JP2000220460A - Cylinder injection type internal combustion engine - Google Patents

Cylinder injection type internal combustion engine

Info

Publication number
JP2000220460A
JP2000220460A JP11020013A JP2001399A JP2000220460A JP 2000220460 A JP2000220460 A JP 2000220460A JP 11020013 A JP11020013 A JP 11020013A JP 2001399 A JP2001399 A JP 2001399A JP 2000220460 A JP2000220460 A JP 2000220460A
Authority
JP
Japan
Prior art keywords
fuel
cylinder
axis
fuel injection
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11020013A
Other languages
Japanese (ja)
Other versions
JP3611471B2 (en
Inventor
Yusuke Kihara
裕介 木原
Yoshihiro Sukegawa
義寛 助川
Takuya Ishiga
琢也 石賀
Takuya Shiraishi
拓也 白石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP02001399A priority Critical patent/JP3611471B2/en
Publication of JP2000220460A publication Critical patent/JP2000220460A/en
Application granted granted Critical
Publication of JP3611471B2 publication Critical patent/JP3611471B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/08Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition
    • F02B23/10Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder
    • F02B23/104Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder the injector being placed on a side position of the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/08Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition
    • F02B23/10Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder
    • F02B2023/106Tumble flow, i.e. the axis of rotation of the main charge flow motion is horizontal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/12Other methods of operation
    • F02B2075/125Direct injection in the combustion chamber for spark ignition engines, i.e. not in pre-combustion chamber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PROBLEM TO BE SOLVED: To attain good lean-burning not depending on the engine speed at low and medium load driving even of a flat type piston in a spark ignition engine to inject fuel directly to a cylinder in an internal combustion engine. SOLUTION: An internal combustion engine is provided with an ignition plug 6 and a fuel injection valve 5 to inject fuel directly in a cylinder. A cylinder center axis is defined as Z axis, an axis crossing with the Z axis vertically and passing through a gravitational point of the cylinder and a point directly under the fuel ignition valve 5 is defined as X axis, and an axis passing through the gravitational point of the cylinder, which is perpendicular to the X axis and the Z axis is defined as Y axis. At that time, airflow turning around the center of the axis is formed in a cylinder 1. Injected fuel 16 is set so that the fuel injection quantity control can be carried out. In this case, air-fuel ratio becomes higher than stoichiometric air-fuel ratio under an atomization state where the spray angle perpendicular to the XZ plane becomes narrower than the spray angle parallel to the XZ plane in the low and medium load driving. Fuel is injected during the periods from the latter half of the intake stroke to the former half of the compression stroke.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、点火プラグを使用
した火花点火機関のシリンダに燃料を直接噴射する方式
の筒内噴射式内燃機関に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a direct injection type internal combustion engine in which fuel is directly injected into a cylinder of a spark ignition engine using a spark plug.

【0002】[0002]

【従来の技術】近年、火花点火機関(ガソリンエンジ
ン)のシリンダに燃料を直接噴射する筒内噴射式内燃機
関が実用化されている。この種の内燃機関は、低中負荷
領域では圧縮行程時に燃料を噴射して局部的に点火プラ
グ周辺に燃料噴霧を集めて着火させる燃焼により(混合
気の成層化あるいは成層燃焼と称せられることもある)
希薄空燃比燃焼(以下、単に希薄燃焼とする)を可能と
し、高負荷運転域では、燃料を空気と均一に混合させて
均質燃焼を図る必要があるため吸入行程時に燃料を噴射
し、このように負荷に応じて燃料噴射開始タイミングを
変えている。
2. Description of the Related Art In recent years, an in-cylinder injection type internal combustion engine that directly injects fuel into a cylinder of a spark ignition engine (gasoline engine) has been put to practical use. This type of internal combustion engine performs combustion by injecting fuel during a compression stroke in a low to medium load region and locally collecting and spraying a fuel spray around an ignition plug (also referred to as stratification of a mixture or stratified combustion). is there)
Lean air-fuel ratio combustion (hereinafter simply referred to as lean combustion) is possible, and in the high load operation range, it is necessary to uniformly mix fuel with air to achieve homogeneous combustion, so that fuel is injected during the intake stroke. The fuel injection start timing is changed according to the load.

【0003】また、上記した成層燃焼を図るために、ピ
ストン上面に凹部を設けて低中負荷運転の圧縮行程時に
凹部に燃料を噴射して凹部内での成層化を図る筒内噴射
式火花点火機関(筒内噴射式内燃機関)や(例えば特開
平4−94416号公報)、吸気管に副吸気通路を設
け、副吸気通路から供給された空気流がピストン上部に
設けられた凹部に沿って燃料噴霧を点火プラグに搬送し
て成層化する筒内噴射式内燃機関(特開平10−141
070号公報)が提案されている。
Further, in order to achieve the above-described stratified combustion, a direct injection type spark ignition is provided in which a concave portion is provided on the upper surface of a piston to inject fuel into the concave portion during a compression stroke of a low-to-medium load operation to stratify the concave portion. In an engine (in-cylinder injection type internal combustion engine) or (for example, JP-A-4-94416), an intake pipe is provided with a sub-intake passage, and an air flow supplied from the sub-intake passage flows along a concave portion provided in the upper part of the piston. An in-cylinder injection internal combustion engine that stratifies fuel spray by transferring it to an ignition plug (Japanese Patent Laid-Open No. 10-141)
070 publication) has been proposed.

【0004】[0004]

【発明が解決しようとする課題】本発明の目的は、上記
したようなピストン上面に凹部を設けることなく、上面
がフラット型ピストンであっても希薄燃焼時(低中負荷
運転時)に火花点火に良好な成層燃焼を可能にし、熱効
率を高めて着火性能を向上させ、燃費向上,排ガス浄化
性,出力アップの要求を満足させることのできる筒内噴
射式内燃機関を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a spark igniter for lean combustion (during low-to-medium load operation) even if the upper surface is a flat piston without providing a recess on the upper surface of the piston as described above. It is an object of the present invention to provide an in-cylinder injection type internal combustion engine capable of achieving excellent stratified combustion, improving thermal efficiency and improving ignition performance, and satisfying requirements for fuel efficiency, exhaust gas purification, and output increase.

【0005】また、低中負荷運転時の良好な希薄燃焼に
加えて、高負荷運転時にはシリンダ内に均一に混合気を
形成して均質燃焼も図り得る筒内噴射式内燃機関も提供
する。
[0005] In addition, there is also provided an in-cylinder injection type internal combustion engine capable of uniformly forming an air-fuel mixture in a cylinder and performing homogeneous combustion during high load operation in addition to favorable lean combustion during low and medium load operation.

【0006】[0006]

【課題を解決するための手段】(1)本発明は、上記目
的を達成するために、基本的には次のような課題解決手
段を提案する。
Means for Solving the Problems (1) The present invention basically proposes the following means for solving the problems in order to achieve the above object.

【0007】すなわち、点火プラグを備え、燃料を燃料
噴射弁により直接シリンダ内に噴射する筒内噴射式内燃
機関において、内燃機関のシリンダ中心軸をZ軸、Z軸
に垂直に交わりシリンダ重心点と前記燃料噴射弁を配置
した位置の直下点とを通過する軸をX軸、シリンダ重心
点を通りX軸とZ軸に垂直な軸をY軸と定義した場合、
シリンダ内でY軸を中心に回転する空気流動を形成する
手段を備え、前記燃料噴射弁から噴射する燃料は、低中
負荷運転時にはXZ平面に垂直な方向の噴霧角がXZ平
面に平行な方向の噴霧角より狭くなる噴霧形態で空燃比
が理論空燃比より高くなる燃料噴射量制御が行なわれる
よう設定されていることを特徴とする。
That is, in a cylinder injection type internal combustion engine having an ignition plug and injecting fuel directly into a cylinder by a fuel injection valve, the cylinder center axis of the internal combustion engine intersects perpendicularly with the Z axis and the Z axis, and the center of gravity of the cylinder is When an axis passing through a point immediately below the position where the fuel injection valve is arranged is defined as an X axis, and an axis passing through the center of gravity of the cylinder and perpendicular to the X axis and the Z axis is defined as a Y axis,
Means for forming an air flow which rotates around the Y axis in the cylinder, wherein the fuel injected from the fuel injection valve has a spray angle in a direction perpendicular to the XZ plane in a direction parallel to the XZ plane during low to medium load operation. The fuel injection amount control is performed such that the air-fuel ratio becomes higher than the stoichiometric air-fuel ratio in the spray mode in which the spray angle is smaller than the spray angle.

【0008】上記構成によれば、低中負荷運転時にシリ
ンダ内に噴射される燃料は、Y軸回りの空気流(この空
気流は、シリンダ軸を中心に旋回するスワールではなく
いわゆるシリンダ軸と直交する軸回りに回転するため、
ここでは上記のスワールと区別する意味をこめてタンブ
ルと称することもある)に乗って点火プラグに搬送され
るので、吸気行程後半から圧縮行程前半の間に前記シリ
ンダ内に燃料噴射を開始するよう設定しても、噴射され
た燃料噴霧がピストン圧縮行程時に上死点付近で上記タ
ンブルにより点火プラグに至るように燃料噴射開始時期
を設定することが可能になる。
According to the above-described structure, the fuel injected into the cylinder during the low-to-medium-load operation uses an air flow around the Y axis (this air flow is not a swirl swirling around the cylinder axis but a so-called orthogonal to the cylinder axis). To rotate around the axis
Here, the fuel is conveyed to the spark plug by riding on a spark plug (sometimes referred to as a tumble for the purpose of distinguishing the swirl from the above-described swirl), so that fuel injection into the cylinder is started during the latter half of the intake stroke and the earlier half of the compression stroke. Even if it is set, the fuel injection start timing can be set so that the injected fuel spray reaches the spark plug by the above-mentioned tumble near the top dead center during the piston compression stroke.

【0009】また、この時の燃料噴霧は、XZ平面に垂
直な方向の噴霧角がXZ平面に平行な方向の噴霧角より
狭くなるいわゆる縦方向の扁平状の噴霧形態であるの
で、これがタンブル空気流に乗ることで、ピストン上面
に凹部を設けないフラット型ピストンであっても点火プ
ラグ付近に燃料噴霧を集中させ、その結果、良好な燃料
着火ひいては燃焼を図り、空燃比が理論空燃比より高い
燃料噴射量制御により希薄性を高めた空燃比の希薄燃焼
を可能にする。
The fuel spray at this time is a so-called vertical flat spray in which the spray angle in the direction perpendicular to the XZ plane is smaller than the spray angle in the direction parallel to the XZ plane. By riding the flow, the fuel spray is concentrated near the spark plug even with a flat type piston that does not have a concave part on the piston upper surface, as a result, good fuel ignition and combustion is achieved, and the air-fuel ratio is higher than the stoichiometric air-fuel ratio It enables lean combustion at an air-fuel ratio with increased leanness by controlling the fuel injection amount.

