JPH08177499A - Direct injection and spark-ignition type internal combustion engine - Google Patents

Direct injection and spark-ignition type internal combustion engine

Info

Publication number
JPH08177499A
JPH08177499A JP6316138A JP31613894A JPH08177499A JP H08177499 A JPH08177499 A JP H08177499A JP 6316138 A JP6316138 A JP 6316138A JP 31613894 A JP31613894 A JP 31613894A JP H08177499 A JPH08177499 A JP H08177499A
Authority
JP
Japan
Prior art keywords
cylinder
fuel
internal combustion
combustion engine
injection holes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6316138A
Other languages
Japanese (ja)
Inventor
Toru Noda
徹 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP6316138A priority Critical patent/JPH08177499A/en
Publication of JPH08177499A publication Critical patent/JPH08177499A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/12Other methods of operation
    • F02B2075/125Direct injection in the combustion chamber for spark ignition engines, i.e. not in pre-combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B2275/00Other engines, components or details, not provided for in other groups of this subclass
    • F02B2275/14Direct injection into combustion chamber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Fuel-Injection Apparatus (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)

Abstract

PURPOSE: To decrease hydrocarbon in exhaust gas by widely dispersing fuel while preventing fuel from being deposited on an intake valve. CONSTITUTION: A pair of intake valves 6 are provided on respective cylinders, and a fuel injection valve 11 is arranged between a pair of intake valves 6 and on a head surface to a cylinder side wall 2a. The fuel injection valve 11 is provided with a pair of injection holes, and the center lines of these injection holes intersect to each other in a combustion chamber 4. The fuel injection valve 11 is attached in such an attitude that the flat surface including the center lines of two injection holes perpendicular intersects the flat surface including the cylinder 2 center line. The spray is formed into a flat shape long in the axial direction of the cylinder 2 by the collision of sprays discharged from respective injection holes and does not collide with the intake valves 6. The apertures of respective injection holes are different from each other in order to promote atomization by the resonance action in the collision of two sprays.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、シリンダ内に燃料を
直接噴射し、生成された混合気に点火栓により火花点火
を行う直接噴射型火花点火式内燃機関に関し、特に一対
の吸気弁の中間に燃料噴射弁を配した火花点火式内燃機
関の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a direct injection type spark ignition internal combustion engine in which fuel is directly injected into a cylinder, and sparks are ignited by a spark plug in an air-fuel mixture produced. The present invention relates to an improvement of a spark ignition type internal combustion engine in which a fuel injection valve is arranged in the engine.

【0002】[0002]

【従来の技術】ガソリン機関のような火花点火式内燃機
関において、燃料をシリンダ内に燃料噴射弁にて直接噴
射するようにした直接噴射型火花点火式内燃機関が従来
から種々提案されている。この場合に、燃料噴射弁は、
例えば特開昭63−230920号公報に記載されてい
るように、噴射された噴霧がシリンダを直径方向に横切
るように、シリンダ側壁寄りのヘッド面に配置される場
合が多い。そして、吸気2弁式機関つまり各気筒毎に一
対の吸気弁を具備する機関においては、一対の吸気弁の
中間でかつシリンダ側壁寄りのヘッド面に燃料噴射弁を
配置することが提案されている。
2. Description of the Related Art In a spark ignition type internal combustion engine such as a gasoline engine, various direct injection type spark ignition type internal combustion engines in which fuel is directly injected into a cylinder by a fuel injection valve have been proposed. In this case, the fuel injection valve
For example, as described in JP-A-63-230920, in many cases, the injected spray is arranged on the head surface near the side wall of the cylinder so as to cross the cylinder in the diameter direction. Then, in an intake two-valve engine, that is, an engine having a pair of intake valves for each cylinder, it has been proposed to arrange a fuel injection valve on the head surface in the middle of the pair of intake valves and near the cylinder side wall. .

