法より測定に要する時間は
短くなる。3つめの方法は、前記単位素子を2次元に積
層したものであり、必要とされる単位素子の数は多量と
なるものの測定に要する時間は極めて短くなる。測定時
間を短縮することは放射線の照射量が少ないことを意味
し、安全上最も好ましい。このことから前記単位素子を
2次元に積層した検出器の使用が最も推奨されるところ
である。
There are three types of methods for measuring the radiation that has passed through an object using the unit element and forming an image. One is a method of two-dimensionally scanning the unit element itself in the XY direction. Yes, the time required for measurement is the longest. The second method is a method of stacking the unit elements in, for example, the X-axis direction and one-dimensionally scanning the obtained stacked body in the Y-axis direction. This method requires less time than the first method. The third method is one in which the unit elements are two-dimensionally stacked, and although the number of required unit elements is large, the time required for measurement is extremely short. Shortening the measurement time means that the irradiation dose of radiation is small, which is the most preferable in terms of safety. For this reason, it is most recommended to use a detector in which the unit elements are two-dimensionally stacked.

【0005】半導体結晶板を用いて単位素子を2次元に
積層した検出器の1例として大きな半導体結晶板の片面
前面に金属層を形成し、これを共通電極とし、反対面に
各画素に対応する大きさの分離された電極を2次元に配
列し、配列した電極の個々に独立した増幅装置を設けた
ものがある。この検出器の場合、放射線が入射した直近
の電極に電流が流れることになり、この電流を測定する
ことにより放射線の入射位置と放射線の強さを検出する
ことができる。
As an example of a detector in which unit elements are two-dimensionally stacked by using a semiconductor crystal plate, a metal layer is formed on the front surface of one side of a large semiconductor crystal plate, which is used as a common electrode and corresponds to each pixel on the opposite side. There is a type in which separated electrodes of the same size are two-dimensionally arranged and an independent amplifying device is provided for each of the arranged electrodes. In the case of this detector, an electric current will flow through the electrode immediately adjacent to which the radiation is incident, and the incident position of the radiation and the intensity of the radiation can be detected by measuring this current.

【0006】この方法では該検出器は一体成形されるた
め簡単に製造できるものの、各素子は分離されていない
ため各素子間の信号漏れが生じる。この信号漏れは電極
間の間隔と半導体結晶板の厚さに依存し、電極間隔が狭
くなるほど、また半導体結晶板が厚くなるほど顕著にな
る。従って、分解能を上げたい場合や高エネルギーの放
射線を利用する場合にはこの方法で作成された検出器は
必ずしも適したものとはならなくなる。加えて複数の画
素のうちの1つでも放射線検出特性に不良が生じた場
合、検出器全体が使用不能となってしまう。
According to this method, the detector is integrally molded, so that it can be easily manufactured. However, since each element is not separated, a signal leak occurs between each element. This signal leakage depends on the distance between the electrodes and the thickness of the semiconductor crystal plate, and becomes more remarkable as the electrode distance becomes narrower and the semiconductor crystal plate becomes thicker. Therefore, the detector made by this method is not always suitable when the resolution is desired to be increased or high-energy radiation is used. In addition, if the radiation detection characteristic is defective even in one of the plurality of pixels, the entire detector becomes unusable.

【0007】なお、前記したように半導体結晶として一
般的に使用されるCdTe結晶板を用いて前記2次元に
積層した検出器を作成しようとすると、CdTe結晶板
は結晶製造上の制約より最大1〜2cm角の物しか得られ
ず、かつ極めて脆い材質であるため大面積の検出器は得
られない。
As described above, when an attempt is made to make a detector in which the CdTe crystal plate generally used as a semiconductor crystal is two-dimensionally stacked, the CdTe crystal plate is limited to a maximum of 1 due to crystal manufacturing restrictions. Only a ~ 2 cm square object can be obtained, and since it is an extremely brittle material, a large-area detector cannot be obtained.

【0008】単位素子を2次元に積層する別の方法は、
独立した微小の単位素子を作成し、各素子を一定の間隔
を設けて配置する方法である。この方法では、各素子間
には空間が存在するため、電気的には完全に分離されて
おり、厚い半導体結晶板を用いた場合でも前記信号漏れ
は生じない。しかし、組立が煩雑になることは避けられ
ない。加えて、分解能を上げるために素子を小さくし、
素子間の間隔を狭くすると感度が低下するという欠点が
ある。すなわち、2次元に集積して得た検出器全体の感
度は素子の大きさをLとし、素子間の間隔をDとし、比
例係数をAとしたとき、感度=A・L/(L+D)2
示されるが、この式より明らかなように、LがDに近づ
くに従い急速に感度は低下する。
Another method of stacking unit elements in two dimensions is as follows:
This is a method in which independent minute unit elements are created and each element is arranged with a constant interval. In this method, since there is a space between each element, they are completely electrically separated, and the signal leakage does not occur even when a thick semiconductor crystal plate is used. However, complicated assembly is inevitable. In addition, the element is made smaller to increase the resolution,
If the distance between the elements is narrowed, there is a drawback that the sensitivity is lowered. That is, the sensitivity of the entire detector obtained by two-dimensional integration is: Sensitivity = A · L / (L + D) 2 where L is the size of the element, D is the distance between the elements, and A is the proportional coefficient. As is clear from this equation, the sensitivity decreases rapidly as L approaches D.

【0009】[0009]

【発明が解決しようとする課題】本発明はCdTe結晶
を用いた新規な放射線検出素子とその製造方法、および
該放射線検出素子を1次元、あるいは2次元に積層して
得た高感度の放射線検出器用の提供を目的とする。
DISCLOSURE OF THE INVENTION The present invention provides a novel radiation detecting element using a CdTe crystal, a method for producing the same, and a highly sensitive radiation detecting obtained by laminating the radiation detecting element one-dimensionally or two-dimensionally. The purpose is to provide dexterity.

【0010】[0010]

【課題を解決するための手段】上記課題を解決する本発
明の放射線検出素子は、比抵抗が107〜5×109オーム/cm
の放射線検出素子用CdTe結晶において、その表面と
裏面とに金属層が設けられ、その全側面に比抵抗1010オー
ム/cm以上の超高抵抗層が設けられたものであり、該結
晶の製造方法は前記CdTe結晶板の表面と裏面とを研
磨し、表面と裏面の加工歪み層を除去した後、表面と裏
面とに金属層を設け、その後ワイヤーソーイングやダイ
シング等の機械的手段により所望の大きさに切断するも
のである。そして、本発明の放射線検出器は、単位素子
を1次元、あるいは2次元に積層した放射線検出器用素
子を用いた放射線検出器において、放射線検出器用検出
素子として単位素子として前記本発明の放射線検出素子
を相互に接するように1次元あるいは2次元に積層した
ものであり、あるいは表面の電極と裏面の電極との何れ
か一方を共通電極として1次元あるいは2次元に配置し
たものである。
The radiation detecting element of the present invention for solving the above-mentioned problems has a specific resistance of 10 7 to 5 × 10 9 ohm / cm.
Of the CdTe crystal for a radiation detecting element, wherein a metal layer is provided on the front surface and the back surface, and an ultrahigh resistance layer having a specific resistance of 10 10 ohm / cm or more is provided on all side surfaces thereof. The method is to polish the front surface and the back surface of the CdTe crystal plate, remove the processing strained layers on the front surface and the back surface, and then provide a metal layer on the front surface and the back surface, and then to obtain a desired material by mechanical means such as wire sawing or dicing. It is cut into pieces. The radiation detector of the present invention is a radiation detector using a radiation detector element in which unit elements are laminated one-dimensionally or two-dimensionally, and the radiation detection element of the present invention is used as a unit element as a radiation detector detection element. Are laminated one-dimensionally or two-dimensionally so as to be in contact with each other, or one-dimensionally or two-dimensionally arranged with one of the front surface electrode and the rear surface electrode as a common electrode.

【0011】[0011]

【作用】通常放射線検出素子として用いられるCdTe
結晶はブリッジマン法やTHM法などで育成された比抵
抗が107〜5×109オーム/cmの物が用いられる。この点に
おいて本発明は新規な何物も開示するものではない。本
発明を発明とし得るところのものは、放射線検出素子と
して表面と裏面とを除く側面全面が比抵抗1010オーム/cm
以上の超高抵抗層で覆われたCdTe結晶の表面と裏面
とに金属層を設けたものを用いること、そしてその素子
の製造方法、そしてその素子を用いた放射線検出器にあ
る。
[Operation] CdTe which is usually used as a radiation detecting element
As the crystal, one having a specific resistance of 10 7 to 5 × 10 9 ohm / cm grown by the Bridgman method or THM method is used. In this respect, the present invention does not disclose anything novel. The invention which can be made the present invention has a specific resistance of 10 10 ohm / cm as the radiation detection element on the entire side surface except the front surface and the back surface.
The above CdTe crystal covered with the ultra-high resistance layer is provided with a metal layer on the front surface and the back surface thereof, a method of manufacturing the element, and a radiation detector using the element.

【0012】ちなみに、比抵抗が107〜5×109オーム/cm
の物を用いる理由を説明すると、比抵抗がこれより低い
とバイアス電圧を素子の電極に印可したときに電流が流
れてしまい雑音が発生するからである。また、これより
比抵抗が高いと結晶中のキャリアの移動度と寿命とが小
さくなりすぎ放射線入射による電流が検知できなくなる
からである。このような比抵抗の放射線検出用CdTe
結晶は塩素やインジウムやガリウムといった不純物を微
量添加することにより、あるいは高純度化することによ
り得られる。
Incidentally, the specific resistance is 10 7 to 5 × 10 9 ohm / cm.
The reason for using the above item is that if the specific resistance is lower than this, a current will flow when a bias voltage is applied to the electrodes of the element, and noise will be generated. Also, if the specific resistance is higher than this, the mobility and life of carriers in the crystal become too small, and the current due to radiation incidence cannot be detected. CdTe for detecting radiation having such a specific resistance
The crystal can be obtained by adding a trace amount of impurities such as chlorine, indium and gallium, or by purifying it.

【0013】本発明の素子に用いる結晶の表面と裏面と
に比抵抗1010オーム/cm以上の超高抵抗層を設けないのは
表面と裏面とに電極を設け、放射線が結晶内を通過する
に際して発生する電流を効率よく検出するためであり、
表面と裏面を除く全側面に比抵抗1010オーム/cm以上の超
高抵抗層を設けるのは、該結晶を用いて作成した単位素
子を相互に接して1次元、あるいは2次元に配置したと
き、前記超高抵抗層が絶縁層として働き、信号漏れを防
止するためである。なお、表面と裏面との電極の少なく
とも一方は相互に分離され、電気的に隔絶されているこ
とが必要であるが、他方は共通電極として一体化しても
支障はない。
The reason why an ultra-high resistance layer having a specific resistance of 10 10 ohm / cm or more is not provided on the front surface and the back surface of the crystal used in the device of the present invention is that electrodes are provided on the front surface and the back surface, and radiation passes through the crystal. This is because the current generated at that time is detected efficiently.
An ultra-high resistance layer having a specific resistance of 10 10 ohm / cm or more is provided on all side surfaces except the front surface and the back surface when the unit elements made of the crystal are arranged in one-dimensional or two-dimensional contact with each other. This is because the ultra-high resistance layer acts as an insulating layer to prevent signal leakage. It is necessary that at least one of the front surface electrode and the back surface electrode be electrically isolated from each other, but the other electrode may be integrated as a common electrode without any problem.

【0014】本発明の放射線検出素子に用いる結晶を得
るに際してはCdTe結晶より所望の厚さの結晶板を切
り出し、得た結晶板の表面と裏面とを研磨し、加工歪み
を除去した後機械的切断方法により所望の大きさ、形状
に切断する。CdTe結晶板の表面と裏面とを研磨し、
加工歪みを除去するのは両面に電極を設けるためであ
る。そして切断面を研磨せず粗面のままとするのは、加
工歪みを有する層が極めて高い抵抗値を持つからであ
る。この抵抗値の大きさと、加工歪みの大きさとは無関
係ではなく、定量的関係は明かではないものの加工歪み
が大きいほど抵抗値は高くなる。比抵抗が107〜5×109
オーム/cmのCdTe結晶を用いた場合、側面の加工歪み
層が1010オーム/cm以上の比抵抗を有すれば、該加工歪み
層が実質的に絶縁層として機能する。よって、機械的切
断方法として採用し得る方法は1010オーム/cm以上の比抵
抗を生ずる加工歪みを発生させる方法でなければならな
い。この程度の加工歪みはワイヤーソーイングやダイシ
ングなどの通常の機械的切断方法で十分得られる。
When obtaining a crystal used in the radiation detecting element of the present invention, a crystal plate having a desired thickness is cut out from a CdTe crystal, and the front and back surfaces of the obtained crystal plate are polished to remove mechanical strain and then mechanically removed. It is cut into a desired size and shape according to the cutting method. Polishing the front and back surfaces of the CdTe crystal plate,
The reason for removing the processing strain is to provide electrodes on both surfaces. The reason why the cut surface is not polished but remains rough is that the layer having a processing strain has an extremely high resistance value. The magnitude of this resistance value is not irrelevant to the magnitude of the processing strain, and although the quantitative relationship is not clear, the resistance value increases as the processing strain increases. Specific resistance is 10 7 to 5 × 10 9
When a CdTe crystal of ohm / cm is used, if the strained layer on the side surface has a specific resistance of 10 10 ohm / cm or more, the strained layer substantially functions as an insulating layer. Therefore, the method that can be adopted as the mechanical cutting method must be a method that causes a processing strain that causes a specific resistance of 10 10 ohm / cm or more. This degree of processing strain can be sufficiently obtained by ordinary mechanical cutting methods such as wire sawing and dicing.

【0015】本発明の放射線検出素子は前記方法で得た
該素子用結晶の表面と裏面とにバイアスを加えるための
電極を設けたものである。本発明の放射線検出素子を作
成するためには前記放射線検出素子用結晶の研磨面に金
属層を設けても良く、CdTe結晶板の表面と裏面とを
研磨し、表面の加工歪み層を除去した後表面と裏面とに
金属層を設け、その後ワイヤーソーイングやダイシング
などの通常の機械的手段で切断しても良く、この方法で
も結果的に同じものを得ることができる。後者の方法の
場合、切断後に各放射線検出素子の電極となる金属部の
周囲が切断時にわずかに面取りされるため、得られた放
射線検出素子同士を接して配置しても電極間には概ね50
μmの隙間が確保され、該素子を用いて放射線検出器用
の放射線検出器用検出素子を作成するに支障はない。
The radiation detecting element of the present invention is provided with electrodes for applying a bias to the front and back surfaces of the element crystal obtained by the above method. In order to prepare the radiation detecting element of the present invention, a metal layer may be provided on the polished surface of the crystal for the radiation detecting element, the front surface and the back surface of the CdTe crystal plate are polished, and the processing strain layer on the surface is removed. A metal layer may be provided on the back surface and the back surface, and thereafter, cutting may be performed by a normal mechanical means such as wire sawing or dicing, and the same result can be obtained even by this method. In the case of the latter method, since the periphery of the metal part which becomes the electrode of each radiation detection element after cutting is slightly chamfered when cutting, even if the obtained radiation detection elements are arranged in contact with each other, the distance between the electrodes is about 50.
A gap of μm is secured, and there is no problem in producing a radiation detector detection element for a radiation detector using the element.

【0016】電極とする金属は結晶との密着性が良く、
結晶内に電場を誘導できるものであれば良く、特にこだ
わらないが、通常金や白金が最も良く用いられている。
また電極の作成方法も無電解めっき、真空蒸着、スパッ
タリングなどの種々の一般的な製膜方法を用いることが
可能である。
The metal used as the electrode has good adhesion to the crystal,
Any material can be used as long as it can induce an electric field in the crystal, and it is not particularly limited, but gold and platinum are usually most widely used.
Further, as a method for forming the electrodes, various general film forming methods such as electroless plating, vacuum deposition, and sputtering can be used.

【0017】本発明の放射線検出器は前記方法で得られ
た本発明の放射線検出素子を相互に接するように1次元
あるいは2次元に積層した放射線検出器用素子を用いた
り、あるいは表面の電極と裏面の電極との何れか一方を
共通電極として1次元あるいは2次元に配置した放射線
検出器用検出素子を用いるものである。放射線検出器用
検出素子を作成するに際し本発明の放射線検出素子を相
互に接するように積層するのは、素子間の間隔をなく
し、放射線検出における不感帯域を可能な限り狭くし、
放射線検出素子を小さくした場合の感度の低下を極力抑
えようとするものである。ちなみに、本発明の放射線検
出器用検出素子の不感帯域は切断により生じた加工歪み
層の幅のみとなり、例えばワイヤーソーイングにより切
断した場合には、高々50μmであり、素子を小さくした
としても感度の低下を大幅に抑えることが可能となる。
The radiation detector of the present invention may be a radiation detector element obtained by laminating the radiation detection elements of the present invention obtained by the above-mentioned method in a one-dimensional or two-dimensional manner, or by using a front surface electrode and a back surface. One of the electrodes is used as a common electrode, and the detection element for the radiation detector is arranged one-dimensionally or two-dimensionally. Laminating the radiation detecting elements of the present invention so as to be in contact with each other when creating a detection element for a radiation detector, eliminating the interval between the elements, making the dead zone in radiation detection as narrow as possible,
It is intended to suppress the decrease in sensitivity as much as possible when the radiation detecting element is made small. By the way, the dead zone of the detection element for the radiation detector of the present invention is only the width of the processing strained layer caused by the cutting. For example, when it is cut by wire sawing, it is at most 50 μm, and the sensitivity is lowered even if the element is made small. Can be significantly reduced.

【0018】また、本発明の方法により得た放射線検出
素子を積層するに際し、特性不良の素子を事前に除去し
つつ積層することが可能となり、良好な高品質の放射線
検出器用検出素子の製造が可能となるばかりか、組立作
業が極めて簡単となり製造コストを大幅に削減できる。
Further, when the radiation detecting element obtained by the method of the present invention is laminated, it becomes possible to laminate while preliminarily removing the element having the defective characteristic, and it is possible to manufacture a good and high quality detecting element for a radiation detector. Not only is it possible, but the assembly work is extremely simple and the manufacturing cost can be greatly reduced.

【0019】[0019]

【実施例】次に本発明の実施例について述べる。 (実施例1)塩素添加により比抵抗が109オーム/cmとなっ
た直径4インチのCdTe結晶を切断し、厚さ2mmの単
結晶板を得た。この単結晶板の両面を#1000の研磨材を
用いてラッピング研磨し、両面の加工歪み層を除去し
た。次いで、臭素を約1%含むメタノール溶液を研磨液
とし、両面をメカノケミカル研磨によりラッピングによ
り生じた表面加工歪み層を完全に除去した。得られた結
晶板の厚さは約1.2mmとなっていた。
EXAMPLES Next, examples of the present invention will be described. Example 1 A 4-inch diameter CdTe crystal having a specific resistance of 10 9 ohm / cm by addition of chlorine was cut to obtain a single crystal plate having a thickness of 2 mm. Both sides of this single crystal plate were lapping-polished using an abrasive of # 1000 to remove the work strain layers on both sides. Then, a methanol solution containing about 1% of bromine was used as a polishing liquid, and the surface-processed strained layer caused by lapping was completely removed by mechanochemical polishing on both surfaces. The obtained crystal plate had a thickness of about 1.2 mm.

【0020】次に塩化金1gを水0.1リッターに溶解して得
た金めっき液に前記得られた結晶板を数秒間浸漬し、次
いで水洗し、乾燥し、結晶表面全体に厚さ約1μmの金
めっきを施した。次いでこの金めっきを施した結晶板を
マルチワイヤーソーを用いて縦横2方向に切断し、1辺
の長さが2mmの正方形の放射線検出素子を作成した。
Next, the crystal plate obtained above was immersed in a gold plating solution prepared by dissolving 1 g of gold chloride in 0.1 liter of water for several seconds, then washed with water and dried to form a crystal layer having a thickness of about 1 μm on the entire surface of the crystal. Gold plated. Then, the gold-plated crystal plate was cut in two directions in the vertical and horizontal directions using a multi-wire saw to prepare a square radiation detection element having a side length of 2 mm.

【0021】このようにして作成した100個の素子の放
射線検出特性をAm−241から放射される60Kevの放射線
を用いて測定したところ、感度のばらつきは(最大値−
最小値)/平均値=0.08となっていた。この100個の検
出素子の一方の電極面を導電性接着剤を用いてプリント
配線板に直列に配置し、表面に現れた検出素子の電極面
全面に導電性塗料を薄く塗布して共通電極を構成し、こ
の電極をアース端子と結合し、幅2mm、長さ200mmの1
次元アレイ検出端子を作成した。この検出端子の共通電
極側が放射線の入射面となる。
When the radiation detection characteristics of the 100 elements thus produced were measured using the radiation of 60 Kev emitted from Am-241, the variation of the sensitivity was (maximum value-
The minimum value / average value was 0.08. One electrode surface of these 100 detection elements is placed in series on the printed wiring board using a conductive adhesive, and a thin layer of conductive paint is applied to the entire electrode surface of the detection element that appears on the surface to form a common electrode. This electrode is connected to the ground terminal and the width is 2 mm and the length is 200 mm.
A dimensional array detection terminal was created. The common electrode side of the detection terminal serves as a radiation incident surface.

【0022】プリント配線板の裏面には各素子と対応す
る位置にリード線が設けられており、該リード線は前記
導電性接着剤を介して電極と結合している。各素子毎に
増幅器と結線し放射線検出器を構成した。
Lead wires are provided on the back surface of the printed wiring board at positions corresponding to the respective elements, and the lead wires are connected to the electrodes through the conductive adhesive. A radiation detector was constructed by connecting each element to an amplifier.

【0023】裏面側に100Mオームの抵抗を介して+50Vの
バイアス電圧を印可し、1.8mm□にコリメートした放射
線をアレイ内の任意の1個の素子に照射し、隣接する2
個の素子で検出される信号を観察し、素子間の信号漏れ
を調べた。その結果、信号漏れは全くなく、各素子は電
気的に完全に分離されていることが確認できた。
A bias voltage of +50 V was applied to the back surface side through a 100 M ohm resistor, and radiation collimated to 1.8 mm □ was irradiated to any one element in the array, and adjacent two
The signal detected by each element was observed and the signal leakage between elements was investigated. As a result, it was confirmed that there was no signal leakage and each element was electrically separated completely.