【0010】なお、高負荷運転時には、燃料噴射開始を
吸入行程時に行なって燃料と空気の混合を充分に行なわ
せたり、或いは、これに併せて複数の燃料噴射口から燃
料を噴射するように設定したり、XZ平面に垂直な方向
の噴霧角がXZ平面に平行な方向の噴霧角より広くなる
よう設定すれば、シリンダ内で均一な混合気が形成さ
れ、良好な均質燃焼が可能になる。
During high load operation, the fuel injection is started during the intake stroke so that the fuel and air are sufficiently mixed, or the fuel is injected from a plurality of fuel injection ports. If the spray angle in the direction perpendicular to the XZ plane is set to be wider than the spray angle in the direction parallel to the XZ plane, a uniform air-fuel mixture is formed in the cylinder, and good homogeneous combustion becomes possible.

【0011】[0011]

【発明の実施の形態】本発明の実施例を図面を用いて説
明する。
Embodiments of the present invention will be described with reference to the drawings.

【0012】図1は、本発明の第1の実施例に係る筒内
噴射式内燃機関(筒内噴射式火花点火機関)のうちシリ
ンダの一つを取り出してみた内部透視の概略平面図、図
7の(a)はその縦断面図、(b)は本実施例で定義す
る座標軸の説明図である。
FIG. 1 is a schematic plan view of an internal perspective view of one of cylinders taken out of a direct injection internal combustion engine (direct injection spark ignition engine) according to a first embodiment of the present invention. 7A is a longitudinal sectional view thereof, and FIG. 7B is an explanatory diagram of coordinate axes defined in the present embodiment.

【0013】まず、これらの図により本発明の要旨につ
いて説明する。
First, the gist of the present invention will be described with reference to these drawings.

【0014】シリンダ1に内装されるピストン2は、そ
の上面が凹部のない平面に形成されるいわゆるフラット
型ピストンである。
The piston 2 provided in the cylinder 1 is a so-called flat type piston whose upper surface is formed in a flat surface without a concave portion.

【0015】シリンダ1のヘッドには、2つの吸気弁4
が配設され、各吸気弁4と対応の吸気管(吸気通路)3
とが接続されている。なお、排気弁の数も吸気弁の数に
対応するが、排気弁及びそれに接続される排気管の図示
は省略する。
The head of the cylinder 1 has two intake valves 4
Are arranged, and each intake valve 4 and the corresponding intake pipe (intake passage) 3
And are connected. Although the number of exhaust valves also corresponds to the number of intake valves, illustration of the exhaust valves and the exhaust pipe connected thereto is omitted.

【0016】シリンダ1のヘッドの中心には点火プラグ
6が設けられ、さらに吸気弁4に挟まれた位置に燃料噴
射弁5が設けられている。
An ignition plug 6 is provided at the center of the head of the cylinder 1, and a fuel injection valve 5 is provided at a position between the intake valves 4.

【0017】ここでは、図7(b)に示すように、シリ
ンダ中心軸をZ軸、Z軸に垂直に交わりシリンダ重心点
と前記燃料噴射弁5を配置した位置の直下点とを通過す
る軸をX軸、シリンダ重心点を通りX軸とZ軸に垂直な
軸をY軸と定義する。
Here, as shown in FIG. 7 (b), an axis which intersects the cylinder center axis perpendicularly to the Z axis and passes through the center of gravity of the cylinder and the point immediately below the position where the fuel injection valve 5 is arranged is shown. Is defined as the X axis, and the axis passing through the center of gravity of the cylinder and perpendicular to the X axis and the Z axis is defined as the Y axis.

【0018】このように定義した場合、燃料噴射弁5は
XZ平面上に配置され、吸気弁4はこのXZ平面を挾む
ようにして配置される。
In this case, the fuel injection valve 5 is arranged on the XZ plane, and the intake valve 4 is arranged so as to sandwich the XZ plane.

【0019】吸気弁4の上流に位置する吸気管3には、
低中負荷運転時に通路横断面の下半分を塞ぐように制御
される半月状の空気流動制御弁8が設けられる。この制
御弁8は、半月状であるため下半分の通路を塞いだ状態
が閉動作になり、高負荷運転時には、この下半分の通路
を開放し上半分は元々開いているので吸気通路内は完全
開放状態になる。この制御弁8は、図示されない空気流
量制御用の絞り弁の下流に配置されている。制御弁8の
開閉制御は制御装置7に制御指令信号に基づいて実行さ
れる。制御装置7は、そのほか、燃料噴射弁5の燃料噴
射料制御、噴射開始時期の制御、点火プラグの点火時期
制御等を行なう。
The intake pipe 3 located upstream of the intake valve 4 includes:
A half-moon-shaped air flow control valve 8 is provided which is controlled to close the lower half of the passage cross section during low-medium load operation. Since the control valve 8 has a half-moon shape, the state in which the lower half passage is closed is closed. During a high load operation, the lower half passage is opened and the upper half is originally open. It is completely open. The control valve 8 is arranged downstream of a throttle valve (not shown) for controlling an air flow rate. Opening / closing control of the control valve 8 is executed by the control device 7 based on a control command signal. The control device 7 also controls the fuel injection rate of the fuel injection valve 5, controls the injection start timing, controls the ignition timing of the ignition plug, and the like.

【0020】制御弁8によって吸気管3の流路の下半分
(吸気通路横断面の下半分)を塞ぐと、図7(a)に示
すように、吸入行程(吸気行程)では、空気流は吸気管
3の上半分の流路に偏って流れ、シリンダ1には吸気弁
4の点火プラグ寄り側(シリンダ1中心側)を通って空
気が流入し、吸気側と反対の方向に向かった後シリンダ
1内をY軸を中心に回転する空気流動(以下タンブルと
称する)が形成される。
When the lower half of the flow path (lower half of the cross section of the intake passage) of the intake pipe 3 is closed by the control valve 8, as shown in FIG. After the air flows in the upper half flow path of the intake pipe 3, air flows into the cylinder 1 through a side of the intake valve 4 closer to the ignition plug (center side of the cylinder 1), and then flows in a direction opposite to the intake side. An air flow (hereinafter, referred to as a tumble) that rotates around the Y axis in the cylinder 1 is formed.

【0021】このタンブルの角速度はタンブル数2に設
定してある。タンブル数とは、シリンダ1内に剛体渦
(タンブルの理想渦)を仮定した時に渦(空気流動)の
角速度ωaとクランク軸の角速度ωcの比(ωa/ω
c)を表したもので、タンブル数2は剛体渦の角速度ω
cがクランク軸の角速度ωaの2倍である。このように
タンブル数を設定すると、吸入行程の下死点近くで燃料
を噴射した場合(本実施例では、低中負荷運転時に吸気
行程後半から圧縮行程前半の間にシリンダ1内に燃料噴
射を開始するよう設定されている)、その燃料を上死点
付近で点火プラグ6の位置に集中するようにタンブルの
気流に乗せて搬送することが可能になる。
The angular velocity of the tumble is set to tumble number 2. The tumble number is defined as a ratio (ωa / ω) of the angular velocity ωa of the vortex (air flow) and the angular velocity ωc of the crankshaft when a rigid vortex (ideal vortex of the tumble) is assumed in the cylinder 1.
where tumble number 2 is the angular velocity ω of the rigid body vortex
c is twice the angular speed ωa of the crankshaft. When the tumble number is set in this manner, when fuel is injected near the bottom dead center of the intake stroke (in the present embodiment, fuel injection into the cylinder 1 is performed during the second half of the intake stroke and the first half of the compression stroke during low to medium load operation. (Set to start), the fuel can be transported in a tumble airflow so as to concentrate on the position of the ignition plug 6 near the top dead center.

【0022】さらに、詳細には、燃料がタンブルによっ
て点火プラグ6の位置に搬送される場合、シリンダ1内
を通って点火プラグ6に到達するために必要なタンブル
数は燃料噴射時期によって変化する。成層化に必要なタ
ンブル数は、燃料噴射から点火までのクランク角度をT
とした場合に、クランク角度1回転分である360度を
角度Tで割った値である。すなわち、タンブル(空気流
動)の角速度ωaは、燃料噴射から点火までのクランク
角をTとした場合、クランク角1回転分である360度
を角度Tで割った値にクランク軸角速度ωcを掛けた値
であり、これを式で表せば、次のようになる。
More specifically, when fuel is conveyed to the position of the ignition plug 6 by tumble, the number of tumbles required to reach the ignition plug 6 through the cylinder 1 changes depending on the fuel injection timing. The number of tumbles required for stratification is determined by the crank angle from fuel injection to ignition.
In this case, it is a value obtained by dividing 360 degrees corresponding to one rotation of the crank angle by the angle T. That is, assuming that the crank angle from fuel injection to ignition is T, the angular velocity ωa of the tumble (air flow) is obtained by multiplying the crankshaft angular velocity ωc by a value obtained by dividing 360 degrees corresponding to one rotation of the crank angle by the angle T. This is a value, which can be expressed by the following equation.

【0023】[0023]

【数1】ωa=(360°/T)×ωc 例えば、下死点に噴射された燃料が上死点を点火時期と
した時のクランク角度Tは180度であり、360度を
180度で割った値である2が、成層化に必要なタンブ
ル数となる。制御装置7は燃料噴射時期から必要なタン
ブル数を決定すると、制御弁8の閉動作時期(吸気管の
通路横断面の下半分を塞ぐ時期)を制御してシリンダ1
内に所要のタンブルを形成する。高負荷運転時はタンブ
ルの制御は必要が無く、また圧力損失の低減のため制御
弁8は全開にする。
Ωa = (360 ° / T) × ωc For example, when the fuel injected at the bottom dead center is set at the top dead center as the ignition timing, the crank angle T is 180 degrees, and 360 degrees is 180 degrees. The divided value of 2 is the number of tumbles required for stratification. When the controller 7 determines the required number of tumbles from the fuel injection timing, the controller 7 controls the closing operation timing of the control valve 8 (the timing to close the lower half of the passage cross section of the intake pipe) to control the cylinder 1.
Form the required tumble within. During high load operation, tumble control is not required, and the control valve 8 is fully opened to reduce pressure loss.

【0024】ここで、本実施例に用いる燃料噴射弁5の
内部構造を図2の部分縦断面図により説明する。
Here, the internal structure of the fuel injection valve 5 used in this embodiment will be described with reference to a partial longitudinal sectional view of FIG.