【0003】[0003]

【発明が解決しようとする課題】しかしながら、一般的
な円錐形の噴霧形状を有する燃料噴射弁を、上記のよう
に一対の吸気弁の中間でかつシリンダ側壁寄りのヘッド
面に配置した場合には、燃料を微粒化しようとして噴霧
角を大きく設定すると、噴霧が吸気弁に衝突してしま
い、ここで液膜となるため、排気中の炭化水素が増大す
るという不具合がある。また逆に、噴霧が吸気弁に衝突
しないように噴霧角を小さくすると、燃料が十分に微粒
化せず、噴霧の貫徹力が大きくなってシリンダ壁面に衝
突してしまい、やはり排気中の炭化水素が増大してしま
う。
However, when the fuel injection valve having a general conical spray shape is arranged on the head surface in the middle of the pair of intake valves and near the cylinder side wall as described above. However, if the spray angle is set to a large value in order to atomize the fuel, the spray collides with the intake valve and forms a liquid film there, which causes a problem that hydrocarbons in the exhaust gas increase. Conversely, if the spray angle is reduced so that the spray does not collide with the intake valve, the fuel will not be sufficiently atomized, the penetration force of the spray will increase, and the fuel will collide with the cylinder wall surface. Will increase.

【0004】[0004]

【課題を解決するための手段】そこで、この発明は、各
気筒毎に一対の吸気弁を有し、この一対の吸気弁の中間
でかつシリンダ側壁寄りのヘッド面に位置する燃料噴射
弁からシリンダ内に燃料を直接噴射する直接噴射型火花
点火式内燃機関において、上記燃料噴射弁の噴霧形状
を、シリンダ軸方向に長い偏平な形状としたことを特徴
としている。
In view of the above, the present invention has a pair of intake valves for each cylinder, and a cylinder from a fuel injection valve located on the head surface in the middle of the pair of intake valves and near the side wall of the cylinder. A direct injection type spark ignition internal combustion engine in which fuel is directly injected into the fuel injection valve is characterized in that the spray shape of the fuel injection valve is a flat shape long in the cylinder axis direction.

【0005】また請求項2の発明では、上記燃料噴射弁
が2つの噴孔を有し、これらの噴孔の中心線を含む平面
がシリンダ中心線を含む平面と略直交するように該燃料
噴射弁が取り付けられているとともに、これらの噴孔中
心線が燃焼室内で互いに一点に交わり、互いの噴霧の衝
突により偏平形状となるようにした。
According to the second aspect of the invention, the fuel injection valve has two injection holes, and the fuel injection is performed so that the plane including the center lines of these injection holes is substantially orthogonal to the plane including the cylinder center line. The valve was attached, and the center lines of these injection holes intersected with each other at a single point in the combustion chamber so that the injection holes collided with each other to form a flat shape.

【0006】さらに請求項3の発明では、上記の2つの
噴孔の径が互いに異なる。
Further, in the invention of claim 3, the diameters of the two injection holes are different from each other.

【0007】さらに請求項4の発明では、2つの噴孔の
直径の比が、1.25〜3.5の範囲内にある。
Further, in the invention of claim 4, the ratio of the diameters of the two injection holes is in the range of 1.25 to 3.5.

【0008】さらに請求項5の発明では、2つの噴孔の
直径の比が、略1.5である。
Further, in the invention of claim 5, the ratio of the diameters of the two injection holes is approximately 1.5.

【0009】[0009]

【作用】噴霧形状をシリンダ軸方向に長い偏平形状とす
ることにより、吸気弁との衝突を回避しつつ広く噴霧を
広げることができる。
By making the spray shape a flat shape that is long in the cylinder axis direction, it is possible to spread the spray widely while avoiding collision with the intake valve.

