JPH08178758A - Thermoelectric material and production thereof - Google Patents
Thermoelectric material and production thereofInfo
- Publication number
- JPH08178758A JPH08178758A JP6325937A JP32593794A JPH08178758A JP H08178758 A JPH08178758 A JP H08178758A JP 6325937 A JP6325937 A JP 6325937A JP 32593794 A JP32593794 A JP 32593794A JP H08178758 A JPH08178758 A JP H08178758A
- Authority
- JP
- Japan
- Prior art keywords
- thermoelectric material
- aluminum
- quasicrystal
- good
- conductor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000463 material Substances 0.000 title claims abstract description 49
- 238000004519 manufacturing process Methods 0.000 title claims description 7
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 27
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 27
- 239000013079 quasicrystal Substances 0.000 claims abstract description 20
- 239000004020 conductor Substances 0.000 claims abstract description 18
- 239000000956 alloy Substances 0.000 claims abstract description 15
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 15
- 239000002131 composite material Substances 0.000 claims abstract description 6
- 238000000034 method Methods 0.000 claims description 21
- 238000001125 extrusion Methods 0.000 claims description 19
- 239000000843 powder Substances 0.000 claims description 12
- 238000010791 quenching Methods 0.000 claims description 9
- 230000000171 quenching effect Effects 0.000 claims description 9
- 239000007788 liquid Substances 0.000 claims description 8
- 238000009689 gas atomisation Methods 0.000 claims description 6
- 238000003825 pressing Methods 0.000 claims description 4
- 229910052802 copper Inorganic materials 0.000 abstract description 8
- 239000000919 ceramic Substances 0.000 abstract description 5
- 230000007613 environmental effect Effects 0.000 abstract description 4
- 229910052737 gold Inorganic materials 0.000 abstract description 3
- 230000005484 gravity Effects 0.000 abstract description 3
- 229910052709 silver Inorganic materials 0.000 abstract description 3
- 238000011109 contamination Methods 0.000 abstract 1
- 230000002708 enhancing effect Effects 0.000 abstract 1
- 239000010949 copper Substances 0.000 description 17
- 229910052751 metal Inorganic materials 0.000 description 10
- 239000002184 metal Substances 0.000 description 10
- 238000010586 diagram Methods 0.000 description 7
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 5
- 238000000465 moulding Methods 0.000 description 5
- 238000001816 cooling Methods 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 239000010453 quartz Substances 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 238000007711 solidification Methods 0.000 description 3
- 230000008023 solidification Effects 0.000 description 3
- 239000007921 spray Substances 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 229910052797 bismuth Inorganic materials 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 125000006850 spacer group Chemical group 0.000 description 2
- 239000004593 Epoxy Substances 0.000 description 1
- 230000005679 Peltier effect Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000007731 hot pressing Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000003380 propellant Substances 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 231100000701 toxic element Toxicity 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Powder Metallurgy (AREA)
- Conductive Materials (AREA)
- Measuring Temperature Or Quantity Of Heat (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、準結晶の熱電特性とア
ルミニウムの電気伝導性を利用した軽量であると共に、
環境保護に適した熱電素子等の熱電材料及びその製造方
法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is lightweight utilizing the thermoelectric properties of quasicrystals and the electrical conductivity of aluminum.
The present invention relates to a thermoelectric material such as a thermoelectric element suitable for environmental protection and a method for manufacturing the same.
【0002】[0002]
【従来の技術】室温での使用に適した代表的なペルチエ
効果素子(熱電素子)は、Bi、Sb、Te又はSeを
主体とする組成を有する。2. Description of the Related Art A typical Peltier effect element (thermoelectric element) suitable for use at room temperature has a composition mainly containing Bi, Sb, Te or Se.
【0003】図1は、熱電素子モジュールを示す模式図
である。1対のセラミックス板1間にp型熱電材料3
と、n型熱電材料4とが挟まれており、セラミックス板
1とp型熱電材料3及びn型熱電材料4との間には夫々
電極2が設けられている。FIG. 1 is a schematic view showing a thermoelectric element module. P-type thermoelectric material 3 between a pair of ceramic plates 1
And n-type thermoelectric material 4 are sandwiched between them, and electrodes 2 are provided between the ceramic plate 1 and the p-type thermoelectric material 3 and the n-type thermoelectric material 4, respectively.