【0025】図2において、燃料噴射弁5の本体中心に
は、メインの燃料通路12が形成され、その後、複数の
燃料通路14a〜14cに分かれ、各燃料噴射口9a〜
9cに至る。燃料通路12と同心状にコア21,電磁コ
イル11,ヨーク22が配置され、電磁コイル11を通
電して励磁するとコア,ヨーク,弁10のプランジャ部
等で磁気回路が形成されて、弁10がリターンスプリン
グ24のばね力に抗して引き上げられ、開弁状態とな
る。
In FIG. 2, a main fuel passage 12 is formed at the center of the main body of the fuel injection valve 5, and thereafter is divided into a plurality of fuel passages 14a to 14c.
9c. A core 21, an electromagnetic coil 11, and a yoke 22 are arranged concentrically with the fuel passage 12. When the electromagnetic coil 11 is energized and excited, a magnetic circuit is formed by the core, the yoke, the plunger portion of the valve 10, and the like. It is pulled up against the spring force of the return spring 24, and the valve is opened.

【0026】シリンダ1内に設けられた燃料噴射弁5に
は、図2に示すように複数(本例では3つ)の燃料噴射
口(以下、噴出口とする)9a,9b,9cがあり、こ
れらの噴出口9a,9b,9cは、燃料噴射弁5の先端
に設けられた複数層(例えば3層)の板13に設けた孔
の組み合わせで構成されている。
As shown in FIG. 2, the fuel injection valve 5 provided in the cylinder 1 has a plurality (three in this embodiment) of fuel injection ports (hereinafter, referred to as injection ports) 9a, 9b, 9c. These injection ports 9 a, 9 b, 9 c are formed by a combination of holes provided in a plurality of layers (for example, three layers) of the plate 13 provided at the tip of the fuel injection valve 5.

【0027】この3つの噴出口9a,9b,9cは、Y
軸方向に並んで、その一つ(噴出口9a)が真中に位置
し、残り9b,9cが真中の噴出口9aの両側に位置し
ており、燃料噴射弁5は、低中負荷運転時には真中の噴
出口9aから燃料を噴射させ、高負荷運転時には両側の
噴出口9b,9cから燃料を噴射させる噴射口切換手段
を備えている。ここで、この噴射口切換手段の一例につ
いて説明する。
The three jet ports 9a, 9b, 9c are Y
In the axial direction, one of them (injection port 9a) is located in the middle, and the remaining 9b and 9c are located on both sides of the central ejection port 9a. There is provided an injection port switching means for injecting fuel from the injection ports 9a, and for injecting fuel from the injection ports 9b, 9c on both sides during high load operation. Here, an example of the injection port switching means will be described.

【0028】燃料噴射弁5は、内燃機関の運転状態によ
ってコイル11に流す電流に強弱をつけ、弁10のリフ
ト量を変えることで噴射弁本体内の燃料流路14aと1
4b,14cとを切り替えることが可能である。低中負
荷運転の場合はコイル11に弱い電流を流し、弁10の
リフト量を小さく制御することによって、図3に示すよ
うに噴出口9aに通じる燃料流路14aを選択し、高負
荷運転の場合はコイル11に強い電流を流し、弁10の
リフト量を大きく制御することによって、図4に示すよ
うに噴出口9b,9cに通じる燃料流路14b,14c
を選択するよう設定されている。
The fuel injection valve 5 changes the amount of current flowing through the coil 11 depending on the operation state of the internal combustion engine, and changes the lift amount of the valve 10 to thereby change the fuel flow paths 14a and 1a in the injection valve body.
4b and 14c can be switched. In the case of low and medium load operation, a weak current is caused to flow through the coil 11 and the lift amount of the valve 10 is controlled to be small, thereby selecting the fuel flow path 14a communicating with the injection port 9a as shown in FIG. In this case, by passing a strong current through the coil 11 and controlling the lift amount of the valve 10 to be large, the fuel flow paths 14b, 14c leading to the injection ports 9b, 9c as shown in FIG.
Is set to be selected.

【0029】多層板13は図5(a)に示すように3枚
の円形の金属板(耐食,耐熱性に優れた金属板)13
a,13b,13cにより構成され、上層の板13aに
は円形の孔9b−1,9a−1,9c−1が、中層の板
13bには細長孔9b−2,9a−2,9c−2が、下
層に板13cには上記中層の細長孔とクロスする細長孔
9b−3,9a−3,9c−3がそれぞれ燃料噴射口の
数だけ形成され、これらの円形の孔及びクロスする細長
孔を重ね合わせて、図5(b)に示すように各燃料噴射
口9b,9a,9cが形成され、このうち下層の細長孔
9b−3,9a−3,9c−3は長手方向が前記XZ平
面と平行に向いている。
As shown in FIG. 5A, the multilayer plate 13 is composed of three circular metal plates (a metal plate having excellent corrosion resistance and heat resistance) 13
a, 13b, 13c, circular holes 9b-1, 9a-1, 9c-1 are formed in the upper plate 13a, and elongated holes 9b-2, 9a-2, 9c-2 are formed in the middle plate 13b. However, in the lower layer, the plate 13c is provided with the elongated holes 9b-3, 9a-3, 9c-3 each of which corresponds to the number of the fuel injection ports, which cross the elongated holes of the middle layer. 5b, each fuel injection port 9b, 9a, 9c is formed. Of these, the lower slot 9b-3, 9a-3, 9c-3 has the longitudinal direction XZ. Orients parallel to the plane.

【0030】燃料は低中負荷運転時には噴出口9aを通
り、高負荷運転時には噴出口9b,9cを通ることによ
り微粒化され燃料噴霧となる。低中負荷運転時に噴出口
9aから噴射される燃料噴霧は、上記した噴射口9aの
構造を採用することにより、図6に示すようにXZ平面
に垂直な方向(Y軸方向)の噴霧角θ1がXZ平面に平
行な方向の噴霧角θ2より狭くなる噴霧形態となる。ま
た、制御装置7により、低中負荷運転時には、空燃比が
理論空燃比より高くなる燃料噴射量制御が行なわれるよ
う設定されている。
The fuel passes through the injection port 9a during low and medium load operation, and passes through the injection ports 9b and 9c during high load operation to be atomized and become fuel spray. The fuel spray injected from the injection port 9a during low-medium load operation employs the above-described structure of the injection port 9a, so that the spray angle θ1 in the direction perpendicular to the XZ plane (Y-axis direction) as shown in FIG. Is smaller than the spray angle θ2 in the direction parallel to the XZ plane. Further, the control device 7 is set to perform the fuel injection amount control at which the air-fuel ratio becomes higher than the stoichiometric air-fuel ratio during the low and medium load operation.

【0031】図6に示す噴霧角θ1とθ2は次のように
決定される。
The spray angles θ1 and θ2 shown in FIG. 6 are determined as follows.

【0032】上記噴霧角θ1については次の通りであ
る。図25(a)に示すように、角度θの二等辺三角形
を仮定し、この角度θは、シリンダ内のピストンのスト
ローク長を二等辺三角形の高さHとした時の底辺長さを
Lとした場合に、シリンダ内径D×L×ストローク長H
よりなるシリンダ内仮想直方体〔図25(b)の斜線で
示す〕の中に全噴射燃料量が理論混合比の混合気を形成
することが可能な角度であり、この角度θを前記XZ平
面に垂直な方向の燃料噴霧角θ1とした。このような仮
想直方体にて成層燃焼が可能であれば、希薄燃焼域(特
に燃料質量と空気質量との比が1対40のような超希薄
燃焼)であっても実質的に理論空燃比に近い燃焼が可能
になる。本実施例では、上記したような燃料噴霧角θ1
の設定及びこの燃料噴霧角θ1内の燃料噴霧を2つの吸
気弁からのタンブルで圧縮行程時に点火プラグ6に至る
ように搬送することで、良好な希薄燃焼(成層燃焼)を
保証する。
The spray angle θ1 is as follows. As shown in FIG. 25 (a), an isosceles triangle having an angle θ is assumed, and the angle θ is defined as L, where L is the base length when the stroke length of the piston in the cylinder is the height H of the isosceles triangle. The cylinder inner diameter D × L × stroke length H
In the virtual cuboid inside the cylinder (indicated by oblique lines in FIG. 25B), the total injected fuel amount is an angle capable of forming an air-fuel mixture having a stoichiometric mixture ratio. The fuel spray angle θ1 in the vertical direction was set. If stratified combustion is possible in such a virtual rectangular parallelepiped, the stoichiometric air-fuel ratio can be substantially reduced even in a lean burn region (particularly, a super-lean burn where the ratio of fuel mass to air mass is 1:40). Close combustion becomes possible. In this embodiment, the fuel spray angle θ1 as described above is used.
And the fuel spray within the fuel spray angle θ1 is transported by tumble from the two intake valves so as to reach the ignition plug 6 during the compression stroke, thereby ensuring good lean combustion (stratified combustion).

【0033】噴霧角θ2は燃料噴霧の外形線を延長した
場合にシリンダヘッド1上壁面やシリンダ1の吸気側の
壁面に衝突しない角度とする。
The spray angle θ2 is an angle that does not collide with the upper wall surface of the cylinder head 1 or the wall surface on the intake side of the cylinder 1 when the outer shape of the fuel spray is extended.

【0034】高負荷運転時に用いられる噴出口9b、9
cの寸法は、噴出口9aと同じだが、出口の方向をわず
かに外に向くよう斜めにして、噴出口9b,9cから噴
射される燃料噴霧が交差しないようにしてある。その角
度は、噴射された燃料がシリンダ1の側壁面に当たらな
い角度である。
Spouts 9b, 9 used during high load operation
The dimension of c is the same as that of the jet port 9a, but the direction of the jet port is slightly inclined outward so that the fuel sprays injected from the jet ports 9b and 9c do not intersect. The angle is an angle at which the injected fuel does not hit the side wall surface of the cylinder 1.

【0035】低中負荷運転時に理想空燃比より高い空燃
比(希薄空燃比)の混合気を良好に燃焼させるには、既
述したように成層化が必要であり、成層化のために従来
は圧縮行程後期に燃料を噴射していたが、この場合ピス
トン2が上死点に近づいた時に燃料を噴射するため燃料
噴霧とタンブルが正面から当たる状況となってタンブル
が止まってしまい燃料を点火プラグ6に分布できなくな
り着火が出きない事態も考えられる。
In order to satisfactorily burn an air-fuel mixture having a higher air-fuel ratio (lean air-fuel ratio) than the ideal air-fuel ratio during low to medium load operation, stratification is necessary as described above. Although fuel was injected in the latter half of the compression stroke, in this case, when the piston 2 approaches the top dead center, the fuel is injected so that the fuel spray and the tumble strike from the front, the tumble stops, and the fuel is injected into the spark plug. It is also conceivable that the distribution cannot be distributed to No. 6 and no ignition occurs.