【0010】特に、請求項2のようにすれば、噴孔個々
の噴孔形状にかかわらず、一対の噴霧同士を互いに衝突
させることで、シリンダ軸方向に長い偏平な噴霧形状が
得られる。
In particular, according to the second aspect, regardless of the shape of each injection hole, a pair of sprays collide with each other to obtain a flat spray shape that is long in the cylinder axis direction.

【0011】また請求項3のように互いに噴霧が衝突す
る2つの噴孔の径を異ならせれば、衝突の際に強い共振
作用が発生し、燃料液滴の微粒化が促進される。
When the diameters of the two injection holes in which the sprays collide with each other are different from each other as in claim 3, a strong resonance action occurs at the time of collision, and atomization of the fuel droplets is promoted.

【0012】特に、請求項4のような口径比において、
共振作用がかなり強くなり、微粒化が促進される。
Particularly, in the aperture ratio as claimed in claim 4,
The resonance effect becomes considerably strong, and atomization is promoted.

【0013】さらに請求項5のような口径比において
は、共振作用が最も強くなり、微粒化が促進される。
Further, in the aperture ratio according to the fifth aspect, the resonance action becomes the strongest and the atomization is promoted.

【0014】[0014]

【実施例】以下、この発明の一実施例を図面に基づいて
詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below in detail with reference to the drawings.

【0015】図1および図2は、この発明に係る直接噴
射型火花点火式内燃機関の一実施例を示す。図におい
て、1は複数のシリンダ2が形成されたシリンダブロッ
ク、3はこのシリンダブロック1の上面に載置固定され
たシリンダヘッドであって、このシリンダヘッド3によ
って、シリンダ2上部にペントルーフ型もしくは半球型
の燃焼室4が形成されている。またシリンダ2内にはピ
ストン5が摺動可能に挿填されている。
1 and 2 show an embodiment of a direct injection type spark ignition internal combustion engine according to the present invention. In the figure, 1 is a cylinder block in which a plurality of cylinders 2 are formed, 3 is a cylinder head mounted and fixed on the upper surface of the cylinder block 1, and by this cylinder head 3, a pentroof type or a hemisphere is provided above the cylinder 2. A combustion chamber 4 of the mold is formed. A piston 5 is slidably inserted in the cylinder 2.

【0016】上記シリンダヘッド3には、各気筒毎に一
対の吸気弁6と一対の排気弁7とが設けられており、そ
れぞれ吸気ポート8および排気ポート9を開閉してい
る。また、一対の吸気弁6と一対の排気弁7とによって
囲まれた燃焼室4頂部には、点火栓10が配設されてい
る。尚、吸入行程においてシリンダ2内にタンブルが生
成されるように、吸気ポート8の接続角度や形状が設定
されている。
The cylinder head 3 is provided with a pair of intake valves 6 and a pair of exhaust valves 7 for each cylinder, and opens and closes the intake port 8 and the exhaust port 9, respectively. A spark plug 10 is provided at the top of the combustion chamber 4 surrounded by the pair of intake valves 6 and the pair of exhaust valves 7. The connection angle and shape of the intake port 8 are set so that tumble is generated in the cylinder 2 during the intake stroke.

【0017】一対の吸気弁6の中間には、シリンダ2内
に直接燃料を噴射供給するように、電磁弁型の燃料噴射
弁11が配置されている。詳しくは、この燃料噴射弁1
1は、その先端部が一対の吸気弁6の中間でかつシリン
ダ側壁2a寄りのヘッド面に位置しており、シリンダ2
を略直径方向に横切る形で燃料を噴射するようになって
いる。また、上下方向については、図1に示すように、
シリンダ2の軸線と直交する水平面に対し、僅かに下方
に傾いた方向へ燃料を噴射するようになっている。
An electromagnetic valve type fuel injection valve 11 is arranged in the middle of the pair of intake valves 6 so as to directly inject fuel into the cylinder 2. Specifically, this fuel injection valve 1
1, the front end portion of the cylinder 2 is located in the middle of the pair of intake valves 6 and on the head surface near the cylinder side wall 2a.
The fuel is injected in such a manner as to traverse substantially in the diametrical direction. As for the vertical direction, as shown in FIG.
Fuel is injected in a direction slightly inclined downward with respect to a horizontal plane orthogonal to the axis of the cylinder 2.