【0004】このp型及びn型の熱電材料3,4は、B
i,Sb,Te又はSeを主体とする材料で構成されて
いる。The p-type and n-type thermoelectric materials 3 and 4 are B
The material is mainly composed of i, Sb, Te or Se.
【0005】[0005]
【発明が解決しようとする課題】しかしながら、これら
の従来の熱電材料は、Bi,Sb,Te,Se等の有毒
元素であるため、環境に悪影響を及ぼしやすいという難
点がある。また、これらの熱電材料は、比重が6.7g
/cm3であり、重いという欠点もある。更に、これら
の従来の熱電材料は、導電率が低いという問題点もあ
る。However, since these conventional thermoelectric materials are toxic elements such as Bi, Sb, Te and Se, they have a drawback that they are likely to have a bad influence on the environment. Also, these thermoelectric materials have a specific gravity of 6.7 g.
Since it is / cm 3 , it also has the drawback of being heavy. Further, these conventional thermoelectric materials also have a problem of low electrical conductivity.
【0006】本発明はかかる問題点に鑑みてなされたも
のであって、軽量且つ高導電率であると共に、環境保護
に適した熱電材料及びその製造方法を提供することを目
的とする。The present invention has been made in view of the above problems, and an object of the present invention is to provide a thermoelectric material which is lightweight and has high electrical conductivity, and which is suitable for environmental protection, and a method for manufacturing the same.
【0007】[0007]
【課題を解決するための手段】本発明に係る熱電材料
は、アルミニウム基合金の準結晶と電気良導体との複合
体からなることを特徴とする。この電気良導体とは、f
cc構造のアルミニウムがある。The thermoelectric material according to the present invention is characterized by comprising a composite of a quasicrystal of an aluminum-based alloy and a good electrical conductor. This good electrical conductor is f
There is a cc structure of aluminum.
【0008】本発明に係る熱電材料の製造方法は、アル
ミニウム基合金を液体急冷法又はガスアトマイズ法によ
り急冷してその薄帯、薄片又は粉末を得、これをそのま
ま又は熱処理して準結晶相とした後、電気良導体と混合
してホットプレス又は押出等により固化成形することを
特徴とする。In the method for producing a thermoelectric material according to the present invention, an aluminum-based alloy is rapidly cooled by a liquid quenching method or a gas atomizing method to obtain a ribbon, flakes or powder, which is directly or heat-treated to be a quasicrystalline phase. After that, it is characterized in that it is mixed with a good electric conductor and solidified by hot pressing or extrusion.
【0009】[0009]
【作用】本発明においては、比重が2.5〜3.5g/
cm3と軽量であるアルミニウム基合金からなる準結晶
と、fcc構造のアルミニウム等からなる電気良導体の
複合体を熱電材料としているので、軽量であると共に、
環境保護に適している。また、この熱電材料はアルミニ
ウム基の準結晶を含んでいるので、性能指数が優れてい
る。更に、電気良導体も含有しているので、導電率が高
い。In the present invention, the specific gravity is 2.5 to 3.5 g /
Since a composite of a quasi-crystal made of an aluminum-based alloy, which is light in cm 3, and a good electric conductor made of aluminum or the like having an fcc structure is used as a thermoelectric material, it is lightweight and
Suitable for environmental protection. Further, since this thermoelectric material contains aluminum-based quasicrystals, the figure of merit is excellent. Furthermore, since it also contains a good electrical conductor, it has high conductivity.
【0010】電気良導体として、fcc構造のアルミニ
ウムを使用すると、準結晶と電気良導体とは同系の材料
であるので、両者の界面の接合が強力になり、熱電材料
の強度が高くなる。When aluminum having an fcc structure is used as the good electrical conductor, the quasicrystal and the good electrical conductor are materials of the same system, so that the interface between the two becomes strong and the strength of the thermoelectric material becomes high.
【0011】[0011]
【実施例】次に、本発明の熱電材料について更に詳細に
説明する。電気良導体としては、fcc構造のアルミニ
ウムの他に、Ag、Au及びCu等がある。このうち、
熱電導材の強度を考慮すると、Alを使用することが好
ましい。導電率の点からは、Au又はAgが好ましい
が、高導電率と低コストの双方を満足するためには、A
gの方が好ましい。EXAMPLES Next, the thermoelectric material of the present invention will be described in more detail. Examples of good electric conductors include Ag, Au, Cu, and the like, in addition to aluminum having an fcc structure. this house,
Considering the strength of the thermoconductive material, it is preferable to use Al. From the viewpoint of conductivity, Au or Ag is preferable, but in order to satisfy both high conductivity and low cost, A or Ag is preferable.
g is preferred.
【0012】アルミニウム基の準結晶としては、以下に
例示するものがある。 (1)Al100-xMnx(20≦x≦23原子%) (2)Al100-xCrx(14≦x≦16原子%) (3)Al100-xVx(16≦x≦18原子%) (4)Al100-xMox(8≦x12原子%) (5)Al74Mn20Si6 (6)Al72Mn20Si8 (7)Al55Mn25Si20 (8)Al75Cu15V10 (9)Al75Fe15Ni10 (10)Al70Ni15Co15 (11)Al65Cu20Fe15 (12)Al65Cu20Ru15 (13)Al65Cu20Os15 (14)Al65Cu20Cr15 (15)Al65Cu20Mn15 (16)Al70Pd20Mn10 (17)Al70Pd20Re10 (18)Al75Pd15Fe10 (19)Al75Pd15Ru10 (20)Al75Pd15Os10 (21)Al 75 Cu15Co20 (22)Al56Li33Cu11 (23)Al60Li30Cu10 (24)Al60Li30Au10 (25)Al50Mg40Cu10 (26)Al52Mg18Pd30 (27)Al43Mg43Pd14 (28)Al53Mn20Si27 (29)Al50Mg35Ag15 (30)Al50Mg25Li25 (31)Al73Pd20Mn7 The following are examples of aluminum-based quasicrystals. (1) Al 100-x Mn x (20 ≦ x ≦ 23 atomic%) (2) Al 100-x Cr x (14 ≦ x ≦ 16 atomic%) (3) Al 100-x V x (16 ≦ x ≦) 18 atom%) (4) Al 100-x Mo x (8 ≦ x12 atom%) (5) Al 74 Mn 20 Si 6 (6) Al 72 Mn 20 Si 8 (7) Al 55 Mn 25 Si 20 (8) Al 75 Cu 15 V 10 (9) Al 75 Fe 15 Ni 10 (10) Al 70 Ni 15 Co 15 (11) Al 65 Cu 20 Fe 15 (12) Al 65 Cu 20 Ru 15 (13) Al 65 Cu 20 Os 15 (14) Al 65 Cu 20 Cr 15 (15) Al 65 Cu 20 Mn 15 (16) Al 70 Pd 20 Mn 10 (17) Al 70 Pd 20 Re 10 (18) Al 75 Pd 15 Fe 10 (19) Al 75 Pd 15 Ru 10 (20) Al 75 Pd 15 Os 10 (21) Al 75 Cu 15 Co 20 (22) Al 56 Li 33 Cu 11 (23) Al 60 Li 30 Cu 10 (24) Al 60 Li 30 Au 10 (25) Al 50 Mg 40 Cu 10 (26) Al 52 Mg 18 Pd 30 (27) Al 43 Mg 43 Pd 14 (28) Al 53 Mn 20 Si 27 (29) Al 50 Mg 35 Ag 15 (30) Al 50 Mg 25 Li 25 (31) Al 73 Pd 20 Mn 7
【0013】熱電材料におけるアルミニウム基の準結晶
の割合は、50〜95体積%とすることが好ましい。こ
れは熱電材料の強度の点から、アルミニウム基準結晶の
割合が50体積%以上である方が好ましいからである。
また、準結晶の割合が95体積%を超えると、脆化して
モジュールとしての強度が不足するので、準結晶の割合
は95体積%以下とすることが好ましい。The proportion of aluminum-based quasicrystals in the thermoelectric material is preferably 50 to 95% by volume. This is because from the viewpoint of strength of the thermoelectric material, it is preferable that the proportion of the aluminum reference crystal is 50% by volume or more.
Further, if the proportion of the quasicrystal exceeds 95% by volume, the strength of the module becomes insufficient due to embrittlement, so the proportion of the quasicrystal is preferably 95% by volume or less.
【0014】これらのアルミニウム基合金(1)〜(32)の
準結晶は液体急冷法により得ることができる。また、ア
ルミニウム基合金(8),(26),(28)の準結晶は、液体急冷
法によりアモルファス相とした後、650乃至820K
に60〜600秒保持する熱処理を行うことにより準結
晶とすることができる。Quasicrystals of these aluminum-based alloys (1) to (32) can be obtained by a liquid quenching method. The quasi-crystals of aluminum-based alloys (8), (26), (28) were made into an amorphous phase by the liquid quenching method, and then 650 to 820K
A quasicrystal can be obtained by performing a heat treatment for 60 to 600 seconds.
【0015】更に、アルミニウム基合金(9)〜(22)は、
液体急冷法により急冷しなくても、水冷、油冷又は炉冷
等の冷却方法で準結晶とすることができる。Further, the aluminum base alloys (9) to (22) are
A quasicrystal can be formed by a cooling method such as water cooling, oil cooling, or furnace cooling without quenching by the liquid quenching method.
【0016】この準結晶相は、液体急冷法により薄帯、
厚片又は粉末を得ることにより、又は更にこれを熱処理
することにより得ることができる。また、液体急冷法の
替わりに、ガスアトマイズ法を適用することもできる。
そして、この準結晶相をポットプレス又は押出法等によ
り固化成形することにより、熱電材料とすることができ
る。This quasi-crystalline phase is a thin ribbon,
It can be obtained by obtaining thick pieces or powder, or by further heat treating it. Further, a gas atomizing method can be applied instead of the liquid quenching method.
Then, the quasi-crystalline phase is solidified and molded by a pot press, an extrusion method, or the like to obtain a thermoelectric material.
【0017】次に、このアルミニウム基合金からなる準
結晶相の製造方法について具体的に説明する。図2は液
体急冷法を説明する図である。銅製ローラ2の上方に石
英ノズル1が配設されており、石英ノズル1内にはアル
ミニウム基合金の溶湯3が貯留されている。Next, the method for producing the quasi-crystalline phase made of this aluminum-based alloy will be specifically described. FIG. 2 is a diagram for explaining the liquid quenching method. A quartz nozzle 1 is arranged above a copper roller 2, and a molten aluminum-based alloy 3 is stored in the quartz nozzle 1.
【0018】そして、石英ノズル1の下端5から溶湯3
を銅製ローラ2上に供給し、銅製ローラ2を矢印方向に
回転駆動すると、銅製ローラ2により溶湯3が急冷され
て、その薄帯4が得られる。Then, from the lower end 5 of the quartz nozzle 1 to the molten metal 3
Is supplied onto the copper roller 2, and the copper roller 2 is rotationally driven in the direction of the arrow, the molten metal 3 is rapidly cooled by the copper roller 2, and the ribbon 4 is obtained.
【0019】図3はガスアトマイズ法を示す図である。
溶湯保持るつぼ11内に溶湯が貯留されておりるつぼ1
1の下壁中央から溶湯の細流14が流出するようになっ
ている。そして、るつぼ11の下面には噴霧ノズル13
が配置されており、この噴霧ノズル13から溶湯細流1
4に向けて高圧ガスが噴き付けられるようになってい
る。FIG. 3 is a diagram showing the gas atomizing method.
Molten metal is stored in a crucible 11 for holding molten metal.
A trickle stream 14 of molten metal flows out from the center of the lower wall of 1. The spray nozzle 13 is provided on the lower surface of the crucible 11.
Are arranged, and the molten metal trickle 1 is discharged from the spray nozzle 13.
High-pressure gas is sprayed toward No. 4.
【0020】このガスアトマイズ法においては、高圧ガ
ス2が吹き付けられる粉化点15にて、溶湯細流14が
急冷されて粉化する。この粉化したアルミニウム基合金
は粉化点15から落下する過程で冷却される。In this gas atomizing method, the molten metal fine stream 14 is rapidly cooled and pulverized at the pulverization point 15 to which the high pressure gas 2 is sprayed. The powdered aluminum-based alloy is cooled in the process of falling from the powdering point 15.
【0021】これらの図2により得られた急冷薄帯4又
は図3により得られた粉体は、そのまま又は熱処理後、
粉砕し、分級した後、固化成形する。The quenched ribbon 4 obtained according to FIG. 2 or the powder obtained according to FIG.
It is crushed, classified, and then solidified and molded.
【0022】この固化成形はプレス法又は押出法により
行うことができる。例えば、プレスによる固化成形条件
は、プレス圧力P、プレス温度Pを以下の条件にて10
分以上処理する。This solidification molding can be performed by a pressing method or an extrusion method. For example, the solidification molding conditions by pressing are as follows: press pressure P, press temperature P:
Process for more than a minute.
【0023】 300kgf/cm2≦P≦8000kgf/cm2 室温≦T≦450℃ 一方、押出法により固化成形する場合は、押出温度Tを
以下の条件にする。即ち、押出においては、押出温度を
室温以上、例えば、450℃(723K)以下とする。
また、押出比は例えば、5乃至20である。300 kgf / cm 2 ≦ P ≦ 8000 kgf / cm 2 room temperature ≦ T ≦ 450 ° C. On the other hand, in the case of solidification molding by an extrusion method, the extrusion temperature T is set to the following conditions. That is, in extrusion, the extrusion temperature is set to room temperature or higher, for example, 450 ° C. (723 K) or lower.
The extrusion ratio is, for example, 5 to 20.
【0024】なお、押出工程の前に、予備加熱すること
が好ましい。この予備加熱条件は例えば、573K以下
のオイルバスの場合は、240秒、573〜725Kの
電気炉の場合は、900秒である。It is preferable to preheat before the extrusion step. The preheating conditions are, for example, 240 seconds in the case of an oil bath of 573K or less and 900 seconds in the case of an electric furnace of 573 to 725K.
【0025】また、押出比は5乃至20である。この押
出比は、押出加工において材料の変形の程度を示す尺度
となるものであり、押出比は材料の始めの断面積をA、
押出後の断面積をaとすれば、A/aで表される。な
お、押出比を断面減少率で評価する場合もある。また、
前記押出比5乃至20は、ダイス半角が30°、押出速
度(ラム速度)が5mm/秒の場合のものである。The extrusion ratio is 5 to 20. This extrusion ratio is a measure of the degree of deformation of the material during extrusion processing, and the extrusion ratio is the cross-sectional area at the beginning of the material, A,
The cross-sectional area after extrusion is represented by A / a. The extrusion ratio may be evaluated by the cross-sectional reduction rate. Also,
The extrusion ratios 5 to 20 are those when the die half angle is 30 ° and the extrusion speed (ram speed) is 5 mm / sec.
【0026】押出ビレットは図4に示す構造を有する。
即ち、容器20は外径が23mm,内径が20mmのア
ルミニウム製又は銅製のものであり、この容器20内
に、圧力250MPaの冷間プレスにより5gづつ、合
計20〜25gの粉末21を約78%の充填率で詰め、
スペーサ22を配置した後、1×10-3Paの真空度で
約21.6ks真空引きした後、Arガスで置換する。
その後、プラグ23を配置し、エポキシ系又はセラミッ
クス系の接着剤24によりプラグ23と容器20内面と
の間をシールする。このようにして、押出ビレットが得
られる。The extruded billet has the structure shown in FIG.
That is, the container 20 is made of aluminum or copper having an outer diameter of 23 mm and an inner diameter of 20 mm, and 5 g of each powder is added to the container 20 by cold pressing at a pressure of 250 MPa, a total of 20 to 25 g of powder 21 being about 78%. Packed at a filling rate of
After the spacers 22 are arranged, a vacuum of 1 × 10 −3 Pa is applied for about 21.6 ks, and then Ar gas is substituted.
After that, the plug 23 is arranged, and the gap between the plug 23 and the inner surface of the container 20 is sealed by the epoxy or ceramic adhesive 24. In this way, an extruded billet is obtained.