【0036】これに対して、本実施例のように、燃料噴
射開始時期をピストン下死点とするとタンブルと燃料噴
霧の干渉が小さくタンブルによって混合気を点火プラグ
へ搬送できる。高負荷運転時は燃料が空気と充分混合す
る必要があるため、燃料噴射開始時期はピストン2が吸
気行程の下死点に達するまでに燃料を噴き終わる時期と
する。
On the other hand, when the fuel injection start timing is set to the piston bottom dead center as in the present embodiment, the interference between the tumble and the fuel spray is small, and the mixture can be conveyed to the spark plug by the tumble. At the time of high load operation, the fuel needs to be sufficiently mixed with the air. Therefore, the fuel injection start timing is a timing at which the fuel is completely injected before the piston 2 reaches the bottom dead center of the intake stroke.

【0037】以下、本実施例の作用を図7〜15を用い
て詳述する。
Hereinafter, the operation of the present embodiment will be described in detail with reference to FIGS.

【0038】先ず、低中負荷運転(希薄燃焼)について
説明する。
First, the low-medium load operation (lean combustion) will be described.

【0039】吸気行程(吸入行程)の初期において、燃
料噴射開始時期が下死点に設定されており、制御装置7
はシリンダ1内にタンブル数2の空気流動を生成するた
めに制御弁8を全閉する。
In the initial stage of the intake stroke (suction stroke), the fuel injection start timing is set at the bottom dead center.
Fully closes the control valve 8 in order to generate a tumble number 2 air flow in the cylinder 1.

【0040】吸気行程が始まると、吸気弁4が開きピス
トン2が下降することによりシリンダ1内に空気が吸入
され強度2のタンブル15が生成される(図7)。
When the intake stroke starts, the intake valve 4 opens and the piston 2 descends, so that air is sucked into the cylinder 1 and a tumble 15 having a strength of 2 is generated (FIG. 7).

【0041】ピストン2が下死点に到達すると、制御装
置7は燃料噴射弁5に燃料噴射の信号を発信する。この
時コイル11に弱い電流が流れコイル11の外周に磁界
が生じ、弁10は上に持ち上げられ、流路14aに燃料
が流れ、多層板13により構成される噴出口9aから燃
料が微粒化して噴射され燃料噴霧16を形成する。噴射
される燃料質量はシリンダ1に吸入される空気質量の1
/40である。
When the piston 2 reaches the bottom dead center, the control device 7 sends a fuel injection signal to the fuel injection valve 5. At this time, a weak current flows through the coil 11 to generate a magnetic field on the outer periphery of the coil 11, the valve 10 is lifted upward, fuel flows through the flow path 14a, and the fuel is atomized from the ejection port 9a formed by the multilayer plate 13. Injected to form a fuel spray 16. The mass of fuel injected is 1 of the mass of air taken into cylinder 1.
/ 40.

【0042】図8、図9は圧縮行程中のシリンダ1内を
示したもので、シリンダ1の内部を上部から、図9は側
面から見た図である。吸気弁4は既に閉じているため吸
気管3とともに記述を省く。燃料噴霧16は気化して燃
料と空気の混合気17を形成し、タンブル15に搬送さ
れピストン2の表面に到達する。シリンダ1内の空気流
動はタンブル15だけであり、タンブル15に対し直角
方向には混合気17は拡散しにくく混合気17はシリン
ダ1中心に保持される。
8 and 9 show the inside of the cylinder 1 during the compression stroke. FIG. 9 is a view of the inside of the cylinder 1 as viewed from above, and FIG. 9 is a view as viewed from the side. Since the intake valve 4 is already closed, the description is omitted together with the intake pipe 3. The fuel spray 16 is vaporized to form a mixture 17 of fuel and air, and is conveyed to the tumble 15 to reach the surface of the piston 2. The air flow in the cylinder 1 is only the tumble 15, and the air-fuel mixture 17 is not easily diffused in a direction perpendicular to the tumble 15, and the air-fuel mixture 17 is held at the center of the cylinder 1.

【0043】図10、図11はピストン2が上死点に到
達した点火時期のシリンダ1内を示したものである。図
10はシリンダ1の内部を上部から、図11は側面から
見た図である。混合気17はタンブル15に搬送されて
点火プラグ6に到達する。全燃料噴射量は空気の1/4
0と希薄な運転条件だが点火プラグ6周りに混合気17
を成層化しているため理論空燃比に近い十分な混合気が
得られ、良好に燃焼可能である。また、エンジン回転数
が高くなった場合にシリンダ内に生成されるタンブル数
は一定であるため、低負荷・高回転においても混合気を
タンブルで搬送することにより安定して成層化が実現で
きる。
FIGS. 10 and 11 show the inside of the cylinder 1 at the ignition timing when the piston 2 reaches the top dead center. FIG. 10 is a view of the inside of the cylinder 1 as viewed from above, and FIG. 11 is a view as viewed from the side. The mixture 17 is conveyed to the tumble 15 and reaches the spark plug 6. Total fuel injection amount is 1/4 of air
Although the operating condition is as low as 0, the mixture 17 around the spark plug 6
, A sufficient air-fuel mixture close to the stoichiometric air-fuel ratio is obtained, and good combustion is possible. Further, since the number of tumbles generated in the cylinder when the engine speed becomes high is constant, the stratification can be stably realized by transporting the air-fuel mixture by tumbling even at a low load and a high speed.

【0044】図12、図13は高負荷運転時におけるピ
ストン2が下死点にある状態を示したもので、図12は
シリンダ1を上部から透視してみた図、図13はシリン
ダ1内部を側面から見た図である。
FIGS. 12 and 13 show a state in which the piston 2 is at the bottom dead center during the high load operation. FIG. 12 is a view of the cylinder 1 seen from above, and FIG. It is the figure seen from the side.

【0045】高負荷運転では高出力を得るために、制御
装置7は制御弁8を全開する。吸気行程が始まると、吸
気弁4が開きピストン2が下降することにより吸気弁4
周囲の隙間からシリンダ1内に空気が流入するが、符号
15で示すように燃料噴射弁5と反対側の空気流動の力
が部位の空気流動の力に勝り、タンブル15を形成す
る。
In the high load operation, the control device 7 fully opens the control valve 8 in order to obtain a high output. When the intake stroke starts, the intake valve 4 opens and the piston 2 descends, so that the intake valve 4
Although air flows into the cylinder 1 from the surrounding gap, the force of the air flow on the opposite side of the fuel injection valve 5 exceeds the force of the air flow in the part as shown by reference numeral 15 to form the tumble 15.

【0046】制御装置7は燃料噴射開始時期になると燃
料を噴射するように燃料噴射弁5に信号を発信する。こ
の時コイル11に強い電流が流れコイル11の外周に磁
界が生じ、弁10は上に持ち上げられる。弁10が持ち
上がることにより流路14b,14cに燃料が流れ、多
層板13により構成される噴出口9b、9cから燃料が
微粒化して噴射され燃料噴霧16を形成する。高負荷運
転時の燃料噴射量はシリンダ1内に流入する空気質量の
1/14.7(理論空燃比)である。噴出口13b、1
3cの2つの噴出口から燃料を噴射することによって噴
霧角は大きくなり、かつ噴出口は外に向むいているため
燃料噴霧16はシリンダ1内の全域に広がる。
The control device 7 sends a signal to the fuel injection valve 5 so as to inject fuel at the fuel injection start timing. At this time, a strong current flows through the coil 11, and a magnetic field is generated around the coil 11, and the valve 10 is lifted up. When the valve 10 is lifted, fuel flows into the flow paths 14 b and 14 c, and the fuel is atomized and injected from the outlets 9 b and 9 c formed by the multilayer plate 13 to form a fuel spray 16. The fuel injection amount during the high-load operation is 1 / 14.7 (stoichiometric air-fuel ratio) of the mass of air flowing into the cylinder 1. Spout 13b, 1
By injecting fuel from the two injection ports 3c, the spray angle is increased, and the injection ports are directed outward, so that the fuel spray 16 spreads throughout the cylinder 1.

【0047】図14,図15は圧縮行程中のシリンダ1
内を示し、図14はシリンダ1内部を上部から透視して
みた図、図15は側面から見た図である。吸気弁4は既
に閉じているため吸気管3とともに記述を省く。
FIGS. 14 and 15 show the cylinder 1 during the compression stroke.
14 is a view of the inside of the cylinder 1 as seen through from above, and FIG. 15 is a view as seen from the side. Since the intake valve 4 is already closed, the description is omitted together with the intake pipe 3.

【0048】燃料噴霧16は気化して燃料と空気の混合
気17を形成し、タンブル15に搬送されピストン2の
表面に到達する。ピストンが上昇し圧縮行程の終わりに
到達するころには、混合気17はタンブル15により拡
散されシリンダ1内の全域に均一な混合気を形成する。
この時の混合気空燃比は理論混合比の14.7で良好に
燃焼する。
The fuel spray 16 is vaporized to form a mixture 17 of fuel and air, and is conveyed to the tumble 15 to reach the surface of the piston 2. By the time the piston rises and reaches the end of the compression stroke, the mixture 17 is dispersed by the tumble 15 to form a uniform mixture throughout the cylinder 1.
At this time, the air-fuel ratio of the air-fuel mixture satisfactorily burns at a theoretical mixture ratio of 14.7.

【0049】次に本発明の第2の実施例を図16〜図2
3を用いて説明する。
Next, a second embodiment of the present invention will be described with reference to FIGS.
3 will be described.

【0050】本実施例に係る筒内噴射式内燃機関のタン
ブル形成手段(制御弁8の配置)や、吸気弁4の配置構
成、フラット型ピストン構造,低中負荷運転時の燃料噴
霧形態は図1,図7に示す構成と同様であるため、図
1,図7に相当する図は図示省略する。本実施例と第1
実施例との異なる点は、燃料噴射弁5の内部構造が異な
っている点である。
The tumble forming means (arrangement of the control valve 8), the arrangement of the intake valve 4, the flat piston structure, and the fuel spray form at the time of low-medium load operation of the direct injection internal combustion engine according to this embodiment are shown in FIG. Since the configuration is the same as that shown in FIGS. 1 and 7, illustrations corresponding to FIGS. 1 and 7 are omitted. Example 1 and Example 1
The difference from the embodiment is that the internal structure of the fuel injection valve 5 is different.

【0051】図16に示すように燃料噴射弁5には、2
つの噴出口9d、9eがあり、噴出口は燃料噴射弁5の
先端に設けられた多層板13により構成されている。こ
の2つの噴出口がY軸方向に並ぶように燃料噴射弁5を
設置する。燃料出口の上流には弁10が設けられてお
り、コイル11に電流を流すことによって磁場が生じ弁
10は上に動いて噴出口から燃料が噴射される。
As shown in FIG. 16, the fuel injection valve 5
There are two injection ports 9d and 9e, and the injection ports are constituted by a multilayer plate 13 provided at the tip of the fuel injection valve 5. The fuel injection valve 5 is installed so that these two injection ports are arranged in the Y-axis direction. A valve 10 is provided upstream of the fuel outlet, and when a current flows through the coil 11, a magnetic field is generated to move the valve 10 upward and fuel is injected from the injection port.