【0024】(実施例2)実施例1で用いた9個の放射
線検出素子を用いて6mm角の2次元アレイ検出器用検出
素子を作成し、これを用いて放射線検出器を作成し、中
央の素子に放射線を照射した以外は実施例1と同様にし
て各放射線検出素子間の信号漏れを調べた。その結果、
信号漏れは全くなく、各素子は電気的に完全に分離され
ていることが確認できた。
(Embodiment 2) A detector element for a two-dimensional array detector of 6 mm square was prepared by using the nine radiation detector elements used in Embodiment 1, and a radiation detector was prepared by using this detector element. Signal leakage between each radiation detection element was examined in the same manner as in Example 1 except that the element was irradiated with radiation. as a result,
It was confirmed that there was no signal leakage and each element was electrically completely separated.

【0025】[0025]

【発明の効果】本発明の放射線検出素子の側面に設けら
れた超高抵抗層は各素子間の電気的絶縁を完全ならしめ
るため、該素子を用いて放射線検出器用検出素子を作成
し、これを用いて放射線検出器を作成すれば、従来より
高性能の2次元集積型放射線検出器を低コストで製造可
能となる。
The ultra-high resistance layer provided on the side surface of the radiation detecting element of the present invention completes the electrical insulation between the respective elements, so that the detecting element for the radiation detector is prepared by using this element. If a radiation detector is created by using, it becomes possible to manufacture a two-dimensional integrated radiation detector having higher performance than ever before at low cost.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 比抵抗が107〜5×109オーム/cmの放射
線検出素子用CdTe結晶において、その表面と裏面と
に金属層が設けられ、その全側面に比抵抗1010オーム/cm
以上の超高抵抗層が設けられたことを特徴とする放射線
検出素子。
1. A CdTe crystal for a radiation detecting element having a specific resistance of 10 7 to 5 × 10 9 ohm / cm, a metal layer is provided on the front and back surfaces, and the specific resistance is 10 10 ohm / cm on all side surfaces.
A radiation detecting element comprising the above-mentioned ultra-high resistance layer.
【請求項2】 比抵抗が107〜5×109オーム/cmのCd
Te結晶板の表面と裏面とを研磨し、表面と裏面の加工
歪み層を除去した後、表面と裏面とに金属層を設け、次
いでワイヤーソーイング、ダイシング等の機械的手段に
より所望の大きさに切断することを特徴とする請求項1
記載の放射線検出素子の製造方法。
2. A Cd having a specific resistance of 10 7 to 5 × 10 9 ohm / cm.
After polishing the front and back surfaces of the Te crystal plate to remove the processing strain layers on the front and back surfaces, a metal layer is provided on the front and back surfaces, and then a desired size is obtained by mechanical means such as wire sawing or dicing. Cutting is performed by cutting.
A method for manufacturing the radiation detection element described.
【請求項3】 単位素子を1次元、あるいは2次元に
積層した放射線検出器用検出素子を用いる放射線検出器
において、単位素子として請求項1記載の放射線検出素
子を用い、該素子を相互に接するように1次元あるいは
2次元に積層したことを特徴とする放射線検出器。
3. A radiation detector using a detection element for a radiation detector in which unit elements are laminated one-dimensionally or two-dimensionally, and the radiation detection element according to claim 1 is used as the unit element so that the elements are in contact with each other. A radiation detector characterized by being laminated one-dimensionally or two-dimensionally.
【請求項4】 表面の電極と裏面の電極との何れか一
方が共通電極であることを特徴とする請求項3記載の放
射線検出器。
4. The radiation detector according to claim 3, wherein one of the front surface electrode and the rear surface electrode is a common electrode.
JP5200205A 1993-07-21 1993-07-21 Radiation detecting element, manufacture thereof, and radiation detector Pending JPH0738132A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5200205A JPH0738132A (en) 1993-07-21 1993-07-21 Radiation detecting element, manufacture thereof, and radiation detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5200205A JPH0738132A (en) 1993-07-21 1993-07-21 Radiation detecting element, manufacture thereof, and radiation detector

Publications (1)

Publication Number Publication Date
JPH0738132A true JPH0738132A (en) 1995-02-07

Family

ID=16420555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5200205A Pending JPH0738132A (en) 1993-07-21 1993-07-21 Radiation detecting element, manufacture thereof, and radiation detector

Country Status (1)

Country Link
JP (1) JPH0738132A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005308600A (en) * 2004-04-23 2005-11-04 Shimadzu Corp Radiographic foreign matter inspection device
WO2009041339A1 (en) * 2007-09-27 2009-04-02 Ishida Co., Ltd. X-ray line sensor module and x-ray foreign material inspecting apparatus
US9823362B2 (en) 2014-07-03 2017-11-21 Jx Nippon Mining & Metals Corporation Radiation detector UBM electrode structure body, radiation detector, and method of manufacturing same
US10199343B2 (en) 2015-03-31 2019-02-05 Jx Nippon Mining & Metals Corporation UBM (under bump metal) electrode structure for radiation detector, radiation detector and production method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005308600A (en) * 2004-04-23 2005-11-04 Shimadzu Corp Radiographic foreign matter inspection device
JP4590915B2 (en) * 2004-04-23 2010-12-01 株式会社島津製作所 Radiation foreign matter inspection equipment
WO2009041339A1 (en) * 2007-09-27 2009-04-02 Ishida Co., Ltd. X-ray line sensor module and x-ray foreign material inspecting apparatus
US9823362B2 (en) 2014-07-03 2017-11-21 Jx Nippon Mining & Metals Corporation Radiation detector UBM electrode structure body, radiation detector, and method of manufacturing same
US10199343B2 (en) 2015-03-31 2019-02-05 Jx Nippon Mining & Metals Corporation UBM (under bump metal) electrode structure for radiation detector, radiation detector and production method thereof

Similar Documents

Publication Publication Date Title
US6333504B1 (en) Semiconductor radiation detector with enhanced charge collection
JP5457635B2 (en) Computerized tomography detector and method of manufacturing the same
US3529161A (en) Semiconductor device for detecting and/or measuring radiation
US8110809B2 (en) Radiation detector and radiographic inspection apparatus
US20030010924A1 (en) Three dimensional radiation detector
JP3411580B2 (en) Ionizing radiation detector
JP5155808B2 (en) Semiconductor radiation detector and nuclear medicine diagnostic equipment
JPH053337A (en) Semiconductor radioactive detecting device, semiconductor radioactive detector, and its manufacture
JP4247263B2 (en) Semiconductor radiation detector and radiation detection apparatus
Bolotnikov et al. Performance characteristics of Frisch-ring CdZnTe detectors
US9733365B2 (en) Gamma ray detector and method of detecting gamma rays
US20130126746A1 (en) Array of virtual frisch-grid detectors with common cathode and reduced length of shielding electrodes
JPH07122776A (en) Light-radiation-electricity conversion semiconductor device and application thereof
US6878942B2 (en) Method and apparatus for detecting X-rays
US3939555A (en) Strip type radiation detector and method of making same
JPH0738132A (en) Radiation detecting element, manufacture thereof, and radiation detector
Luhta et al. Back-illuminated photodiodes for multislice CT
AU2001296123B2 (en) Gaseous-based detector for ionizing radiation and method in manufacturing the same
AU2001296123A1 (en) Gaseous-based detector for ionizing radiation and method in manufacturing the same
JPH0446471B2 (en)
JP4452838B2 (en) Semiconductor detector block and positron emission tomography apparatus using the same
US4060822A (en) Strip type radiation detector and method of making same
Bennett et al. Multi-element CdZnTe detectors for gamma ray detection and imaging
JP2922098B2 (en) Semiconductor radiation detector
JP2009259859A (en) Semiconductor radiation detector, and nuclear medicine diagnostic device