【0027】図5は衝撃成形法の概要を示す図である。
円筒状のホルダ31の一端部に、スパーリングリング3
2を介してコンテナ33がその開口部をホルダ31の他
端部に向けて設置されており、このコンテナ33内には
粉末34が収納され、プラグ35が粉末34を封入して
いる。そして、このプラグ35に向けて、衝撃銃から推
進体37を発射し、この推進体37に固定されたフライ
ヤ36を所定の速度でプラグ35に衝突させる。この衝
撃圧力は20〜200GPaであり、この衝撃力により
粉末34は瞬間的に固化成形される。FIG. 5 is a diagram showing an outline of the impact molding method.
The spar ring 3 is attached to one end of the cylindrical holder 31.
A container 33 is installed with the opening of the container 33 facing the other end of the holder 31, the powder 34 is stored in the container 33, and the plug 35 encloses the powder 34. Then, a propulsion body 37 is ejected from the impact gun toward the plug 35, and the flyer 36 fixed to the propulsion body 37 is caused to collide with the plug 35 at a predetermined speed. The impact pressure is 20 to 200 GPa, and the impact force causes the powder 34 to be instantaneously solidified and molded.
【0028】このようにして、固化成形したアルミニウ
ム基合金は所定の形状に切断した後、モジュール化す
る。The solidified aluminum-based alloy is cut into a predetermined shape and then modularized.
【0029】熱電材料の性能指数ZはZ=α2σ/κに
より表される。但し、αは熱起電力、σは導電率、κは
熱伝導率である。本実施例においては、準結晶を含むこ
とから、通常の結晶材とは異なり、熱起電力が20〜5
0倍に上昇し、熱起電力κが1/50〜1/100に低
下する。しかも、Al相が導電率σを向上させて結果的
に性能指数Zが向上する。The figure of merit Z of the thermoelectric material is represented by Z = α 2 σ / κ. Here, α is thermoelectromotive force, σ is electrical conductivity, and κ is thermal conductivity. In this example, since the quasicrystal is included, the thermoelectromotive force is 20 to 5 unlike the ordinary crystal material.
It increases to 0 times and the thermoelectromotive force κ decreases to 1/50 to 1/100. Moreover, the Al phase improves the conductivity σ, and as a result the performance index Z is improved.
【0030】次に、実際に本発明の実施例に係る熱電材
料を製造してその特性を調べた結果について、比較例と
比較して説明する。この熱電材料は、一般式AlXQYで
表され、下記表1及び表2において、組成欄はQの組成
を表す。また、Alの量X(重量%)により、この熱電
材料の組成を示した。従って、Qの量Y(重量%)は1
00−Xである。但し、測定温度は全て室温である。こ
れらの熱電材料の特性を下記表1(本発明の実施例)及
び表2(比較例)に示す。また、|α|は熱起電力αの
絶対値、ρは比抵抗、Zは性能指数である。Next, the results of actually producing thermoelectric materials according to the examples of the present invention and examining the characteristics thereof will be described in comparison with comparative examples. This thermoelectric material is represented by the general formula Al X Q Y , and in the following Tables 1 and 2, the composition column shows the composition of Q. Further, the composition of this thermoelectric material was shown by the amount X (% by weight) of Al. Therefore, the amount Y of Q (% by weight) is 1
00-X. However, all measurement temperatures are room temperature. The properties of these thermoelectric materials are shown in Table 1 (Examples of the present invention) and Table 2 (Comparative Examples) below. Also, | α | is the absolute value of the thermoelectromotive force α, ρ is the specific resistance, and Z is the figure of merit.
【0031】[0031]
【表1】 [Table 1]
【0032】 [0032]
【0033】[0033]
【表2】 [Table 2]
【0034】 [0034]
【0035】これらの表1及び表2の比較から、本発明
の実施例に係る熱電材料はいずれも性能指数が高いのに
対し、比較例の熱電材料は性能指数が低い。From the comparison of these Tables 1 and 2, the thermoelectric materials according to the examples of the present invention have a high figure of merit, whereas the thermoelectric materials of the comparative examples have a low figure of merit.
【0036】次に、AgXQY系熱電材料の熱起電力、比
抵抗及び性能指数を下記表3(実施例)及び表4(比較
例)に示す。Next, the thermoelectromotive force, the specific resistance and the figure of merit of the Ag X Q Y based thermoelectric material are shown in Table 3 (Examples) and Table 4 (Comparative Examples) below.
【0037】[0037]
【表3】 [Table 3]
【0038】 [0038]
【0039】[0039]
【表4】 [Table 4]
【0040】 [0040]
【0041】これらの表3及び表4の比較から、本発明
の実施例に係る熱電材料はいずれも性能指数が高いのに
対し、比較例の熱電材料は性能指数が低い。From the comparison of these Tables 3 and 4, the thermoelectric materials according to the examples of the present invention have a high figure of merit, whereas the thermoelectric materials of the comparative examples have a low figure of merit.
【0042】[0042]
【発明の効果】以上説明したように、本発明は、アルミ
ニウム基合金の準結晶と電気良導体との複合体からなる
熱電材料であるので、軽量であると共に、導電率が高い
という優れた効果を奏する。また、これらの構成元素は
環境を汚染することがないという利点を有する。As described above, the present invention is a thermoelectric material composed of a composite of a quasicrystal of an aluminum-based alloy and a good electrical conductor, and therefore has the excellent effects of being lightweight and having high conductivity. Play. Further, these constituent elements have an advantage that they do not pollute the environment.
【0043】[0043]
【図1】熱電素子の一例を示す模式図である。FIG. 1 is a schematic view showing an example of a thermoelectric element.
【0044】[0044]
【図2】液体急冷法を説明する模式図である。FIG. 2 is a schematic diagram illustrating a liquid quenching method.
【0045】[0045]
【図3】ガスアトマイズ法を説明する模式図である。FIG. 3 is a schematic diagram illustrating a gas atomizing method.
【0046】[0046]
【図4】押出ビレットの製造方法を説明する図である。FIG. 4 is a diagram illustrating a method for manufacturing an extrusion billet.
【0047】[0047]
【図5】衝撃成形法を説明する図である。FIG. 5 is a diagram illustrating an impact molding method.
【0048】[0048]
1:セラミック板、2:電極、3:p型熱電材料、4:
n型熱電材料、5:石英ノズル、6:銅製ロール、7:
溶湯、8:薄帯、11:溶湯保持るつぼ、12:高圧ガ
ス、13:噴霧ノズル、14:溶湯細流、15:粉化
点、16:粉体、20:容器、21:粉体、22:スペ
ーサ、23:プラグ、24:接着剤、31:ホルダ、3
2:スパーリングリング、33:コンテナ、34:粉
体、35:プラグ、36:フライヤ、37:推進体1: ceramic plate, 2: electrode, 3: p-type thermoelectric material, 4:
n-type thermoelectric material, 5: quartz nozzle, 6: copper roll, 7:
Molten metal, 8: ribbon, 11: crucible for holding molten metal, 12: high-pressure gas, 13: spray nozzle, 14: narrow stream of molten metal, 15: powdering point, 16: powder, 20: container, 21: powder, 22: Spacer, 23: Plug, 24: Adhesive, 31: Holder, 3
2: sparring ring, 33: container, 34: powder, 35: plug, 36: flyer, 37: propellant
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 35/20 // H01B 1/02 B ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location H01L 35/20 // H01B 1/02 B
Claims (3)
体との複合体からなることを特徴とする熱電材料。1. A thermoelectric material comprising a composite of a quasi-crystal of an aluminum-based alloy and a good electric conductor.
ウムであることを特徴とする請求項1に記載の熱電材
料。2. The thermoelectric material according to claim 1, wherein the good electrical conductor is aluminum having an fcc structure.
スアトマイズ法により急冷してその薄帯、薄片又は粉末
を得、これをそのまま又は熱処理して準結晶相とした
後、電気良導体と混合してホットプレス又は押出等によ
り固化成形することを特徴とする熱電材料の製造方法。3. An aluminum-based alloy is rapidly cooled by a liquid quenching method or a gas atomizing method to obtain a ribbon, flakes or powder, which is directly or heat-treated to obtain a quasicrystalline phase, and then mixed with a good electrical conductor to be hot. A method for producing a thermoelectric material, which comprises solidifying by pressing or extrusion.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6325937A JP3055419B2 (en) | 1994-12-27 | 1994-12-27 | Thermoelectric material and method of manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6325937A JP3055419B2 (en) | 1994-12-27 | 1994-12-27 | Thermoelectric material and method of manufacturing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08178758A true JPH08178758A (en) | 1996-07-12 |
JP3055419B2 JP3055419B2 (en) | 2000-06-26 |
Family
ID=18182268
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6325937A Expired - Fee Related JP3055419B2 (en) | 1994-12-27 | 1994-12-27 | Thermoelectric material and method of manufacturing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3055419B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008163373A (en) * | 2006-12-27 | 2008-07-17 | Digital Powder Systems Inc | Method for manufacturing microball of active metal, and microball |
WO2012077578A1 (en) * | 2010-12-07 | 2012-06-14 | 独立行政法人産業技術総合研究所 | METAL MATERIAL HAVING n-TYPE THERMOELECTRIC CONVERSION CAPABILITY |
-
1994
- 1994-12-27 JP JP6325937A patent/JP3055419B2/en not_active Expired - Fee Related
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008163373A (en) * | 2006-12-27 | 2008-07-17 | Digital Powder Systems Inc | Method for manufacturing microball of active metal, and microball |
WO2012077578A1 (en) * | 2010-12-07 | 2012-06-14 | 独立行政法人産業技術総合研究所 | METAL MATERIAL HAVING n-TYPE THERMOELECTRIC CONVERSION CAPABILITY |
JP2012124243A (en) * | 2010-12-07 | 2012-06-28 | National Institute Of Advanced Industrial & Technology | METALLIC MATERIAL HAVING n-TYPE THERMOELECTRIC CONVERSION PERFORMANCE |
Also Published As
Publication number | Publication date |
---|---|
JP3055419B2 (en) | 2000-06-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2396435B1 (en) | Amorphous platinum-rich alloys | |
KR920004680B1 (en) | High strength heat-resistant alluminum-based alloy | |
CN1043059C (en) | Formation of beryllium containing metallic glasses | |
JPH03257133A (en) | High strength heat resistant aluminum-based alloy | |
WO2000032833A1 (en) | High-ductility nano-particle dispersion metallic glass and production method therefor | |
NO177572B (en) | Amorphous alloys with high mechanical strength, corrosion resistance and ductility | |
EP0010866A1 (en) | Homogeneous brazing foils of copper based metallic glasses | |
CN1263883C (en) | Polycomponent amorphous alloy with equal atomic ratio feature | |
US4452652A (en) | Electrical contact materials and their production method | |
JP3235386B2 (en) | Thermoelectric material and method of manufacturing the same | |
JP3200935B2 (en) | Manufacturing method of aluminum alloy | |
JPH06264200A (en) | Ti series amorphous alloy | |
JP3055419B2 (en) | Thermoelectric material and method of manufacturing the same | |
JP3055418B2 (en) | Thermoelectric material and method of manufacturing the same | |
JPH0790517A (en) | Aluminum-base alloy | |
US4395464A (en) | Copper base alloys made using rapidly solidified powders and method | |
JP3238516B2 (en) | High strength magnesium alloy and method for producing the same | |
JP3933713B2 (en) | Ti-based amorphous alloy | |
JP3346861B2 (en) | High strength copper alloy | |
JPH06256875A (en) | High strength and high rigidity aluminum base alloy | |
US3177573A (en) | Method of die-expressing an aluminum-base alloy | |
Lu et al. | Glass forming ability of La–Al–Ni–Cu and Pd–Si–Cu bulk metallic glasses | |
JP3245652B2 (en) | High temperature aluminum alloy and method for producing the same | |
CN105479034A (en) | Copper-based brazing filler metal for tungsten/copper welding and preparing method of brazing filler metal | |
JPH1171602A (en) | Manufacture of parts having fine rugged part |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313532 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090414 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090414 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100414 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110414 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120414 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130414 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140414 Year of fee payment: 14 |
|
LAPS | Cancellation because of no payment of annual fees |