【0052】内燃機関の運転状態によってコイル11に
流す電流に強弱をつけ、弁10のリフト量を変える。低
中負荷運転の場合はコイル11に弱い電流を流し、入口
12から流入した燃料が流路14dを選択するように弁
10のリフト量を決定する。高負荷運転の場合はコイル
11に強い電流を流し、入口12から流入した燃料が流
路14eを選択するように弁10のリフト量を決定す
る。低中負荷運転の場合は図18に示すように噴出口9
dから燃料が噴射され高負荷運転の場合は図19に示す
ように噴出口9eから燃料が噴射される。
The amount of current flowing through the coil 11 is varied depending on the operation state of the internal combustion engine, and the lift amount of the valve 10 is changed. In the case of low-medium load operation, the lift amount of the valve 10 is determined so that a weak current flows through the coil 11 and the fuel flowing from the inlet 12 selects the flow path 14d. In the case of a high-load operation, a strong current flows through the coil 11, and the lift amount of the valve 10 is determined so that the fuel flowing from the inlet 12 selects the flow path 14e. In the case of low-medium load operation, as shown in FIG.
In the case of high load operation, fuel is injected from the injection port 9e as shown in FIG.

【0053】多層板13は図17に示すように3枚の金
属板13a,13b,13cにより構成されており、そ
の上層,中層,下層の金属板のそれぞれに噴出口9d,
9eを形成するための円形孔9d−1,9e−1,細長
(長方形)孔9d−2,9e−2及び9d−3,9e−
3が開いており、これらの孔を重ね合わせることで噴出
口9d,9eを形成している。
As shown in FIG. 17, the multilayer plate 13 is composed of three metal plates 13a, 13b and 13c, and the upper, middle and lower metal plates are respectively provided with jets 9d,
Circular holes 9d-1, 9e-1 for forming 9e, elongated (rectangular) holes 9d-2, 9e-2 and 9d-3, 9e-
3 are open, and the spouts 9d and 9e are formed by overlapping these holes.

【0054】燃料はこの孔9d,9eを通ることにより
微粒化され燃料噴霧となる。噴出口9dの形状は第1の
実施例の噴出口9aと全く同じである。噴出口9eの要
素となる細長孔9e−2,9e−3は、噴出口9d−
2,9d−3に対してそれぞれ90度回転させており、
噴出口9eの噴霧形状は、噴出口9dの燃料噴霧を90
度回転させた噴霧形状になり、XZ平面に垂直な燃料噴
霧角θ1をXZ平面に平行な燃料噴霧角θ2より大きく
している。
The fuel is atomized by passing through the holes 9d and 9e and becomes a fuel spray. The shape of the spout 9d is exactly the same as the spout 9a of the first embodiment. The elongated holes 9e-2 and 9e-3, which are elements of the ejection port 9e, are connected to the ejection port 9d-
It is rotated 90 degrees with respect to 2, 9d-3, respectively.
The spray shape of the ejection port 9e is as follows.
The fuel spray angle is rotated by degrees, and the fuel spray angle θ1 perpendicular to the XZ plane is larger than the fuel spray angle θ2 parallel to the XZ plane.

【0055】本実施例の燃料噴射開始時期、成層化に要
するタンブル数と、そのタンブルの生成方法は第1の実
施例と同じであり、これらの情報は制御装置7に設定さ
れる。
The fuel injection start timing, the number of tumbles required for stratification, and the method of generating the tumbles in this embodiment are the same as those in the first embodiment, and these information are set in the control device 7.

【0056】低中負荷運転時の作用は第1の実施例と同
じなので省略し、高負荷運転時の作用について説明す
る。
The operation at the time of low-to-medium load operation is the same as that of the first embodiment, and therefore will not be described, and the operation at the time of high-load operation will be described.

【0057】図20及び図21は高負荷運転時における
ピストン2が下死点にある時のシリンダ1内を示したも
のであり、図20はその時のシリンダ1の内部を上部か
らみた図、図21は側面から見た図である。
FIGS. 20 and 21 show the inside of the cylinder 1 when the piston 2 is at the bottom dead center during the high-load operation. FIG. 21 is a diagram viewed from the side.

【0058】高負荷運転では高出力を得るために制御装
置7は制御弁8を全開する。吸気行程が始まると、吸気
弁4が開きピストン2が下降することにより吸気弁4の
周囲に形成される隙間からシリンダ1内に空気が流入
し、既述したように燃料噴射弁5がる位置から離れた側
の空気流動力が他の空気流れに勝りタンブル15を形成
する。
In high-load operation, the control device 7 fully opens the control valve 8 in order to obtain a high output. When the intake stroke starts, the intake valve 4 opens and the piston 2 descends, so that air flows into the cylinder 1 through a gap formed around the intake valve 4, and the position at which the fuel injection valve 5 falls as described above. The air flow force on the side away from the other air flow exceeds the other air flow to form the tumble 15.

【0059】制御装置7は燃料噴射開始時期になると燃
料を噴射するように燃料噴射弁5に信号を発信する。こ
の時コイル11に強い電流が流れコイル11の外周に磁
界が生じ、弁10は上に持ち上げられる。弁10が持ち
上がることにより流路14eに燃料が流れ、多層板13
により構成される噴出口9eから燃料が微粒化して噴射
され燃料噴霧18を形成する。本実施例では噴出口14
eを90度回転して設けることにより燃料噴霧の噴霧角
θ1は大きくなり、燃料が分散しやしくなる。
The control device 7 sends a signal to the fuel injection valve 5 so as to inject fuel at the fuel injection start timing. At this time, a strong current flows through the coil 11, and a magnetic field is generated around the coil 11, and the valve 10 is lifted up. When the valve 10 is lifted, fuel flows into the flow path 14e, and the multilayer plate 13
The fuel is atomized and injected from the injection port 9e formed by the above to form a fuel spray 18. In this embodiment, the spout 14
By providing e rotated by 90 degrees, the spray angle θ1 of the fuel spray becomes large, and the fuel is easily dispersed.

【0060】図22、図23は圧縮行程中のシリンダ1
内を示したものである。図22はシリンダ1内部を上部
から、図23は側面から見た図である。吸気弁4は既に
閉じているため吸気管3とともに記述を省く。燃料噴霧
18は気化して燃料と空気の混合気17を形成し、タン
ブル15に搬送されピストン2の表面に到達する。ピス
トンが上昇し圧縮行程の終わりに到達するころには混合
気17はタンブル15により拡散されシリンダ1内の全
域に均一な混合気を形成する。この時の混合気空燃比は
理論混合比の14.7で良好に燃焼する。
FIGS. 22 and 23 show cylinders 1 during the compression stroke.
It is shown inside. FIG. 22 is a view of the inside of the cylinder 1 as viewed from above, and FIG. 23 is a view as viewed from the side. Since the intake valve 4 is already closed, the description is omitted together with the intake pipe 3. The fuel spray 18 is vaporized to form a mixture 17 of fuel and air, and is conveyed to the tumble 15 to reach the surface of the piston 2. By the time the piston rises and reaches the end of the compression stroke, the mixture 17 is diffused by the tumble 15 to form a uniform mixture throughout the cylinder 1. At this time, the air-fuel ratio of the air-fuel mixture satisfactorily burns at a theoretical mixture ratio of 14.7.

【0061】図24は本発明の第3の実施例であり、次
の点を除き、第1実施例と同様の構成をなす。
FIG. 24 shows a third embodiment of the present invention, which has the same configuration as that of the first embodiment except for the following points.

【0062】すなわち、本実施例は、図24に示すよう
に燃料噴霧16のうちXZ平面に平行な方向の噴霧広が
りのうちピストン側の速度成分V2をシリンダヘッド側
の速度成分V1よりも大きくした。このように燃料噴霧
16のV1とV2に速度差を設けることにより、燃料噴
霧16がシリンダ1の内壁に付着することを防止するこ
とができる。特に、速度成分V1の燃料噴霧がシリンダ
を横断してシリンダ内壁に付着するような事態を防止す
る。この速度差を設ける手法としては、燃料噴射口の流
路長を斜めにカットするなどが考えられる。
That is, in the present embodiment, as shown in FIG. 24, the speed component V2 on the piston side of the spray spread in the direction parallel to the XZ plane of the fuel spray 16 is made larger than the speed component V1 on the cylinder head side. . By providing a speed difference between V1 and V2 of the fuel spray 16 in this way, it is possible to prevent the fuel spray 16 from adhering to the inner wall of the cylinder 1. In particular, the situation where the fuel spray of the speed component V1 traverses the cylinder and adheres to the inner wall of the cylinder is prevented. As a method of providing this speed difference, it is conceivable to cut the flow path length of the fuel injection port obliquely.

【0063】[0063]

【発明の効果】本発明によれば、低中負荷運転時にシリ
ンダ内にタンブルを生成し、XZ平面に垂直な方向の噴
霧幅を薄層化した燃料噴霧をピストン下死点で噴射し、
最適タンブル数により圧縮行程時に点火プラグ付近に理
論空燃比に近い混合気を集中させるので、フラット型ピ
ストンであってもエンジン回転数の影響をうけることな
く良好な希薄燃焼(低中負荷運転時の成層燃焼)を保証
する。また、高負荷運転時は燃料噴霧を広くしてシリン
ダ内に均一に混合気を分布させて良好な燃焼を得ること
が可能である。
According to the present invention, during low-medium load operation, a tumble is generated in the cylinder, and a fuel spray having a thin spray width in a direction perpendicular to the XZ plane is injected at the bottom dead center of the piston.
Since the optimal mixture of tumble is used to concentrate the mixture near the stoichiometric air-fuel ratio near the ignition plug during the compression stroke, good lean combustion (even during low-medium load operation) can be achieved without being affected by the engine speed even with a flat piston. Stratified combustion). Further, at the time of high load operation, it is possible to obtain a good combustion by widening the fuel spray and uniformly distributing the air-fuel mixture in the cylinder.

【0064】さらに、本発明によれば、フラット型ピス
トンにより良好な成層化燃焼を可能にするため、ピスト
ン凹部を設ける場合よりも熱損失を少なくし(熱効率の
向上)、さらに、ピストン内部の空気流動抵抗を少なく
でき、タンブル形成力を十分に確保できる。
Further, according to the present invention, in order to enable better stratified combustion with the flat type piston, heat loss is reduced (improvement of thermal efficiency) as compared with the case where the piston recess is provided, and air inside the piston is further improved. Flow resistance can be reduced and tumble forming force can be sufficiently ensured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1の希薄燃焼時のピストン下死
点をシリンダ上面から透視してみた図。
FIG. 1 is a diagram illustrating a bottom dead center of a piston at the time of lean burn in a first embodiment of the present invention seen through from a cylinder upper surface.