【0018】図3は、上記燃料噴射弁11の先端部の構
成を示したものであって、バルブボディ12の先端に2
つの円形の噴孔13,14が貫通形成されており、図示
せぬソレノイドに応答するニードル15がこれらの噴孔
13,14をその上流側で開閉している。ここで、2つ
の噴孔13,14は互いに口径が異なっており、両者の
口径比が1.25〜3.5の範囲にある。特に、口径比
を1.50付近とすることが望ましい。また、各噴孔1
3,14は、燃料噴射弁11の中心軸線(ニードル15
の中心線)に対しそれぞれ内側に傾斜しており、各噴孔
13,14の中心線L1,L2が燃焼室4内で互いに一
点に交わっている。そして、この燃料噴射弁11は、こ
れらの噴孔13,14の中心線L1,L2を含む平面
が、シリンダ2の中心線ならびに燃料噴射弁11の中心
軸線を含む平面と直交するような姿勢でもって、シリン
ダヘッド3に取り付けられている。
FIG. 3 shows the structure of the tip of the fuel injection valve 11 described above.
Two circular injection holes 13 and 14 are formed therethrough, and a needle 15 responsive to a solenoid (not shown) opens and closes these injection holes 13 and 14 on the upstream side. Here, the diameters of the two injection holes 13 and 14 are different from each other, and the diameter ratio of the two is in the range of 1.25 to 3.5. In particular, it is desirable to set the aperture ratio to around 1.50. In addition, each injection hole 1
Reference numerals 3 and 14 denote central axes of the fuel injection valve 11 (needle 15
Center line) of the injection holes 13 and 14, and the center lines L1 and L2 of the injection holes 13 and 14 intersect each other in the combustion chamber 4 at one point. The fuel injection valve 11 is in such a posture that the plane including the center lines L1 and L2 of the injection holes 13 and 14 is orthogonal to the plane including the center line of the cylinder 2 and the center axis of the fuel injection valve 11. Therefore, it is attached to the cylinder head 3.

【0019】上記実施例の構成においては、吸気弁6が
開いてシリンダ2内に空気が流入する吸入行程において
同時に燃料噴射弁11から燃料が噴射され、混合気が形
成されるとともに、この混合気に、点火栓10によって
点火がなされる。ここで、燃料噴射弁11の2つの噴孔
13,14から出た燃料噴霧は、それぞれの噴孔中心線
L1,L2の交点において互いに衝突する。この衝突に
よって、2つの噴孔中心線L1,L2を含む平面に沿っ
た噴霧角は小さくなり、これと直交するシリンダ2中心
線を含む平面に沿った噴霧角は大きくなる。つまり、最
終的な噴霧Fの形状が、シリンダ2軸方向に長い偏平形
状となる。従って、この噴霧Fの両側に位置するリフト
状態にある吸気弁6に対する噴霧の衝突を抑制できる。
またシリンダ2軸方向には広く拡散するので、燃料を微
粒化でき、反対側のシリンダ2壁面への噴霧Fの衝突を
抑制できる。
In the structure of the above embodiment, in the intake stroke in which the intake valve 6 is opened and air flows into the cylinder 2, fuel is simultaneously injected from the fuel injection valve 11 to form an air-fuel mixture, and the air-fuel mixture is formed. Then, the spark plug 10 ignites. Here, the fuel sprays emitted from the two injection holes 13 and 14 of the fuel injection valve 11 collide with each other at the intersections of the injection hole center lines L1 and L2. Due to this collision, the spray angle along the plane including the two injection hole center lines L1 and L2 becomes small, and the spray angle along the plane including the cylinder 2 center line orthogonal thereto becomes large. That is, the final shape of the spray F is a flat shape that is long in the axial direction of the cylinder 2. Therefore, it is possible to suppress the collision of the spray with the intake valves 6 in the lift state located on both sides of the spray F.
Further, since the fuel diffuses widely in the axial direction of the cylinder 2, the fuel can be atomized and the collision of the spray F on the wall surface of the cylinder 2 on the opposite side can be suppressed.

【0020】特に、2つの噴孔13,14から出た噴霧
が互いに衝突することにより、燃料が一層微粒化すると
ともに、周囲の空気とも良好に混合する。このとき、両
噴孔13,14の口径が異なるので、噴霧の衝突に伴っ
て共振が生じ、一層良好に微粒化が達成される。この微
粒化に影響する共振の強さは、図4に示すように、2つ
の噴孔13,14の口径比が1.25〜3.50の範囲
内にあれば、口径比が1のときよりも強く得られる。特
に口径比を1.50付近とすれば、双方の衝突面積割合
を確保しつつ強い共振作用を発揮させることができる。
Particularly, when the sprays from the two injection holes 13 and 14 collide with each other, the fuel is further atomized, and the fuel is well mixed with the surrounding air. At this time, since the diameters of the injection holes 13 and 14 are different from each other, resonance occurs due to collision of the spray, and atomization can be achieved more favorably. As shown in FIG. 4, when the aperture ratio of the two injection holes 13 and 14 is within the range of 1.25 to 3.50, the resonance intensity that affects the atomization is when the aperture ratio is 1. You get stronger than. In particular, when the aperture ratio is set to around 1.50, a strong resonance action can be exhibited while ensuring the collision area ratio of both.

【0021】従って、燃料が吸気弁6や反対側のシリン
ダ2壁面に付着することを防止でき、噴霧の拡散混合が
促進される。そのため、排気中の炭化水素の増大が押さ
えられ、かつ燃料の混合促進により良好な燃焼が得られ
る。
Therefore, it is possible to prevent the fuel from adhering to the intake valve 6 and the wall surface of the cylinder 2 on the opposite side, and the diffusion and mixing of the spray is promoted. Therefore, the increase of hydrocarbons in the exhaust can be suppressed, and good combustion can be obtained by promoting the mixing of the fuel.

【0022】なお、上記実施例では、2つの噴孔13,
14をそれぞれ円形の孔としたが、シリンダ2の軸方向
に長い偏平な噴霧をそれぞれ形成するように、各噴孔1
3,14を楕円形の孔にしてもよい。また、このように
楕円形の噴孔とした場合でも、その短径もしくは長径の
口径比を上記のように設定すれば、同様に強い共振作用
が得られる。
In the above embodiment, the two injection holes 13,
Each of the injection holes 1 has a circular hole, but each of the injection holes 1 is formed so as to form a long flat spray in the axial direction of the cylinder 2.
The holes 3 and 14 may be elliptical holes. Even in the case of such an elliptical injection hole, similarly, a strong resonance action can be obtained by setting the aperture ratio of the short diameter or the long diameter as described above.

【0023】[0023]

【発明の効果】以上の説明で明らかなように、この発明
に係る直接噴射型火花点火式内燃機関においては、一対
の吸気弁の間を通して燃料を噴射する燃料噴射弁の噴霧
形状をシリンダ軸方向に長い偏平形状としたので、噴霧
と吸気弁との衝突を回避しつつ広く噴霧を広げることが
でき、排気中の炭化水素の増大を防止できる。
As is apparent from the above description, in the direct injection type spark ignition internal combustion engine according to the present invention, the spray shape of the fuel injection valve for injecting fuel through the pair of intake valves is changed in the cylinder axial direction. Since the flat shape is extremely long, the spray can be widely spread while avoiding the collision between the spray and the intake valve, and the increase of hydrocarbons in the exhaust gas can be prevented.

【0024】また請求項2のように一対の噴霧同士を互
いに衝突させるようにすれば、噴孔個々の形状にかかわ
らずシリンダ軸方向に長い噴霧形状を得ることができ
る。しかも、噴霧の衝突により燃料の微粒化および空気
との混合が促進される。
If a pair of sprays are made to collide with each other as in the second aspect, it is possible to obtain a spray shape long in the cylinder axis direction regardless of the shape of each injection hole. Moreover, atomization of the fuel and mixing with the air are promoted by the collision of the spray.

【0025】また請求項3のように互いに噴霧が衝突す
る2つの噴孔の径を異ならせれば、衝突の際に強い共振
作用が発生し、燃料が一層微粒化される。
When the diameters of the two injection holes in which the sprays collide with each other are made different from each other as in claim 3, a strong resonance action occurs at the time of collision and the fuel is further atomized.

【0026】特に請求項4のように口径比を設定すれ
ば、共振作用がかなり強くなり、微粒化が促進される。
Particularly, when the aperture ratio is set as in claim 4, the resonance action becomes considerably strong, and atomization is promoted.

【0027】さらに請求項5のように口径比を略1.5
に設定すれば、共振作用が最大となり、最も微粒化が促
進される。
Further, as in claim 5, the aperture ratio is approximately 1.5.
When set to, the resonance action is maximized and atomization is most promoted.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明に係る直接噴射型火花点火式内燃機関
の一実施例を示す断面図。
FIG. 1 is a sectional view showing an embodiment of a direct injection type spark ignition internal combustion engine according to the present invention.

【図2】シリンダヘッドの底面から見た構成を示す底面
図。
FIG. 2 is a bottom view showing the configuration of the cylinder head as viewed from the bottom.

【図3】燃料噴射弁の要部を示す断面図。FIG. 3 is a sectional view showing a main part of a fuel injection valve.

【図4】噴孔の口径比と共振の強さとの関係を示す特性
図。
FIG. 4 is a characteristic diagram showing the relationship between the aperture ratio of the injection holes and the strength of resonance.

【符号の説明】 4…燃焼室 6…吸気弁 11…燃料噴射弁 13,14…噴孔[Explanation of Codes] 4 ... Combustion chamber 6 ... Intake valve 11 ... Fuel injection valve 13, 14 ... Injection hole

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 各気筒毎に一対の吸気弁を有し、この一
対の吸気弁の中間でかつシリンダ側壁寄りのヘッド面に
位置する燃料噴射弁からシリンダ内に燃料を直接噴射す
る直接噴射型火花点火式内燃機関において、上記燃料噴
射弁の噴霧形状を、シリンダ軸方向に長い偏平な形状と
したことを特徴とする直接噴射型火花点火式内燃機関。
1. A direct injection type in which each cylinder has a pair of intake valves, and fuel is directly injected into a cylinder from a fuel injection valve located on the head surface in the middle of the pair of intake valves and near the cylinder side wall. In the spark ignition type internal combustion engine, a direct injection type spark ignition type internal combustion engine, wherein the spray shape of the fuel injection valve is a flat shape long in the cylinder axis direction.
【請求項2】 上記燃料噴射弁は2つの噴孔を有し、こ
れらの噴孔の中心線を含む平面がシリンダ中心線を含む
平面と略直交するように該燃料噴射弁が取り付けられて
いるとともに、これらの噴孔中心線が燃焼室内で互いに
一点に交わり、互いの噴霧の衝突により偏平形状となる
ようにしたことを特徴とする請求項1に記載の直接噴射
型火花点火式内燃機関。
2. The fuel injection valve has two injection holes, and the fuel injection valve is attached so that a plane including center lines of these injection holes is substantially orthogonal to a plane including a cylinder center line. The direct injection spark ignition internal combustion engine according to claim 1, wherein the injection hole center lines intersect with each other at a single point in the combustion chamber and have a flat shape due to collision of sprays with each other.
【請求項3】 上記の2つの噴孔の径が互いに異なるこ
とを特徴とする請求項2記載の直接噴射型火花点火式内
燃機関。
3. The direct injection type spark ignition internal combustion engine according to claim 2, wherein the diameters of the two injection holes are different from each other.
【請求項4】 2つの噴孔の直径の比が、1.25〜
3.5の範囲内にあることを特徴とする請求項3記載の
直接噴射型火花点火式内燃機関。
4. The ratio of the diameters of the two injection holes is 1.25 to
The direct injection type spark ignition internal combustion engine according to claim 3, wherein the internal combustion engine is in the range of 3.5.
【請求項5】 2つの噴孔の直径の比が、略1.5であ
ることを特徴とする請求項4記載の直接噴射型火花点火
式内燃機関。
5. The direct injection spark ignition internal combustion engine according to claim 4, wherein the ratio of the diameters of the two injection holes is approximately 1.5.
JP6316138A 1994-12-20 1994-12-20 Direct injection and spark-ignition type internal combustion engine Pending JPH08177499A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6316138A JPH08177499A (en) 1994-12-20 1994-12-20 Direct injection and spark-ignition type internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6316138A JPH08177499A (en) 1994-12-20 1994-12-20 Direct injection and spark-ignition type internal combustion engine

Publications (1)

Publication Number Publication Date
JPH08177499A true JPH08177499A (en) 1996-07-09

Family

ID=18073688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6316138A Pending JPH08177499A (en) 1994-12-20 1994-12-20 Direct injection and spark-ignition type internal combustion engine

Country Status (1)

Country Link
JP (1) JPH08177499A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19754849A1 (en) * 1997-12-10 1999-06-17 Audi Ag Direct-injection internal combustion engine
JPH11200865A (en) * 1998-01-05 1999-07-27 Kawasaki Heavy Ind Ltd Fuel supply method of gasoline engine
DE19804463A1 (en) * 1998-02-05 1999-08-12 Daimler Chrysler Ag Fuel injector nozzle with multiple orifices for a diesel engine
JP2000220460A (en) * 1999-01-28 2000-08-08 Hitachi Ltd Cylinder injection type internal combustion engine
JP2000248944A (en) * 1999-03-02 2000-09-12 Toyota Motor Corp Cylinder injection type spark ignition internal combustion engine
WO2002038924A1 (en) * 2000-10-30 2002-05-16 Hitachi, Ltd. Cylinder injection engine and method of controlling the engine
JP2003161154A (en) * 2001-11-26 2003-06-06 Toyota Motor Corp Direct injection spark ignition internal combustion engine
US6578544B2 (en) 1999-11-15 2003-06-17 Bosch Automotive Systems Corporation Electromagnetic fuel injection valve
EP1413745A1 (en) * 2002-10-22 2004-04-28 Ford Global Technologies, Inc., A subsidiary of Ford Motor Company Fuel injector and a direct injected combustion engine
JP2005133679A (en) * 2003-10-31 2005-05-26 Toyota Motor Corp Cylinder injection type spark ignition internal combustion engine
JP2016501333A (en) * 2012-11-20 2016-01-18 ノストラム エナジー ピーティーイー.リミテッドNostrum Energy Pte.Ltd. Liquid jet spraying device with impinging jet
CN113653560A (en) * 2021-08-18 2021-11-16 天津大学 Gasoline engine ignition mechanism containing strong turbulence jet flow precombustion chamber

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19754849A1 (en) * 1997-12-10 1999-06-17 Audi Ag Direct-injection internal combustion engine
DE19754849B4 (en) * 1997-12-10 2009-01-29 Audi Ag Direct injection internal combustion engine
JPH11200865A (en) * 1998-01-05 1999-07-27 Kawasaki Heavy Ind Ltd Fuel supply method of gasoline engine
DE19804463B4 (en) * 1998-02-05 2006-06-14 Daimlerchrysler Ag Fuel injection system for gasoline engines
DE19804463A1 (en) * 1998-02-05 1999-08-12 Daimler Chrysler Ag Fuel injector nozzle with multiple orifices for a diesel engine
JP2000220460A (en) * 1999-01-28 2000-08-08 Hitachi Ltd Cylinder injection type internal combustion engine
JP2000248944A (en) * 1999-03-02 2000-09-12 Toyota Motor Corp Cylinder injection type spark ignition internal combustion engine
US6578544B2 (en) 1999-11-15 2003-06-17 Bosch Automotive Systems Corporation Electromagnetic fuel injection valve
WO2002038924A1 (en) * 2000-10-30 2002-05-16 Hitachi, Ltd. Cylinder injection engine and method of controlling the engine
JP2003161154A (en) * 2001-11-26 2003-06-06 Toyota Motor Corp Direct injection spark ignition internal combustion engine
EP1413745A1 (en) * 2002-10-22 2004-04-28 Ford Global Technologies, Inc., A subsidiary of Ford Motor Company Fuel injector and a direct injected combustion engine
JP2004162704A (en) * 2002-10-22 2004-06-10 Ford Global Technologies Llc Direct injection type internal combustion engine, fuel injection valve for direct injection, and method for direct injection of fuel
JP2005133679A (en) * 2003-10-31 2005-05-26 Toyota Motor Corp Cylinder injection type spark ignition internal combustion engine
JP2016501333A (en) * 2012-11-20 2016-01-18 ノストラム エナジー ピーティーイー.リミテッドNostrum Energy Pte.Ltd. Liquid jet spraying device with impinging jet
JP2020016242A (en) * 2012-11-20 2020-01-30 ノストラム エナジー ピーティーイー.リミテッドNostrum Energy Pte.Ltd. Liquid injector atomizer with colliding jet
CN113653560A (en) * 2021-08-18 2021-11-16 天津大学 Gasoline engine ignition mechanism containing strong turbulence jet flow precombustion chamber

Similar Documents

Publication Publication Date Title
JP3903657B2 (en) In-cylinder injection spark ignition internal combustion engine
JP4047177B2 (en) Fuel injection system
US20020179039A1 (en) Fuel injection system
JPH11148446A (en) Fuel injection valve for internal combustion engine
JP2006510843A (en) Direct injection spark ignition internal combustion engine
US5915353A (en) Cylinder direct injection spark-ignition engine
JPH08177499A (en) Direct injection and spark-ignition type internal combustion engine
JPH11117831A (en) Fuel injection valve for internal combustion engine
JP2609929B2 (en) Fuel injection valve
JP2004502088A (en) Fuel injection system
US6659074B2 (en) Spark ignition direct injection engine with shaped multihole injectors
JPH11107889A (en) Fuel injection valve for internal combustion engine
JP7226639B2 (en) Pre-chamber spark ignition engine
US6325040B1 (en) Cylinder direct injection engine
JP3633392B2 (en) In-cylinder injection spark ignition internal combustion engine
JPH1130124A (en) Fuel injection device of cylinder injection-type spark-ignition engine
JP3191732B2 (en) In-cylinder injection spark ignition internal combustion engine
WO2021161552A1 (en) Auxiliary chamber engine
JP3644057B2 (en) Direct injection spark ignition internal combustion engine
JPH0712668Y2 (en) Spark ignition direct injection engine
JP2004132225A (en) Electromagnetic fuel injection valve
JPH05240052A (en) Cylinder injection type internal combustion engine
JPH08144884A (en) Direct injection type gasoline internal combustion engine
JP3633423B2 (en) In-cylinder injection spark ignition internal combustion engine
JP2003293907A (en) Fuel injection nozzle