JP4452838B2 - Semiconductor detector block and positron emission tomography apparatus using the same - Google Patents

Semiconductor detector block and positron emission tomography apparatus using the same Download PDF

Info

Publication number
JP4452838B2
JP4452838B2 JP2006298068A JP2006298068A JP4452838B2 JP 4452838 B2 JP4452838 B2 JP 4452838B2 JP 2006298068 A JP2006298068 A JP 2006298068A JP 2006298068 A JP2006298068 A JP 2006298068A JP 4452838 B2 JP4452838 B2 JP 4452838B2
Authority
JP
Japan
Prior art keywords
semiconductor
semiconductor detector
detector block
electrically conductive
tomography apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006298068A
Other languages
Japanese (ja)
Other versions
JP2008116260A (en
Inventor
慶造 石井
洋平 菊池
成男 松山
浩道 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Original Assignee
Tohoku University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC filed Critical Tohoku University NUC
Priority to JP2006298068A priority Critical patent/JP4452838B2/en
Publication of JP2008116260A publication Critical patent/JP2008116260A/en
Application granted granted Critical
Publication of JP4452838B2 publication Critical patent/JP4452838B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Light Receiving Elements (AREA)
  • Measurement Of Radiation (AREA)
  • Nuclear Medicine (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Description

本発明は、陽電子放出核種で標識された薬剤を体内に投与して、がんの診断、脳等の器官の診断を行うことができる陽電子断層撮影装置や薬剤の開発等のために動物を用いた実験用の陽電子断層撮影装置等に用いられる半導体検出器ブロック及びこれを用いた陽電子断層撮影装置に関する。   The present invention uses a positron emission tomography apparatus that can administer a drug labeled with a positron emitting nuclide into the body to diagnose cancer and diagnose organs such as the brain, and the development of drugs. The present invention relates to a semiconductor detector block used in an experimental positron tomography apparatus and the like, and a positron tomography apparatus using the same.

陽電子断層撮影装置は、陽電子放出核種を用い、放出された陽電子と物質中の電子が出会い消滅するときに、180°の角度で放出される2本の511keVのガンマ線を検出してその核種の分布像を得るものである。陽電子断層撮影装置には、そのガンマ線の検出器として、従来、BGO、LSO、GSOなどのシンチレーターが用いられている。シンチレーター検出器は、円周上に並べられ、ガントリーを形成している。十数個のシンチレーターは、お互いが遮光壁で隔てられて束ねられ、その端部が数個の光電子増倍管に接続される。ガンマ線検出によって発光した光を数個の光電子増倍管で受けて、各々の光の強度比からどのシンチレーターでガンマ線が測定されたかを決定する。この原理に基づいた陽電子断層撮影装置の空間分解能は数mmが限界となっている。   The positron emission tomography apparatus uses a positron emitting nuclide, detects two 511 keV gamma rays emitted at an angle of 180 ° when the emitted positron and an electron in the material meet and disappear, and the distribution of the nuclide. Obtain an image. Conventionally, scintillators such as BGO, LSO, and GSO are used as γ-ray detectors in positron tomography apparatuses. The scintillator detectors are arranged on the circumference to form a gantry. Dozens of scintillators are bundled while being separated from each other by a light shielding wall, and their ends are connected to several photomultiplier tubes. The light emitted by the gamma ray detection is received by several photomultiplier tubes, and the scintillator used to determine the gamma ray is determined from the intensity ratio of each light. The spatial resolution of a positron tomography apparatus based on this principle is limited to several millimeters.

従来のシンチレーターでは、ガンマ線の進行方向に対する位置分解能は、その進行方向に対するシンチレーターの大きさに強く依存し、通常2mm程度が限界である。更に、ガンマ線の進行方向の検出位置は直接に測定できないため、進行方向にシンチレーションの発生した光の強度の減衰時間が違うシンチレーターを並べて、検出したガンマ線の光の信号の減衰時間を測定して検出されたシンチレーターを決定、つまりガンマ線の位置決定する方法が一般にとられており、その位置決定の精度は、数mmが限界となっている。   In the conventional scintillator, the position resolution with respect to the traveling direction of the gamma rays strongly depends on the size of the scintillator with respect to the traveling direction, and is usually about 2 mm. Furthermore, since the detection position in the traveling direction of gamma rays cannot be measured directly, scintillators with different scintillation light intensity decay times are arranged in the traveling direction and detected by measuring the decay time of the detected gamma ray light signal. In general, a method of determining the scintillator, that is, determining the position of the gamma ray is taken, and the accuracy of the position determination is limited to several mm.

Ge、Si等の半導体を用いた半導体検出器も提案されているが、液体窒素での冷却が必要であり、またGe、Siは原子番号がCdTeよりも小さいため、511keVガンマ線に対して吸収効果が小さいなどの欠点があり、1mm以下の高分解能を持つ陽電子断層撮影装置としては使用が困難であった。
特開2005−208057号公報 S. Rankowitz et al., “Positron scanner for locating brain tumors,” IRE Int Conv Rec 1962; 10 (Issue 9): 49-56.
Semiconductor detectors using semiconductors such as Ge and Si have also been proposed, but cooling with liquid nitrogen is required, and Ge and Si have an absorption effect on 511 keV gamma rays because the atomic number is smaller than CdTe. Therefore, it is difficult to use as a positron tomography apparatus having a high resolution of 1 mm or less.
JP 2005-208057 A S. Rankowitz et al., “Positron scanner for locating brain tumors,” IRE Int Conv Rec 1962; 10 (Issue 9): 49-56.

本発明は簡単な検出器構造を有し、かつ1mm以下の空間分解能を持った半導体検出器ブロック及びこれを備えた陽電子断層撮影装置を提供することを課題とするものである。   An object of the present invention is to provide a semiconductor detector block having a simple detector structure and a spatial resolution of 1 mm or less, and a positron emission tomography apparatus including the same.

上記の課題を解決するために本発明は、次のような半導体検出器ブロック及びこれを備えた陽電子断層撮影装置を提供するものである。
(1)表面に半導体板との間でショットキー接合を構成するインジウムからなる電気伝導抵抗性電極、裏面に電気伝導性電極が形成されたCdTe結晶からなる半導体板からなり、電気伝導抵抗性電極の4隅からの電気信号の比率を用いて半導体板内でのガンマ線の検出位置を2次元的に検出する半導体検出器を複数個重ね合わせ、3次元的にガンマ線の検出位置を求めることができるようにした半導体検出器ブロック。
(2)上記電気伝導性電極の構成材料は、白金であることを特徴とする(1)に記載の半導体検出器ブロック。
(3)隣接する半導体検出器の白金電極面同士を電気伝導性を持つペーストで貼り付けるとともにインジウム電極面同士を絶縁膜を介して複数個重ね合わせることを特徴とする(2)に記載の半導体検出器ブロック。
(4)上記電気伝導性電極からの電気信号を同時計数用の時間信号とし、ガンマ線を検出した他の半導体検出器との同時計数の判定に用いることを特徴とする(1)乃至(3)のいずれかに記載の半導体検出器ブロック。
(5)(1)乃至(4)のいずれかに記載の半導体検出器ブロックを2個以上備えた陽電子断層撮影装置。
(6)上記半導体検出器ブロックは、動径方向又は対向方向に独立して移動することができることを特徴とする(5)に記載の陽電子断層撮影装置。
In order to solve the above problems, the present invention provides the following semiconductor detector block and a positron emission tomography apparatus including the same.
(1) An electrically conductive resistive electrode composed of a CdTe crystal made of CdTe crystal having an electrically conductive electrode formed on the back surface and indium forming a Schottky junction with the semiconductor plate on the surface. A plurality of semiconductor detectors that two-dimensionally detect gamma ray detection positions in the semiconductor plate using the ratios of the electric signals from the four corners of the two can be overlapped to obtain the gamma ray detection positions three-dimensionally. Semiconductor detector block.
(2) The semiconductor detector block according to (1), wherein the constituent material of the electrically conductive electrode is platinum.
(3) The semiconductor according to (2), wherein the platinum electrode surfaces of adjacent semiconductor detectors are pasted together with an electrically conductive paste, and a plurality of indium electrode surfaces are overlapped with an insulating film interposed therebetween. Detector block.
(4) The electrical signal from the electrically conductive electrode is used as a time signal for coincidence counting and used for judgment of coincidence with other semiconductor detectors that have detected gamma rays. (1) to (3) The semiconductor detector block according to any one of the above.
(5) A positron emission tomography apparatus comprising two or more semiconductor detector blocks according to any one of (1) to (4).
(6) The positron emission tomography apparatus according to (5), wherein the semiconductor detector block can be moved independently in a radial direction or a facing direction.

本発明によれば、簡単な検出器構造を有し、かつ1mm以下の空間分解能を持った半導体検出器ブロック及びこれを備えた陽電子断層撮影装置が得られる。   According to the present invention, a semiconductor detector block having a simple detector structure and a spatial resolution of 1 mm or less and a positron emission tomography apparatus including the same can be obtained.

本発明に係るガンマ線の位置を3次元的に測定できる半導体検出器ブロックについて、図面を基に詳細に説明する。
図1は、半導体板内でのガンマ線の検出位置を2次元的に検出する半導体検出器を示すものである。
図1において、薄い半導体結晶板は、材質をCdTe結晶又はBrTl結晶とし、片方の面が電気伝導抵抗性電極、もう片方の面を電気伝導性電極とするものである。
A semiconductor detector block capable of measuring the position of gamma rays three-dimensionally according to the present invention will be described in detail with reference to the drawings.
FIG. 1 shows a semiconductor detector for two-dimensionally detecting a detection position of gamma rays in a semiconductor plate.
In FIG. 1, a thin semiconductor crystal plate is made of a CdTe crystal or a BrTl crystal, one surface is an electrically conductive resistive electrode, and the other surface is an electrically conductive electrode.

半導体検出器には電気伝導抵抗性電極面の4つの隅A、B、C、Dに、それぞれ端子を設け、それぞれを増幅回路に接続する。4つの端子に発生した電圧VA、VB、VC、VDを用いて、ガンマ線の半導体板上での検出位置X、YをVA、VB、VC、VDの関数として求める。 The semiconductor detector is provided with terminals at four corners A, B, C, D of the electrically conductive resistive electrode surface, and each is connected to an amplifier circuit. Using the voltages V A , V B , V C and V D generated at the four terminals, the detected positions X and Y of the gamma rays on the semiconductor plate are obtained as a function of V A , V B , V C and V D. .

CdTe結晶からなる半導体板をショットキー型の検出器にするために、片方の面を白金電極とし、もう片方の面をインジウム電極とする。インジウム電極面は、インジウムを薄く蒸着することにより電気伝導抵抗性を持たせる。これにより、半導体板のインジウム蒸着面が電気伝導抵抗性を持ち、かつ、半導体板がショットキー型の検出器として作動する。   In order to make a semiconductor plate made of CdTe crystal a Schottky detector, one surface is a platinum electrode and the other surface is an indium electrode. The indium electrode surface is provided with electric conduction resistance by thinly depositing indium. As a result, the indium vapor deposition surface of the semiconductor plate has electrical conductivity resistance, and the semiconductor plate operates as a Schottky detector.

10mm×10mm×1mmのCdTe結晶を準備し、その上に形成するインジウム電極面の厚さを変化させて、位置弁別能力を調べた結果、600Åの厚さのものが最も良かった。
次に図2は、インジウム電極面の4隅のうちの2つから電極を2端子とり、また白金電極面から1端子とり、1ミクロンスポットサイズの陽子ビームを0.5mm間隔で照射した結果得られたVa/(Va+Vb)の頻度を示すものである。図2より、この半導体検出器では0.2mm以上の位置分解能を得られていることが認められた。
As a result of preparing a CdTe crystal of 10 mm × 10 mm × 1 mm, changing the thickness of the indium electrode surface formed thereon, and examining the position discrimination ability, the one with a thickness of 600 mm was the best.
Next, FIG. 2 shows the result of taking two terminals from two of the four corners of the indium electrode surface and one terminal from the platinum electrode surface and irradiating a 1 micron spot size proton beam at 0.5 mm intervals. The frequency of Va / (Va + Vb) obtained is shown. From FIG. 2, it was confirmed that a position resolution of 0.2 mm or more was obtained with this semiconductor detector.

図3の下図は、半導体検出器ブロックの斜視図であり、図3の上図は、その左上部の部分断面図である。なお増幅器等の周辺装置は図示を省略してある。
半導体検出器ブロックは次のように形成される。
CdTe結晶からなる半導体板の白金電極面2同士を電気伝導性を持つペーストで相互に貼り付ける。これを、非常に薄い絶縁薄膜3と交互に幾重にも張り合わせることによって、力学的強度の無い薄い半導体板(CdTe結晶)からなる半導体検出器から、強度があり、しかも、高空間分解能でガンマ線の位置を3次元的に測定できる半導体検出器ブロックが形成される。
半導体検出器ブロックのどの半導体板でガンマ線が測定されたかは、白金電極とインジウム抵抗性電極の同時計数より決定される。
The lower diagram of FIG. 3 is a perspective view of the semiconductor detector block, and the upper diagram of FIG. 3 is a partial sectional view of the upper left portion thereof. Note that peripheral devices such as amplifiers are not shown.
The semiconductor detector block is formed as follows.
The platinum electrode surfaces 2 of the semiconductor plates made of CdTe crystals are pasted together with a paste having electrical conductivity. By laminating this with the very thin insulating thin film 3 alternately and repeatedly, the semiconductor detector made of a thin semiconductor plate (CdTe crystal) having no mechanical strength has high strength and high spatial resolution. A semiconductor detector block capable of measuring the position of the three-dimensionally is formed.
Which semiconductor plate of the semiconductor detector block has the gamma ray measured is determined by simultaneous counting of the platinum electrode and the indium resistive electrode.

次に陽電子断層撮影装置への適用について説明する。10mm×10mm×18mmの半導体検出器ブロックを数層にして円形又は対向型に並べる。半導体検出器ブロックは、動径方向又は対向方向に動く構造とする。
半導体検出器ブロックの電極面をガンマ線の検出方向に対して、垂直に配置することにより、パッキング比が100%の陽電子断層撮影装置が実現される(図4)。
Next, application to a positron emission tomography apparatus will be described. The semiconductor detector blocks of 10 mm × 10 mm × 18 mm are arranged in several layers and arranged in a circular or opposed manner. The semiconductor detector block has a structure that moves in the radial direction or the opposite direction.
By arranging the electrode surface of the semiconductor detector block perpendicular to the gamma ray detection direction, a positron emission tomography apparatus with a packing ratio of 100% is realized (FIG. 4).

陽電子放出核種で標識した薬剤を人又は動物に投与し、陽電子消滅によって発生した2つのガンマ線を同時計数する。ガンマ線は半導体検出器ブロックの中の半導体板で検出され、電子と空孔が生じる。空孔は白金陰極に集められ、時間情報信号として増幅回路に入力される。電子はインジウム陽極に集まり、インジウム抵抗性電極面を通して増幅回路に流れる。この際、インジウム抵抗性電極面の4隅の4端子に繋がった増幅器から信号が生じる。この信号から半導体板面上でのガンマ線検出位置が決定される。ガンマ線がコンプトン散乱によって近傍にある二つの半導体検出器で同時に検出された場合、被写体に近い方を真の検出位置とする。   A drug labeled with a positron emitting nuclide is administered to a person or animal, and two gamma rays generated by positron annihilation are simultaneously counted. The gamma rays are detected by a semiconductor plate in the semiconductor detector block, and electrons and holes are generated. The holes are collected on the platinum cathode and input to the amplifier circuit as a time information signal. Electrons collect at the indium anode and flow to the amplifier circuit through the indium resistive electrode surface. At this time, a signal is generated from an amplifier connected to four terminals at the four corners of the indium resistive electrode surface. From this signal, the gamma ray detection position on the semiconductor plate surface is determined. When gamma rays are detected simultaneously by two semiconductor detectors in the vicinity by Compton scattering, the true detection position is the one closer to the subject.

半導体検出器ブロックの分解能は次のようにして上げることができる。まずレーザー光を被写体に当て、その反射を測定することにより、被写体の表面と検出器ブロックとの位置関係を求める。次に、半導体検出器ブロックを被写体に近づけてガンマ線の3次元位置検出を行う。
半導体検出器ブロックが独立して動くようにし、任意の形状の被写体に対して同時計数する半導体検出器ブロック間の距離を短くすることによって、高感度かつ高空間分解能の陽電子断層撮影画像が得られる。
半導体検出器ブロック間の距離を20cm以下にすると、空間分解能は1mm以下の値にすることができることが実験的に分かった。本発明はこれにより、1mm以下の空間分解能を持った陽電子分布画像を実現する。
The resolution of the semiconductor detector block can be increased as follows. First, the positional relationship between the surface of the subject and the detector block is obtained by irradiating the subject with laser light and measuring the reflection. Next, the semiconductor detector block is brought close to the subject to detect the three-dimensional position of the gamma rays.
High sensitivity and high spatial resolution positron emission tomography images can be obtained by making the semiconductor detector blocks move independently and shortening the distance between the semiconductor detector blocks that simultaneously count the object of any shape. .
It has been experimentally found that the spatial resolution can be 1 mm or less when the distance between the semiconductor detector blocks is 20 cm or less. The present invention thereby realizes a positron distribution image having a spatial resolution of 1 mm or less.

従来の陽電子断層撮影装置では、空間分解能は3mm程度しか得られなかった。半導体片を用いしかも、薄くすることによって分解能を1mm以下にすることが可能になった。このため、マウスを用いた陽電子断層撮影装置による新薬剤の開発研究の展開を可能にするだけではなく、1mmの微小癌を見つけることを可能にし、新薬剤の開発、がんの撲滅に大いに貢献するものと期待される。   With a conventional positron tomography apparatus, a spatial resolution of only about 3 mm can be obtained. It was possible to reduce the resolution to 1 mm or less by using a semiconductor piece and making it thin. For this reason, not only will it be possible to develop new drug development research using a positron emission tomography system using a mouse, but it will also be possible to find 1 mm micro-cancers, contributing greatly to the development of new drugs and the eradication of cancer. Expected to do.

半導体板内でのガンマ線の検出位置を2次元的に検出する本発明に係る半導体検出器を示す図である。It is a figure which shows the semiconductor detector which concerns on this invention which detects the detection position of the gamma ray in a semiconductor plate two-dimensionally. 実験で確かめられたCdTe検出器の位置弁別能力を示す図である。It is a figure which shows the position discrimination capability of the CdTe detector confirmed by experiment. 本発明に係るCdTe検出器ブロックを示す図である。FIG. 3 is a diagram showing a CdTe detector block according to the present invention. パッキング比が100%の陽電子断層撮影装置におけるCdTe検出器ブロックの配置図である。FIG. 5 is a layout diagram of CdTe detector blocks in a positron emission tomography apparatus with a packing ratio of 100%.

符号の説明Explanation of symbols

1 インジウム電気伝導抵抗性電極面
2 白金電気伝導性電極面
3 絶縁薄膜
4 インジウム電気伝導抵抗性電極面端子
5 白金伝導性電極面端子
DESCRIPTION OF SYMBOLS 1 Indium electrically conductive resistive electrode surface 2 Platinum electrically conductive electrode surface 3 Insulating thin film 4 Indium electrically conductive resistive electrode surface terminal 5 Platinum conductive electrode surface terminal

Claims (6)

表面に半導体板との間でショットキー接合を構成するインジウムからなる電気伝導抵抗性電極、裏面に電気伝導性電極が形成されたCdTe結晶からなる半導体板からなり、電気伝導抵抗性電極の4隅からの電気信号の比率を用いて半導体板内でのガンマ線の検出位置を2次元的に検出する半導体検出器を複数個重ね合わせ、3次元的にガンマ線の検出位置を求めることができるようにした半導体検出器ブロック。 An electrically conductive resistive electrode made of indium that forms a Schottky junction with a semiconductor plate on the front surface, a semiconductor plate made of CdTe crystal with an electrically conductive electrode formed on the back surface, and the four corners of the electrically conductive resistive electrode Overlapping a plurality of semiconductor detectors that two-dimensionally detect the gamma ray detection position in the semiconductor plate using the ratio of the electrical signal from the three-dimensionally enabled to obtain the gamma ray detection position three-dimensionally. Semiconductor detector block. 上記電気伝導性電極の構成材料は、白金であることを特徴とする請求項1に記載の半導体検出器ブロック。   2. The semiconductor detector block according to claim 1, wherein the constituent material of the electrically conductive electrode is platinum. 隣接する半導体検出器の白金電極面同士を電気伝導性を持つペーストで貼り付けるとともにインジウム電極面同士を絶縁膜を介して複数個重ね合わせることを特徴とする請求項2に記載の半導体検出器ブロック。   3. The semiconductor detector block according to claim 2, wherein the platinum electrode surfaces of adjacent semiconductor detectors are pasted with a paste having electrical conductivity, and a plurality of indium electrode surfaces are overlapped via an insulating film. . 上記電気伝導性電極からの電気信号を同時計数用の時間信号とし、ガンマ線を検出した他の半導体検出器との同時計数の判定に用いることを特徴とする請求項1乃至3のいずれか1項に記載の半導体検出器ブロック。   4. The electrical signal from the electrically conductive electrode is used as a time signal for coincidence counting and used for judgment of coincidence with another semiconductor detector that detects gamma rays. The semiconductor detector block described in 1. 請求項1乃至4のいずれか1項に記載の半導体検出器ブロックを2個以上備えた陽電子断層撮影装置。   A positron emission tomography apparatus comprising two or more semiconductor detector blocks according to claim 1. 上記半導体検出器ブロックは、動径方向又は対向方向に独立して移動することができることを特徴とする請求項5に記載の陽電子断層撮影装置。   The positron emission tomography apparatus according to claim 5, wherein the semiconductor detector block can move independently in a radial direction or a facing direction.
JP2006298068A 2006-11-01 2006-11-01 Semiconductor detector block and positron emission tomography apparatus using the same Active JP4452838B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006298068A JP4452838B2 (en) 2006-11-01 2006-11-01 Semiconductor detector block and positron emission tomography apparatus using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006298068A JP4452838B2 (en) 2006-11-01 2006-11-01 Semiconductor detector block and positron emission tomography apparatus using the same

Publications (2)

Publication Number Publication Date
JP2008116260A JP2008116260A (en) 2008-05-22
JP4452838B2 true JP4452838B2 (en) 2010-04-21

Family

ID=39502317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006298068A Active JP4452838B2 (en) 2006-11-01 2006-11-01 Semiconductor detector block and positron emission tomography apparatus using the same

Country Status (1)

Country Link
JP (1) JP4452838B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8785865B2 (en) 2008-12-03 2014-07-22 Tohoku University Semiconductor detector for two-dimensionally detecting radiation positions and method for two-dimensionally detecting radiation positions using the same
US9831375B2 (en) * 2012-04-25 2017-11-28 Westinghouse Electric Company Llc Solid state radiation detector with enhanced gamma radiation sensitivity
JP7182930B2 (en) * 2018-07-24 2022-12-05 キヤノン株式会社 radiation detector

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61108930A (en) * 1984-11-01 1986-05-27 Hamamatsu Photonics Kk Semiconductor incident position detector for detecting incident position of corpuscular beam or the like
JPH02108992A (en) * 1988-10-18 1990-04-20 Toshiba Corp Radiation detector and radiation detecting device using same
JP3427584B2 (en) * 1995-03-22 2003-07-22 三菱電機株式会社 Wide-area radiation detector
JP2000504832A (en) * 1996-02-12 2000-04-18 ザ ユニバーシティ オブ アクロン Multimedia detector for medical images
US6028313A (en) * 1997-12-31 2000-02-22 Mcdaniel; David L. Direct conversion photon detector
JP4107754B2 (en) * 1999-02-18 2008-06-25 株式会社日立メディコ Semiconductor radiation detector
JP4659962B2 (en) * 2000-10-04 2011-03-30 株式会社東芝 Nuclear medicine diagnostic equipment
JP3976259B2 (en) * 2002-10-07 2007-09-12 株式会社日立製作所 Positron emission tomography equipment
JP2005077152A (en) * 2003-08-28 2005-03-24 Mitsubishi Heavy Ind Ltd Radiation detector

Also Published As

Publication number Publication date
JP2008116260A (en) 2008-05-22

Similar Documents

Publication Publication Date Title
US8063380B2 (en) Semiconductor crystal high resolution imager
Vandenbroucke et al. Performance characterization of a new high resolution PET scintillation detector
US8586937B2 (en) Systems and methods for providing a shared charge in pixelated image detectors
JP4619985B2 (en) Radiation detector and radiation inspection apparatus
US9069088B2 (en) Radiation-sensitive detector device with charge-rejecting segment gaps
WO2009130782A1 (en) Semiconductor detector block and positron emission tomography device using the same
US8937285B2 (en) Methods and systems for signal communication in gamma ray detectors
EP2347285A1 (en) Device for detecting highly energetic photons
JP4594624B2 (en) Radiation detection device and nuclear medicine diagnostic device
WO2013012809A1 (en) Radiation detector modules based on multi-layer cross strip semiconductor detectors
WO2011112273A1 (en) A method and system for nuclear imaging using multi-zone detector architecture
EP3924754A1 (en) High resolution depth-encoding pet detector with prismatoid light guide array
US20220155471A1 (en) Time of flight positron emission tomography with direct conversion semiconductor crystal detectors
JP4452838B2 (en) Semiconductor detector block and positron emission tomography apparatus using the same
JP3976259B2 (en) Positron emission tomography equipment
US10042058B2 (en) Detecting device for determining a position of reaction of gamma quanta and a method for determining a position of reaction of a gamma quanta in positron emission tomography
Sharifi et al. Design and experimental test of a novel double stack MRPC detector for medical imaging applications
Leadbeater et al. A modular positron camera for the study of industrial processes
JP5497304B2 (en) Tomography equipment
JP2009259859A (en) Semiconductor radiation detector, and nuclear medicine diagnostic device
US20220334268A1 (en) Compton imaging apparatus and single photon emission and positron emission tomography system comprising same
US20160245932A1 (en) Radiation detector and detection method having reduced polarization
JP2005090979A (en) Radiation detector for diagnosing nuclear medicine image and image diagnostic device
RU78332U1 (en) Γ-RADIATION DETECTOR (OPTIONS)
JP4695578B2 (en) Semiconductor radiation detector and positron emission tomography system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090330

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20090330

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20090414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090707

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090727

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091027

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20091203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100105

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150