【図2】上記実施例に用いる燃料噴射弁の一部省略断面
図。
FIG. 2 is a partially omitted sectional view of a fuel injection valve used in the embodiment.

【図3】実施例1の希薄燃焼時の燃料噴射弁の一部を示
す断面図。
FIG. 3 is a cross-sectional view illustrating a part of the fuel injection valve during lean combustion according to the first embodiment.

【図4】実施例1の均質燃焼時の燃料噴射弁の一部を示
す断面図。
FIG. 4 is a cross-sectional view showing a part of the fuel injector during homogeneous combustion according to the first embodiment.

【図5】実施例1の燃料噴射口を有する多層板の分解斜
視図及び下層側からみた平面図。
FIG. 5 is an exploded perspective view of a multilayer plate having a fuel injection port according to the first embodiment and a plan view seen from a lower layer side.

【図6】実施例1の希薄燃焼時のシリンダ内部の燃料噴
霧角の説明図。
FIG. 6 is an explanatory diagram of a fuel spray angle inside a cylinder during lean combustion according to the first embodiment.

【図7】実施例1の希薄燃焼時のピストン下死点の状態
を示すシリンダ側面断面図及びシリンダの座標軸を示す
説明図。
FIG. 7 is a sectional side view of a cylinder showing a state of a piston bottom dead center at the time of lean combustion according to the first embodiment, and an explanatory diagram showing coordinate axes of the cylinder.

【図8】実施例1の希薄燃焼時の圧縮行程をシリンダ内
部を透視して示す概略上面図。
FIG. 8 is a schematic top view showing a compression stroke at the time of lean combustion according to the first embodiment as seen through the inside of a cylinder.

【図9】実施例1の希薄燃焼時の圧縮行程のシリンダ内
部を示す側面断面図。
FIG. 9 is a side cross-sectional view showing the inside of the cylinder in the compression stroke during lean combustion according to the first embodiment.

【図10】実施例1の希薄燃焼時のピストン上死点の状
態をシリンダ内部を透視してみた上面図。
FIG. 10 is a top view of the state of the top dead center of the piston at the time of lean combustion in the first embodiment, as seen through the inside of the cylinder.

【図11】実施例1の希薄燃焼時のピストン上死点の状
態を示したシリンダの側面断面図。
FIG. 11 is a side sectional view of the cylinder showing a state of the piston top dead center at the time of lean combustion according to the first embodiment.

【図12】実施例1の均質燃焼時のピストン下死点の状
態をシリンダ内部を透視してみた上面図。
FIG. 12 is a top view of the state of the piston bottom dead center during homogeneous combustion according to the first embodiment, as seen through the inside of the cylinder.

【図13】実施例1の均質燃焼時のピストン下死点の状
態を示したシリンダの側面断面図。
FIG. 13 is a side cross-sectional view of the cylinder showing a state of the piston bottom dead center during homogeneous combustion according to the first embodiment.

【図14】実施例1の均質燃焼時の圧縮行程をシリンダ
内部を透視してみた上面図。
FIG. 14 is a top view of the compression stroke during homogeneous combustion according to the first embodiment as seen through the inside of the cylinder.

【図15】実施例1の均質燃焼時の圧縮行程の状態を示
したシリンダの側面断面図。
FIG. 15 is a side cross-sectional view of the cylinder illustrating a state of a compression stroke during homogeneous combustion according to the first embodiment.

【図16】実施例2に用いる燃料噴射弁の部分断面図。FIG. 16 is a partial cross-sectional view of a fuel injection valve used in the second embodiment.

【図17】実施例2の燃料噴射弁の噴射口を形成する多
層板の分解斜視図及びその下層側からみた平面図。
FIG. 17 is an exploded perspective view of a multilayer plate forming an injection port of the fuel injection valve according to the second embodiment, and a plan view seen from a lower layer side thereof.

【図18】実施例2の希薄燃焼時における燃料噴射弁の
部分断面図。
FIG. 18 is a partial cross-sectional view of the fuel injection valve during lean combustion according to the second embodiment.

【図19】実施例2の均質燃焼時における燃料噴射弁の
部分断面図。
FIG. 19 is a partial cross-sectional view of the fuel injection valve during homogeneous combustion according to the second embodiment.

【図20】実施例2の均質燃焼時におけるピストン下死
点の状態をシリンダ内部を透視してみた上面図。
FIG. 20 is a top view of the state of the bottom dead center of the piston during homogeneous combustion in Example 2 as seen through the inside of the cylinder.

【図21】実施例2の均質燃焼時のピストン下死点の状
態を示すシリンダの側面断面図。
FIG. 21 is a side cross-sectional view of a cylinder showing a state of a piston bottom dead center during homogeneous combustion according to the second embodiment.

【図22】実施例2の均質燃焼時の圧縮行程の状態をシ
リンダ内部を透視してみた上面図。
FIG. 22 is a top view of the state of the compression stroke during homogeneous combustion according to the second embodiment as seen through the inside of a cylinder.

【図23】実施例2の均質燃焼時の圧縮行程の状態を示
したシリンダの側面断面図。
FIG. 23 is a side cross-sectional view of the cylinder showing a state of a compression stroke during homogeneous combustion according to the second embodiment.

【図24】実施例3のシリンダ内部を示す側面断面図。FIG. 24 is a side sectional view showing the inside of the cylinder of the third embodiment.

【図25】シリンダ内に噴射される燃料の噴霧角とシリ
ンダ内径D、燃料噴霧の仮想二等辺三角形の底辺L、シ
リンダの高さ(ストローク)Hとの関係を示す説明図及
びD×L×Hにより、希薄燃焼時にシリンダ内に形成さ
れる理想の混合気形成空間を示す説明図。
FIG. 25 is an explanatory diagram showing the relationship among a spray angle of fuel injected into a cylinder, a cylinder inner diameter D, a base L of a virtual isosceles triangle of fuel spray, and a cylinder height (stroke) H, and D × L × FIG. 4 is an explanatory diagram showing an ideal mixture formation space formed in the cylinder at the time of lean combustion by H.

【符号の説明】[Explanation of symbols]

1…シリンダ、2…ピストン、3…吸気管、4…吸気
弁、5…燃料噴射弁、6…点火プラグ、7…制御装置、
8…空気流動制御弁、9a、9b、9c、9d、9e…
噴出口(燃料噴射口)、10…弁、11…コイル、12
…燃料入口、13…多層板、14a,14b,14c,
14d,14e…流路、15…タンブル、16…燃料噴
霧、17…混合気、18…燃料噴霧。
DESCRIPTION OF SYMBOLS 1 ... Cylinder, 2 ... Piston, 3 ... Intake pipe, 4 ... Intake valve, 5 ... Fuel injection valve, 6 ... Spark plug, 7 ... Control device,
8. Air flow control valve, 9a, 9b, 9c, 9d, 9e ...
Injection port (fuel injection port), 10 ... valve, 11 ... coil, 12
... fuel inlet, 13 ... multilayer board, 14a, 14b, 14c,
14d, 14e: flow path, 15: tumble, 16: fuel spray, 17: mixture, 18: fuel spray.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F02M 61/14 310 F02M 61/14 310A 61/18 350 61/18 350A (72)発明者 石賀 琢也 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 白石 拓也 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 Fターム(参考) 3G023 AA01 AA18 AB03 AC05 AD03 AD07 AD09 AD14 AD27 AG01 AG02 3G066 AA02 AA03 AA05 AD12 BA01 BA03 CC01 CC21 CC37 CC48 DB06 DB08 DB09 3G301 HA01 HA04 HA16 HA17 JA00 KA06 KA08 KA09 LA05 LB04 MA01 MA11 MA19 MA29 PA01A PA01Z PA17Z PB03A PB03Z PB06A PB06Z PE09A PE09Z──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) F02M 61/14 310 F02M 61/14 310A 61/18 350 61/18 350A (72) Inventor Takuya Ishiga Ibaraki 7-1-1, Omika-cho, Hitachi City Hitachi Research Laboratory, Hitachi, Ltd. (72) Inventor Takuya Shiraishi 7-1-1, Omika-cho, Hitachi City, Ibaraki Prefecture F-term in Hitachi Research Laboratory, Hitachi, Ltd. (Reference) 3G023 AA01 AA18 AB03 AC05 AD03 AD07 AD09 AD14 AD27 AG01 AG02 3G066 AA02 AA03 AA05 AD12 BA01 BA03 CC01 CC21 CC37 CC48 DB06 DB08 DB09 3G301 HA01 HA04 HA16 HA17 JA00 KA06 KA08 KA09 LA05 LB04 MA01 MA11 MA01BZZA01 P03

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】 点火プラグを備え、燃料を燃料噴射弁に
よりシリンダ内に直接噴射する筒内噴射式内燃機関にお
いて、 内燃機関のシリンダ中心軸をZ軸、Z軸に垂直に交わり
シリンダ重心点と前記燃料噴射弁を配置した位置の直下
点とを通過する軸をX軸、シリンダ重心点を通りX軸と
Z軸に垂直な軸をY軸と定義した場合、 シリンダ内でY軸を中心に回転する空気流動を形成する
手段を備え、 前記燃料噴射弁から噴射する燃料は、低中負荷運転時に
はXZ平面に垂直な方向の噴霧角がXZ平面に平行な方
向の噴霧角より狭くなる噴霧形態で空燃比が理論空燃比
より高くなる燃料噴射量制御が行なわれるよう設定され
ていることを特徴とする筒内噴射式内燃機関。
1. An in-cylinder injection type internal combustion engine having a spark plug and injecting fuel directly into a cylinder by a fuel injection valve, wherein the cylinder center axis of the internal combustion engine intersects perpendicularly with the Z axis and the cylinder center of gravity. When an axis passing through the point immediately below the position where the fuel injection valve is disposed is defined as the X axis, and an axis passing through the center of gravity of the cylinder and perpendicular to the X axis and the Z axis is defined as the Y axis, the center of the cylinder is defined as the Y axis. Means for forming a rotating air flow, wherein the fuel injected from the fuel injector has a spray form in which the spray angle in the direction perpendicular to the XZ plane is smaller than the spray angle in the direction parallel to the XZ plane during low to medium load operation. Wherein the fuel injection amount control is performed such that the air-fuel ratio becomes higher than the stoichiometric air-fuel ratio.
【請求項2】 前記燃料噴射弁は、低中負荷運転時に吸
気行程後半から圧縮行程前半の間に前記シリンダ内に燃
料噴射を開始するよう設定されている請求項1記載の筒
内噴射式内燃機関。
2. The in-cylinder injection type internal combustion engine according to claim 1, wherein the fuel injection valve is set to start fuel injection into the cylinder during a low-medium load operation during a second half of an intake stroke and a first half of a compression stroke. organ.
【請求項3】 前記Y軸を中心に回転する空気流動の角
速度ωaは、燃料噴射から点火までのクランク角をTと
した場合、クランク角1回転分である360度を角度T
で割った値にクランク軸角速度ωcを掛けた値とした請
求項1又は2記載の筒内噴射式内燃機関。
3. The angular velocity ωa of the air flow rotating about the Y axis is defined as 360 ° which is one rotation of the crank angle, where T is the crank angle from fuel injection to ignition.
3. The direct injection internal combustion engine according to claim 1, wherein a value obtained by multiplying the divided value by a crankshaft angular velocity ωc is obtained.
【請求項4】 前記シリンダのヘッドには、前記XZ平
面を挾むようにして2つの吸気弁が配置されており、前
記吸気弁に通じる各吸気通路には低中負荷運転時に吸気
通路横断面の下半分を塞ぐ空気流動制御弁が設けられ、
この空気流動制御弁により前記シリンダ内でY軸を中心
に回転する空気流動を形成する手段が構成されている請
求項1ないし3のいずれか1項記載の筒内噴射式内燃機
関。
4. The cylinder head has two intake valves disposed so as to sandwich the XZ plane, and each intake passage communicating with the intake valve has a lower half of a cross section of the intake passage during low-medium load operation. Air flow control valve is provided to block
4. The direct injection internal combustion engine according to claim 1, wherein said air flow control valve constitutes means for forming an air flow rotating about the Y axis in said cylinder.
【請求項5】 前記XZ平面に平行な方向の噴霧広がり
のうちピストン側の速度成分をシリンダヘッド側の速度
成分よりも大きくした請求項1ないし4のいずれか1項
記載の筒内噴射式内燃機関。
5. The direct injection internal combustion engine according to claim 1, wherein a velocity component on a piston side of the spray spread in a direction parallel to the XZ plane is larger than a velocity component on a cylinder head side. organ.
【請求項6】 前記燃料噴射弁から噴射する燃料は、高
負荷運転時にはXZ平面に垂直な方向の噴霧角がXZ平
面に平行な方向の噴霧角より広くなるよう設定されてい
る請求項1ないし5のいずれか1項記載の筒内噴射式内
燃機関。
6. The fuel injected from the fuel injection valve is set such that a spray angle in a direction perpendicular to the XZ plane is wider than a spray angle in a direction parallel to the XZ plane during high load operation. 6. The direct injection internal combustion engine according to claim 5.
【請求項7】 点火プラグを備え、燃料を燃料噴射弁に
より直接シリンダ内に噴射する筒内噴射式内燃機関にお
いて、 内燃機関のシリンダ中心軸をZ軸、Z軸に垂直に交わり
シリンダ重心点と前記燃料噴射弁を配置した位置の直下
点とを通過する軸をX軸、シリンダ重心点を通りX軸と
Z軸に垂直な軸をY軸と定義した場合、 シリンダ内でY軸を中心に回転する空気流動を形成する
手段を備え、 前記燃料噴射弁には、XZ平面に垂直な方向の噴霧角が
XZ平面に平行な方向の噴霧角より狭くなる燃料噴霧を
形成する燃料噴射口が複数設けられ、このうち低中負荷
運転時には一つの燃料噴射口から燃料を噴射し、高負荷
運転時には2以上の燃料噴射口から燃料を噴射するよう
に設定され、且つ低中負荷運転時に空燃比が理論空燃比
より高くなる燃料噴射量制御を行なう手段を備えている
ことを特徴とする筒内噴射式内燃機関。
7. An in-cylinder injection type internal combustion engine having an ignition plug and injecting fuel directly into a cylinder by a fuel injection valve, wherein the cylinder center axis of the internal combustion engine intersects perpendicularly with the Z axis and the cylinder center of gravity. When an axis passing through the point immediately below the position where the fuel injection valve is disposed is defined as the X axis, and an axis passing through the center of gravity of the cylinder and perpendicular to the X axis and the Z axis is defined as the Y axis, The fuel injection valve includes a plurality of fuel injection ports that form a fuel spray in which a spray angle in a direction perpendicular to the XZ plane is smaller than a spray angle in a direction parallel to the XZ plane. Among them, it is set that fuel is injected from one fuel injection port at the time of low-medium load operation, fuel is injected from two or more fuel injection ports at the time of high load operation, and the air-fuel ratio is low at the time of low-medium load operation. Higher than stoichiometric air-fuel ratio An in-cylinder injection type internal combustion engine comprising means for controlling a fuel injection amount.
【請求項8】 前記複数の燃料噴射口は、Y軸方向に並
んで一つが真中に位置し残りがこの真中の燃料噴射口の
両側に位置しており、前記燃料噴射弁には、低中負荷運
転時には前記真中の燃料噴射口から燃料を噴射させ、高
負荷運転時には両側の燃料噴射口から燃料を噴射させる
噴射口切換手段を備えている請求項7記載の筒内噴射式
内燃機関。
8. A plurality of fuel injection ports are arranged in the Y-axis direction, one of which is located in the middle and the other is located on both sides of the center fuel injection port. 8. An in-cylinder injection type internal combustion engine according to claim 7, further comprising injection port switching means for injecting fuel from said middle fuel injection port during load operation and injecting fuel from both fuel injection ports during high load operation.
【請求項9】 前記燃料噴射弁の先端に多層板を備え、
この多層板には金属板で、上層には円形の孔が、中層に
は細長孔が、下層には前記中層の細長孔とクロスする細
長孔がそれぞれ燃料噴射口の数だけ形成され、これらの
円形の孔及びクロスする細長孔を重ね合わせて各燃料噴
射口が形成され、このうち下層の細長孔は長手方向が前
記XZ平面と平行に向いている請求項8記載の筒内噴射
式内燃機関。
9. A multi-layer plate is provided at a tip of the fuel injection valve,
This multilayer plate is a metal plate, a circular hole is formed in the upper layer, an elongated hole is formed in the middle layer, and an elongated hole which crosses the elongated hole of the middle layer is formed in the lower layer by the number of fuel injection ports, respectively. 9. The direct injection internal combustion engine according to claim 8, wherein each of the fuel injection ports is formed by overlapping a circular hole and a crossed elongated hole, and a longitudinal direction of the lower elongated hole is parallel to the XZ plane. .
【請求項10】 前記両側の燃料噴射口は噴射される燃
料が交差しないように斜めに向けて形成されている請求
項8又は9記載の筒内噴射式内燃機関。
10. The direct injection internal combustion engine according to claim 8, wherein the fuel injection ports on both sides are formed obliquely so that the fuel to be injected does not cross.
【請求項11】 点火プラグを備え、燃料を燃料噴射弁
により直接シリンダ内に噴射する筒内噴射式内燃機関に
おいて、 内燃機関のシリンダ中心軸をZ軸、Z軸に垂直に交わり
シリンダ重心点と燃料噴射弁を配置した位置の直下点と
を通過する軸をX軸、シリンダ重心点を通りX軸とZ軸
に垂直な軸をY軸と定義した場合、 シリンダ内でY軸を中心に回転する空気流動を形成する
手段を備え、 前記燃料噴射弁には、XZ平面に垂直な方向の噴霧角が
XZ平面に平行な方向の噴霧角より狭くなる燃料噴霧を
形成する第1の燃料噴射口と、XZ平面に垂直な方向の
噴霧角がXZ平面に平行な方向の噴霧角より広くなる燃
料噴霧を形成する第2の燃料噴射口とが形成され、 低中負荷運転域には前記第1の燃料噴射口を選択し、高
負荷運転域には前記第2の燃料噴射口を選択するように
設定されていることを特徴とする筒内噴射式内燃機関。
11. An in-cylinder injection type internal combustion engine having an ignition plug and injecting fuel directly into a cylinder by a fuel injection valve, wherein the cylinder center axis of the internal combustion engine intersects perpendicularly with the Z axis and the cylinder center of gravity. When the axis passing through the point directly below the position where the fuel injection valve is located is defined as the X axis, and the axis passing through the center of gravity of the cylinder and perpendicular to the X axis and the Z axis is defined as the Y axis, the axis rotates around the Y axis in the cylinder. A first fuel injection port for forming a fuel spray in which a spray angle in a direction perpendicular to the XZ plane is smaller than a spray angle in a direction parallel to the XZ plane. And a second fuel injection port for forming a fuel spray in which a spray angle in a direction perpendicular to the XZ plane is wider than a spray angle in a direction parallel to the XZ plane. Select the fuel injection port of Cylinder injection internal combustion engine, characterized in that it is set to select the second fuel injection port.
【請求項12】 角度θの二等辺三角形を仮定し、この
角度θは、前記シリンダ内のピストンのストローク長を
二等辺三角形の高さHとした時の底辺長さをLとした場
合に、シリンダ内径D×L×ストローク長Hよりなるシ
リンダ内仮想直方体の中に全噴射燃料量が理論混合比の
混合気を形成することが可能な角度であり、この角度θ
を前記XZ平面に垂直な方向の燃料噴霧角とした請求項
1ないし11のいずれか1項記載の筒内噴射式内燃機
関。
12. An isosceles triangle having an angle θ is assumed, and the angle θ is defined assuming that a stroke length of a piston in the cylinder is a height H of the isosceles triangle and a base length is L. It is an angle at which the total injected fuel amount can form an air-fuel mixture having a stoichiometric mixture ratio in an in-cylinder virtual rectangular parallelepiped having a cylinder inner diameter D × L × stroke length H.
The direct injection internal combustion engine according to any one of claims 1 to 11, wherein? Is a fuel spray angle in a direction perpendicular to the XZ plane.
【請求項13】 前記燃料噴射弁は、弁のリフト量を変
えることで噴射弁本体内の燃料流路を切り替えることが
可能で、弁のリフト量を小さく制御した時は前記低中負
荷運転時に使用する燃料噴射口に通じる燃料流路を選択
し、弁のリフト量を大きく制御した時は前記高負荷運転
時に使用する燃料噴射口に通じる燃料流路を選択するよ
う設定されている請求項7ないし11のいずれか1項記
載の筒内噴射式内燃機関。
13. The fuel injection valve can switch a fuel flow path in the injection valve main body by changing a valve lift amount, and when the valve lift amount is controlled to be small, the fuel injection valve operates during the low and medium load operation. 8. A fuel flow path connected to a fuel injection port to be used is selected, and when the valve lift is controlled to be large, a fuel flow path connected to the fuel injection port to be used during the high-load operation is set. 12. The direct injection internal combustion engine according to any one of claims 11 to 11.
JP02001399A 1999-01-28 1999-01-28 In-cylinder internal combustion engine Expired - Fee Related JP3611471B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02001399A JP3611471B2 (en) 1999-01-28 1999-01-28 In-cylinder internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02001399A JP3611471B2 (en) 1999-01-28 1999-01-28 In-cylinder internal combustion engine

Publications (2)

Publication Number Publication Date
JP2000220460A true JP2000220460A (en) 2000-08-08
JP3611471B2 JP3611471B2 (en) 2005-01-19

Family

ID=12015236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02001399A Expired - Fee Related JP3611471B2 (en) 1999-01-28 1999-01-28 In-cylinder internal combustion engine

Country Status (1)

Country Link
JP (1) JP3611471B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002038924A1 (en) * 2000-10-30 2002-05-16 Hitachi, Ltd. Cylinder injection engine and method of controlling the engine
JP2003161154A (en) * 2001-11-26 2003-06-06 Toyota Motor Corp Direct injection spark ignition internal combustion engine
WO2005121523A1 (en) 2004-06-11 2005-12-22 Toyota Jidosha Kabushiki Kaisha In-cylinder injection, spark ignited internal combustion engine
US7021280B2 (en) 2004-01-14 2006-04-04 Toyota Jidoshi Kabushiki Kaisha In-cylinder fuel injection internal-combustion engine
US7328684B2 (en) 2005-03-18 2008-02-12 Toyota Jidosha Kabushiki Kaisha Control device for internal combustion engine
US7404389B2 (en) * 2002-02-28 2008-07-29 Yamaha Hatsudoki Kabushiki Kaisha Direct injection internal combustion engine

Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5990765A (en) * 1982-11-12 1984-05-25 Yanmar Diesel Engine Co Ltd Fuel injection valve for internal-combustion engine
JPS61286576A (en) * 1985-06-14 1986-12-17 Tech Res Assoc Highly Reliab Marine Propul Plant Fuel injection valve
JPS62162722A (en) * 1986-01-14 1987-07-18 Toyota Motor Corp Cylinder direct injection type spark ignition engine
JPH0317274U (en) * 1989-07-04 1991-02-20
JPH0378562A (en) * 1989-08-21 1991-04-03 Toyota Central Res & Dev Lab Inc Fuel injection valve
JPH0494416A (en) * 1990-08-10 1992-03-26 Toyota Motor Corp Intra-cylinder direct injection type spark ignition engine
JPH0681656A (en) * 1992-09-02 1994-03-22 Nissan Motor Co Ltd Gasoline engine
JPH07180559A (en) * 1993-12-22 1995-07-18 Nissan Motor Co Ltd Spark ignition type internal combustion engine
JPH07243368A (en) * 1994-03-03 1995-09-19 Nippondenso Co Ltd Fluid injection nozzle
JPH07310629A (en) * 1994-05-17 1995-11-28 Nippondenso Co Ltd Fluid injection nozzle and fuel injection valve using the injection nozzle
JPH08144762A (en) * 1994-11-16 1996-06-04 Nissan Motor Co Ltd Direct injection type spark ignition internal combustion engine
JPH08177499A (en) * 1994-12-20 1996-07-09 Nissan Motor Co Ltd Direct injection and spark-ignition type internal combustion engine
JPH08303250A (en) * 1995-05-02 1996-11-19 Nissan Motor Co Ltd Intake device for internal combustion engine
JPH0914103A (en) * 1995-04-27 1997-01-14 Yamaha Motor Co Ltd Inline injection engine
JPH09126095A (en) * 1995-10-31 1997-05-13 Toyota Central Res & Dev Lab Inc Fuel injection valve
JPH09158736A (en) * 1995-12-06 1997-06-17 Toyota Central Res & Dev Lab Inc Spark igntion type combustion method and spark ignition type internal combustion engine
JPH10141070A (en) * 1996-11-06 1998-05-26 Hitachi Ltd In-cylinder injection engine
JPH10317971A (en) * 1997-05-21 1998-12-02 Nissan Motor Co Ltd Direct cylinder injection spark ignition engine
JPH10331641A (en) * 1997-06-02 1998-12-15 Nissan Motor Co Ltd Cylinder direct injection type spark-ignition engine
JPH10339219A (en) * 1997-06-10 1998-12-22 Nissan Motor Co Ltd Spark ignition engine of direct injection
JPH11200865A (en) * 1998-01-05 1999-07-27 Kawasaki Heavy Ind Ltd Fuel supply method of gasoline engine
JPH11257192A (en) * 1998-03-05 1999-09-21 Nissan Motor Co Ltd Fuel injection controller of cylinder direct injection type spark ignition engine

Patent Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5990765A (en) * 1982-11-12 1984-05-25 Yanmar Diesel Engine Co Ltd Fuel injection valve for internal-combustion engine
JPS61286576A (en) * 1985-06-14 1986-12-17 Tech Res Assoc Highly Reliab Marine Propul Plant Fuel injection valve
JPS62162722A (en) * 1986-01-14 1987-07-18 Toyota Motor Corp Cylinder direct injection type spark ignition engine
JPH0317274U (en) * 1989-07-04 1991-02-20
JPH0378562A (en) * 1989-08-21 1991-04-03 Toyota Central Res & Dev Lab Inc Fuel injection valve
JPH0494416A (en) * 1990-08-10 1992-03-26 Toyota Motor Corp Intra-cylinder direct injection type spark ignition engine
JPH0681656A (en) * 1992-09-02 1994-03-22 Nissan Motor Co Ltd Gasoline engine
JPH07180559A (en) * 1993-12-22 1995-07-18 Nissan Motor Co Ltd Spark ignition type internal combustion engine
JPH07243368A (en) * 1994-03-03 1995-09-19 Nippondenso Co Ltd Fluid injection nozzle
JPH07310629A (en) * 1994-05-17 1995-11-28 Nippondenso Co Ltd Fluid injection nozzle and fuel injection valve using the injection nozzle
JPH08144762A (en) * 1994-11-16 1996-06-04 Nissan Motor Co Ltd Direct injection type spark ignition internal combustion engine
JPH08177499A (en) * 1994-12-20 1996-07-09 Nissan Motor Co Ltd Direct injection and spark-ignition type internal combustion engine
JPH0914103A (en) * 1995-04-27 1997-01-14 Yamaha Motor Co Ltd Inline injection engine
JPH08303250A (en) * 1995-05-02 1996-11-19 Nissan Motor Co Ltd Intake device for internal combustion engine
JPH09126095A (en) * 1995-10-31 1997-05-13 Toyota Central Res & Dev Lab Inc Fuel injection valve
JPH09158736A (en) * 1995-12-06 1997-06-17 Toyota Central Res & Dev Lab Inc Spark igntion type combustion method and spark ignition type internal combustion engine
JPH10141070A (en) * 1996-11-06 1998-05-26 Hitachi Ltd In-cylinder injection engine
JPH10317971A (en) * 1997-05-21 1998-12-02 Nissan Motor Co Ltd Direct cylinder injection spark ignition engine
JPH10331641A (en) * 1997-06-02 1998-12-15 Nissan Motor Co Ltd Cylinder direct injection type spark-ignition engine
JPH10339219A (en) * 1997-06-10 1998-12-22 Nissan Motor Co Ltd Spark ignition engine of direct injection
JPH11200865A (en) * 1998-01-05 1999-07-27 Kawasaki Heavy Ind Ltd Fuel supply method of gasoline engine
JPH11257192A (en) * 1998-03-05 1999-09-21 Nissan Motor Co Ltd Fuel injection controller of cylinder direct injection type spark ignition engine

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002038924A1 (en) * 2000-10-30 2002-05-16 Hitachi, Ltd. Cylinder injection engine and method of controlling the engine
JP2003161154A (en) * 2001-11-26 2003-06-06 Toyota Motor Corp Direct injection spark ignition internal combustion engine
US7404389B2 (en) * 2002-02-28 2008-07-29 Yamaha Hatsudoki Kabushiki Kaisha Direct injection internal combustion engine
US7021280B2 (en) 2004-01-14 2006-04-04 Toyota Jidoshi Kabushiki Kaisha In-cylinder fuel injection internal-combustion engine
CN100381682C (en) * 2004-01-14 2008-04-16 丰田自动车株式会社 In-cylinder fuel injection internal-combustion engine
DE102005001698B4 (en) * 2004-01-14 2009-10-15 Toyota Jidosha Kabushiki Kaisha, Toyota-shi Internal combustion engine with fuel injection in the cylinder
WO2005121523A1 (en) 2004-06-11 2005-12-22 Toyota Jidosha Kabushiki Kaisha In-cylinder injection, spark ignited internal combustion engine
US7055490B2 (en) 2004-06-11 2006-06-06 Toyota Jidosha Kabushiki Kaisha In-cylinder injection, spark ignited internal combustion engine
US7328684B2 (en) 2005-03-18 2008-02-12 Toyota Jidosha Kabushiki Kaisha Control device for internal combustion engine

Also Published As

Publication number Publication date
JP3611471B2 (en) 2005-01-19

Similar Documents

Publication Publication Date Title
KR100380298B1 (en) Mixture forming apparatus of internal combustion engine and internal combustion engine
US7121253B2 (en) Cylinder injection type internal combustion engine, control method for internal combustion engine, and fuel injection valve
JP4047177B2 (en) Fuel injection system
JP2007224753A (en) Spark ignition type direct injection engine
KR20110062146A (en) Gasoline direct injection engine
JP3926989B2 (en) In-cylinder injection spark ignition engine control device
US7021280B2 (en) In-cylinder fuel injection internal-combustion engine
JP3840823B2 (en) In-cylinder injection engine
JP3611471B2 (en) In-cylinder internal combustion engine
JP2002054535A (en) Spark ignition engine
JP2000097032A (en) Direct injection type spark ignition engine
JP2004245204A (en) Fuel injection apparatus for internal combustion engine
JPH06257432A (en) Fuel supply system for internal combustion engine
JP2501556Y2 (en) Internal combustion engine intake system
JP4732381B2 (en) Fuel injection apparatus and fuel injection method for internal combustion engine
JP2008075538A (en) Fuel injection device
JP3903200B2 (en) In-cylinder injection spark ignition internal combustion engine
JPH09242550A (en) Spark ignition engine of direct cylinder fuel injection type
JP3340470B2 (en) Engine fuel supply control device
JP2012241544A (en) Cylinder-injection type engine and fuel injection method thereof
KR100304496B1 (en) Fuel injection apparatus for direct injection type gasoline engine
JP4120799B2 (en) Fuel injection device for internal combustion engine
JP2508636Y2 (en) Intake port structure of internal combustion engine
JP2003013741A (en) Air-fuel mixture supply system for internal combustion engine
JPH07332093A (en) Intake control device of engine

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041019

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071029

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081029

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091029

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees