JPH0817745A - Heater - Google Patents

Heater

Info

Publication number
JPH0817745A
JPH0817745A JP14905394A JP14905394A JPH0817745A JP H0817745 A JPH0817745 A JP H0817745A JP 14905394 A JP14905394 A JP 14905394A JP 14905394 A JP14905394 A JP 14905394A JP H0817745 A JPH0817745 A JP H0817745A
Authority
JP
Japan
Prior art keywords
heater
layer
purity
graphite
protective film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14905394A
Other languages
Japanese (ja)
Other versions
JP3361385B2 (en
Inventor
Masayuki Shimada
真幸 島田
Yasuaki Honda
恭章 本多
Shinichi Mitani
慎一 三谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shibaura Machine Co Ltd
Original Assignee
Toshiba Machine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Machine Co Ltd filed Critical Toshiba Machine Co Ltd
Priority to JP14905394A priority Critical patent/JP3361385B2/en
Publication of JPH0817745A publication Critical patent/JPH0817745A/en
Application granted granted Critical
Publication of JP3361385B2 publication Critical patent/JP3361385B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To provide a heater for directly heating a semiconductor wafer in a semiconductor CVD processing device, which has an enhanced life. CONSTITUTION:This heater is provided with a heater main body 11 comprising graphite and a protective film 12 formed so as to cover the whole surface of the heater main body 11. The protective film is made up of a single layer comprising high-purity thermal decomposition graphite or a laminated layer including a first layer of high-purity thermal decomposition graphite and a second layer of high-purity silicon carbide.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体CVD処理装置
において半導体ウエハを直接加熱するためのヒータに係
り、特には、向上した可使寿命を有するヒータに関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heater for directly heating a semiconductor wafer in a semiconductor CVD processing apparatus, and more particularly to a heater having an improved service life.

【0002】[0002]

【従来の技術】半導体化学気相成長(CVD)処理装置
として、処理すべき半導体ウエハを所定の温度に直接加
熱するためのヒータを具備するものが知られている。半
導体ウエハは、離間・配置されたヒータにより裏面から
所定の温度に加熱される。
2. Description of the Related Art As a semiconductor chemical vapor deposition (CVD) processing apparatus, one having a heater for directly heating a semiconductor wafer to be processed to a predetermined temperature is known. The semiconductor wafer is heated to a predetermined temperature from the back surface by heaters which are separated and arranged.

【0003】このような半導体ウエハ直接加熱用ヒータ
の材料には、発熱機能を有することに加えて、ウエハの
汚染防止の目的から、極めて純度が高くかつ金属成分の
含有量が極めて低く保たれていることが要求される。ま
た、優れた耐食性及び耐熱性、並びにある程度の強度を
有することも要求される。これらの要件をすべて満足す
る材料は単体としてはほとんど存在せず、従来これら要
件をある程度満足するものとして、高純度のSiCで被
覆された黒鉛が使用されてきた。
The material for such a heater for directly heating a semiconductor wafer has an extremely high purity and a very low metal component content for the purpose of preventing contamination of the wafer in addition to having a heat generating function. Required to be present. Further, it is also required to have excellent corrosion resistance and heat resistance, and some strength. There are almost no materials that satisfy all of these requirements as a simple substance, and graphite that is coated with high-purity SiC has hitherto been used as one that satisfies these requirements to some extent.

【0004】SiC被覆黒鉛からなる従来のヒータは、
通常の黒鉛からなるヒータ本体を備え、その周囲がきわ
めて純度の高いSiCからなる保護膜で覆われている。
このSiC被覆黒鉛は、加熱機能をヒータ本体の黒鉛が
担い、加熱時に黒鉛より発生する汚染物質がヒータ外へ
と放出されウエハを汚染することを防止する機能をSi
C保護膜が担うことにより、黒鉛からの汚染物質をヒー
タ外部へと放出することなく、ウエハの加熱を行うこと
ができる。
A conventional heater made of SiC-coated graphite is
A heater body made of normal graphite is provided, and the periphery thereof is covered with a protective film made of SiC having an extremely high purity.
In this SiC-coated graphite, the graphite of the heater body plays a heating function, and a function of preventing contaminants generated from the graphite during heating from being emitted to the outside of the heater and contaminating the wafer.
With the C protective film, the wafer can be heated without releasing contaminants from the graphite to the outside of the heater.

【0005】しかしながら、このようなSiC被覆黒鉛
をヒータとして、H2 もしくはH2とHClの混合ガス
を成分として含む減圧雰囲気下で使用する場合、140
0℃付近までは比較的良好な耐性を示すが1400℃付
近を越えると、SiC保護膜の消失速度が次第に増大し
始め、1450℃を越えると、その消失速度は著しく増
大し、SiC保護膜の耐性が大きく低下するために、ヒ
ータが短寿命化するという問題を抱えていた。
However, when such a SiC-coated graphite is used as a heater in a reduced pressure atmosphere containing H 2 or a mixed gas of H 2 and HCl as a component, 140
It exhibits a relatively good resistance up to around 0 ° C, but when it exceeds around 1400 ° C, the disappearance rate of the SiC protective film gradually starts to increase, and when it exceeds 1450 ° C, the disappearance rate remarkably increases. Since the durability is greatly reduced, there is a problem that the life of the heater is shortened.

【0006】従来のSiC被膜黒鉛製ヒータにおける、
加熱温度の上昇に伴うSiC保護膜の膜厚減少速度の増
加状況について表1に示す。このSiC保護膜が、ヒー
タ加熱部の一部においても、完全に消失してしまえば、
基材の黒鉛がむき出しの状態となり、ウエハへの汚染が
生ずるようになるため、ヒータとしては使用不可能とな
る。すなわち、この状況が生じた時点で、ヒータは寿命
を迎えていた。
In a conventional SiC coated graphite heater,
Table 1 shows how the rate of decrease in the thickness of the SiC protective film increases as the heating temperature increases. If this SiC protective film completely disappears even in a part of the heater heating part,
Since the graphite of the base material is exposed and the wafer is contaminated, it cannot be used as a heater. That is, the heater had reached the end of its life when this situation occurred.

【0007】[0007]

【表1】 [Table 1]

【0008】[0008]

【発明が解決しようとする課題】本発明は、H2 または
2 とHClとの混合ガスを成分として含む減圧雰囲気
下においてもSiC被覆黒鉛製ヒータよりもさらに耐熱
性・耐食性に優れ、もってさらに向上した可使寿命を有
する、半導体CVD処理装置のヒータを提供することを
課題とする。
The present invention is more excellent in heat resistance and corrosion resistance than a heater made of SiC-coated graphite even under a reduced pressure atmosphere containing H 2 or a mixed gas of H 2 and HCl as a component. An object of the present invention is to provide a heater for a semiconductor CVD processing apparatus having an improved usable life.

【0009】[0009]

【課題を解決するための手段および作用】上記課題を解
決するために、本発明は、黒鉛からなるヒータ本体、お
よび該ヒータ本体の全表面を覆って形成された保護膜を
備え、該保護膜は、高純度熱分解黒鉛からなる単一層
膜、または高純度熱分解黒鉛からなる第1の層と高純度
炭化ケイ素からなる第2の層との積層膜からなることを
特徴とするヒータを提供する。
In order to solve the above problems, the present invention comprises a heater body made of graphite, and a protective film formed so as to cover the entire surface of the heater body. Provides a heater characterized by comprising a single-layer film made of high-purity pyrolytic graphite or a laminated film of a first layer made of high-purity pyrolytic graphite and a second layer made of high-purity silicon carbide. To do.

【0010】既述のように、上述の半導体CVD処理装
置において、従来ヒータ材として使用されてきたSiC
被覆黒鉛では、黒鉛上へのSiC保護膜の被覆を、14
00℃前後の温度におけるCVD処理によって行ってい
るため、1400℃を越える温度域で、特にH2 又はH
2 とHClとの混合ガスを成分として含む減圧雰囲気下
において、SiCの消失が生じ易くなる。したがって、
1400℃付近以上の温度ではSiC保護膜の減少速度
は増大し、耐性は低下する。
As described above, the SiC that has been conventionally used as a heater material in the above-described semiconductor CVD processing apparatus.
For coated graphite, the coating of SiC protective film on graphite
Since it is carried out by the CVD process at a temperature of around 00 ° C, especially in the temperature range over 1400 ° C, especially H 2 or H
In a reduced pressure atmosphere containing a mixed gas of 2 and HCl as a component, SiC is likely to disappear. Therefore,
At temperatures above 1400 ° C., the rate of decrease of the SiC protective film increases and the resistance decreases.

【0011】これに対し、本発明において保護層に使用
する高純度熱分解黒鉛は、ヒータの使用温度よりはるか
に高温の約2000℃以上の温度域でCVD処理により
生成され、かつ高温で熱処理されたものであり、SiC
よりも耐熱性・耐腐食性に優れ、高純度で結晶性に極め
て優れ、非常に緻密なものである。このような高純度熱
分解黒鉛により通常の黒鉛からなるヒータ本体を被覆す
ることにより、ヒータ加熱時のヒータ黒鉛本体からの汚
染物放出を防止する保護層としての寿命、したがってヒ
ータの寿命を大幅に向上させることができる。したがっ
て、高純度熱分解黒鉛は、これを単独で保護層として使
用することもできるし、従来の高純度SiCとの積層構
造として使用することもできる。
On the other hand, the high-purity pyrolytic graphite used for the protective layer in the present invention is produced by the CVD process in a temperature range of about 2000 ° C. or higher, which is much higher than the operating temperature of the heater, and is heat-treated at a high temperature. It is a SiC
It is superior in heat resistance and corrosion resistance, high in purity, extremely excellent in crystallinity, and extremely dense. By covering the heater body made of normal graphite with such high-purity pyrolytic graphite, the life of the heater as a protective layer for preventing the emission of contaminants from the heater graphite body during heating of the heater, and hence the life of the heater, is greatly increased. Can be improved. Therefore, the high-purity pyrolytic graphite can be used alone as a protective layer, or can be used as a laminated structure with conventional high-purity SiC.

【0012】本発明の保護膜が上記積層構造をとる場
合、高純度熱分解黒鉛からなる第1の層と高純度SiC
からなる第2の層のいずれがヒータ本体の表面に直接接
して形成されていてもよいが、高純度SiCからなる第
2の層をヒータ本体の表面に直接接するようにすること
が好ましい。この積層構造は、3層以上としてもよく、
上記第1の層と第2の層とを交互に積層する。好ましく
は、本発明の保護層は、最上層に高純度熱分解黒鉛層
(第1の層)を有する。
When the protective film of the present invention has the above-mentioned laminated structure, the first layer of high-purity pyrolytic graphite and high-purity SiC are used.
Although any of the second layers composed of 1 to 3 may be formed in direct contact with the surface of the heater body, it is preferable that the second layer composed of high-purity SiC be in direct contact with the surface of the heater body. This laminated structure may have three or more layers,
The first layer and the second layer are alternately laminated. Preferably, the protective layer of the present invention has a high-purity pyrolytic graphite layer (first layer) as the uppermost layer.

【0013】なお、高純度熱分解黒鉛および高純度Si
Cは、ともに、高純度故に、それ自体が半導体ウエハを
汚染することがないことはいうまでもない。本発明に使
用する高純度熱分解黒鉛は、通常の黒鉛からなるヒータ
本体等の基体の周囲表面にCVD処理により形成するこ
とができる。すなわち、メタン、プロパン、ベンゼン、
アセチレン等の炭化水素ガスを原料とし、これをキャリ
アガスの水素とともに(黒鉛)基板上へと送り、150
0℃〜2300℃の範囲の温度で制御しながら熱分解さ
せて基体上に堆積させる。この際、原料ガスの炭化水素
ガスとキャリアガスの水素ガスとの混合ガス中に占める
炭化水素ガスの割合は15%以下とすることが望まし
い。この混合ガスに占める原料ガスである炭化水素ガス
の割合は、その熱分解処理温度が高温となるほど低めに
抑えることが望ましい。こうして極めて純度の高い(不
純物の総含有率10ppm以下)黒鉛膜が得られる。し
かる後、これを高温(例えば、2600℃ないし320
0℃)で熱処理する。これにより結晶性に優れ、100
%の気密性を有する極めて緻密な膜となる。
High-purity pyrolytic graphite and high-purity Si
Needless to say, both Cs do not contaminate the semiconductor wafer by themselves due to their high purity. The high-purity pyrolytic graphite used in the present invention can be formed on the peripheral surface of a substrate such as a heater body made of normal graphite by a CVD process. Namely methane, propane, benzene,
A hydrocarbon gas such as acetylene is used as a raw material, and this is sent together with hydrogen as a carrier gas onto a (graphite) substrate for 150
It is thermally decomposed and deposited on the substrate while controlling it at a temperature in the range of 0 ° C to 2300 ° C. At this time, it is desirable that the ratio of the hydrocarbon gas in the mixed gas of the raw material hydrocarbon gas and the carrier gas hydrogen gas be 15% or less. It is desirable that the ratio of the hydrocarbon gas, which is the raw material gas, to the mixed gas is suppressed to a lower value as the pyrolysis treatment temperature becomes higher. Thus, a graphite film having an extremely high purity (total content of impurities is 10 ppm or less) is obtained. Thereafter, this is heated to a high temperature (for example, 2600 ° C to 320 ° C).
Heat treatment at 0 ° C. This gives excellent crystallinity and 100
An extremely dense film having an airtightness of 100% is obtained.

【0014】本発明において高純度熱分解黒鉛と組み合
わせて保護膜を構成するSiCは、従来と同様のCVD
処理により形成することができる。これらのCVD処理
は、同一処理装置により、原料ガスを変えることによ
り、連続的に行うことができる。
In the present invention, SiC, which constitutes a protective film in combination with high-purity pyrolytic graphite, has the same CVD as the conventional CVD.
It can be formed by processing. These CVD processes can be continuously performed by changing the raw material gas by the same processing apparatus.

【0015】[0015]

【実施例】以下、本発明の実施例を図面を参照して説明
する。全図に渡り、同一部分は、同一符号で示されてい
る。図1は、本発明のヒータを組み込んだ半導体CVD
処理装置の半導体ウエハ直接加熱系を概略的に示すもの
である。図1に示すように、処理すべき半導体ウエハ1
3は、治具14により支持され、その裏面側に本発明の
ヒータ10が離間して対向・配置されている。ヒータ1
0は、通常の黒鉛からなるヒータ本体11を備える。ヒ
ータ本体11は、その全表面が本発明の保護膜12で被
覆されている。
Embodiments of the present invention will be described below with reference to the drawings. The same parts are denoted by the same reference numerals throughout the drawings. FIG. 1 shows a semiconductor CVD in which the heater of the present invention is incorporated.
1 schematically shows a semiconductor wafer direct heating system of a processing apparatus. As shown in FIG. 1, a semiconductor wafer 1 to be processed
3 is supported by a jig 14, and the heater 10 of the present invention is spaced from and opposed to the back surface of the jig 10. Heater 1
No. 0 has a heater body 11 made of normal graphite. The entire surface of the heater body 11 is covered with the protective film 12 of the present invention.

【0016】図2は、本発明の第1の態様によるヒータ
の断面図である。ヒータ本体11は、単一層の保護膜1
2で被覆され、この保護膜12は、高純度熱分解黒鉛の
単一層21からなる。
FIG. 2 is a cross-sectional view of the heater according to the first aspect of the present invention. The heater body 11 is a single-layer protective film 1
2, the protective film 12 is composed of a single layer 21 of high-purity pyrolytic graphite.

【0017】図3は、本発明の第2の態様によるヒータ
の断面図である。ヒータ本体11は、2層積層構造の保
護膜12で被覆されている。この保護膜12は、ヒータ
本体11の全表面を直接覆う高純度SiCからなる第2
の層22と、第2の層22の全表面を覆って形成された
高純度熱分解黒鉛からなる第1の層21により構成され
ている。
FIG. 3 is a sectional view of a heater according to the second aspect of the present invention. The heater body 11 is covered with a protective film 12 having a two-layer laminated structure. The protective film 12 is made of a high-purity SiC that directly covers the entire surface of the heater body 11.
Layer 22 and the first layer 21 made of high-purity pyrolytic graphite formed so as to cover the entire surface of the second layer 22.

【0018】図4は、本発明の第3の態様によるヒータ
の断面図である。このヒータは、保護層12を構成する
第1の層21と第2の層22の配置が図3と逆になって
いる。すなわち、ヒータ本体11に直接接して第1の層
21(高純度熱分解黒鉛層)が形成され、その上に第2
の層22(SiC層)が形成されている。
FIG. 4 is a cross-sectional view of a heater according to the third aspect of the present invention. In this heater, the arrangement of the first layer 21 and the second layer 22 constituting the protective layer 12 is opposite to that of FIG. That is, the first layer 21 (high-purity pyrolytic graphite layer) is formed in direct contact with the heater body 11, and the second layer 21 is formed thereon.
Layer 22 (SiC layer) is formed.

【0019】図5は、本発明の第4の態様によるヒータ
の断面図である。ヒータ本体11は、3層構造の保護膜
12により被覆されている。この保護層12は、ヒータ
本体11を直接被覆する第1の層21(高純度熱分解黒
鉛層)、第1の層21を被覆する第2の層22(高純度
SiC層)、および第2の層22を被覆する第1の層2
1(高純度熱分解黒鉛層)により構成されている。
FIG. 5 is a sectional view of a heater according to the fourth aspect of the present invention. The heater body 11 is covered with a protective film 12 having a three-layer structure. The protective layer 12 includes a first layer 21 (high-purity pyrolytic graphite layer) that directly covers the heater body 11, a second layer 22 (high-purity SiC layer) that covers the first layer 21, and a second layer 21. The first layer 2 covering the layer 22 of
1 (high-purity pyrolytic graphite layer).

【0020】図6は、本発明の第5の態様によるヒータ
の部分断面図である。ヒータ本体11は、多層構造の保
護膜12により被覆されている。多層構造の保護膜12
は、ヒータ本体11上に第2の層22(高純度SiC
層)と第1の層21(高純度熱分解黒鉛層)が交互に積
層されてなる。保護膜12の最上層は第1の層21(高
純度熱分解黒鉛層)により構成されている。
FIG. 6 is a partial cross-sectional view of a heater according to the fifth aspect of the present invention. The heater body 11 is covered with a protective film 12 having a multilayer structure. Multi-layered protective film 12
Is the second layer 22 (high-purity SiC
Layers) and the first layers 21 (high-purity pyrolytic graphite layers) are alternately laminated. The uppermost layer of the protective film 12 is composed of a first layer 21 (high-purity pyrolytic graphite layer).

【0021】図7は、本発明の第6の態様によるヒータ
の部分断面図である。ヒータ本体11は、多層構造の保
護膜12により被覆されている。多層構造の保護膜12
は、第2の層22(高純度SiC層)と第1の層21
(高純度熱分解黒鉛層)の積層順序が図6と逆になって
いる。この場合も、保護膜12の最上層は第1の層21
(高純度熱分解黒鉛層)により構成されている。
FIG. 7 is a partial cross-sectional view of a heater according to the sixth aspect of the present invention. The heater body 11 is covered with a protective film 12 having a multilayer structure. Multi-layered protective film 12
Is the second layer 22 (high-purity SiC layer) and the first layer 21.
The stacking order of the (high-purity pyrolytic graphite layer) is opposite to that shown in FIG. Also in this case, the uppermost layer of the protective film 12 is the first layer 21.
(High-purity pyrolytic graphite layer).

【0022】なお、本発明において保護層12の厚さ、
特に熱分解保護層の厚さ、および/またはその積層数
は、所望のヒータ寿命に応じて決定することができる。
以下、本発明のヒータを用いた実験例を記載する。 実験例 1 図2に示す構造の本発明のヒータと従来のSiC被覆黒
鉛製ヒータとを作成し、耐性について比較評価を行っ
た。各ヒータを組み入れた加熱系の基本構造は、図1に
示す通りである。
In the present invention, the thickness of the protective layer 12
In particular, the thickness of the thermal decomposition protection layer and / or the number of laminated layers thereof can be determined according to the desired heater life.
Hereinafter, experimental examples using the heater of the present invention will be described. Experimental Example 1 A heater of the present invention having a structure shown in FIG. 2 and a conventional heater made of SiC-coated graphite were prepared, and comparative evaluation was performed regarding resistance. The basic structure of the heating system incorporating each heater is as shown in FIG.

【0023】本発明のヒータの高純度熱分解黒鉛保護膜
は、プロパンガス5%とH2 ガス95%の混合ガスを2
000℃の黒鉛基板上に3時間流すことによって形成し
た。厚さは、20μmであった。この保護膜の電子顕微
鏡写真を図8に示す。
The high-purity pyrolytic graphite protective film of the heater of the present invention contains 2 % of a mixed gas of propane gas 5% and H 2 gas 95%.
It was formed by flowing on a graphite substrate at 000 ° C. for 3 hours. The thickness was 20 μm. An electron micrograph of this protective film is shown in FIG.

【0024】また、従来のヒータのSiC膜は、SiC
4 の混合ガスを1400℃の黒鉛基板上に48時間流
すことによって形成した。厚さは、60μmであった。
評価に当たっては、それぞれのヒータについて、下記の
同一条件において加熱を行ったときの減少量を測定し
た。
The SiC film of the conventional heater is SiC
It was formed by flowing 48 hours a mixed gas of l 4 1400 ° C. graphite substrate. The thickness was 60 μm.
In the evaluation, for each heater, the reduction amount when heating was performed under the same conditions described below was measured.

【0025】加熱条件は下記の通りであり、加熱は通電
加熱により行った。 加熱温度 : 1500℃ 加熱時間 : 10時間 雰囲気 : 97.5%H2 と2.5%HClとの混
合ガス雰囲気で100Torrの減圧下。
The heating conditions are as follows, and the heating was performed by electric heating. Heating temperature: 1500 ° C. Heating time: 10 hours Atmosphere: Under reduced pressure of 100 Torr in a mixed gas atmosphere of 97.5% H 2 and 2.5% HCl.

【0026】加熱後の各ヒータの保護膜の電子顕微鏡写
真を図9および図10に示す。図9は、本発明のヒータ
のものであり、図10は、従来のヒータのものである。
図9からわかるように、本発明のヒータにおいて、熱分
解黒鉛層22に損傷(膜厚の減少)は全く認められず
(図8との比較)、本発明のヒータは非常に優れた耐性
を示す。これに対して図10からわかるように、従来の
ヒータのSiC保護膜では、SiC被覆膜において大幅
な膜厚の減少(具体的には、約40μm)が認められる
とともに、多数の異常突起30による変質が認められ
た。
Electron micrographs of the protective film of each heater after heating are shown in FIGS. 9 and 10. FIG. 9 shows a heater of the present invention, and FIG. 10 shows a conventional heater.
As can be seen from FIG. 9, in the heater of the present invention, no damage (decrease in film thickness) was observed in the pyrolytic graphite layer 22 (compared with FIG. 8), and the heater of the present invention has a very excellent resistance. Show. On the other hand, as can be seen from FIG. 10, in the SiC protective film of the conventional heater, a large reduction in film thickness of the SiC coating film (specifically, about 40 μm) is recognized, and a large number of abnormal protrusions 30 are formed. Deterioration due to

【0027】実験例 2 下記表2に示す保護層を有する本発明のヒータと従来の
SiC被覆黒鉛製ヒータとを作成し、耐性について比較
評価を行った。各ヒータを組み入れた加熱系の基本構造
は、図1に示す通りである。
Experimental Example 2 A heater of the present invention having a protective layer shown in Table 2 below and a conventional heater made of SiC-coated graphite were prepared and comparatively evaluated for resistance. The basic structure of the heating system incorporating each heater is as shown in FIG.

【0028】実験例1のヒータ以外の本発明のヒータの
高純度熱分解黒鉛保護層は、実験例1と同様に形成し、
いずれも各厚さは、30μmであった。また、従来のヒ
ータのSiC層、および本発明ヒータの保護膜のSiC
層は、実験例1と同様に形成し、いずれも各厚さは10
0μmであった。
The high-purity pyrolytic graphite protective layer of the heater of the present invention other than the heater of Experimental Example 1 was formed in the same manner as in Experimental Example 1,
Each thickness was 30 μm. Further, the SiC layer of the conventional heater and the SiC layer of the protective film of the heater of the present invention
The layers were formed in the same manner as in Experimental Example 1, and each had a thickness of 10
It was 0 μm.

【0029】評価に当たっては、それぞれのヒータにつ
いて、下記の同一条件において加熱を行ったときの単位
時間あたりの寸法減少量について測定し、それぞれのヒ
ータとしての寿命を算出した。
In the evaluation, each heater was measured for the amount of dimensional reduction per unit time when heated under the same conditions below, and the life of each heater was calculated.

【0030】加熱条件は下記の通りであり、加熱は通電
加熱により行った。 加熱温度 : 1450℃ 加熱時間 : 10時間 雰囲気 : 100%H2 雰囲気で100Torrの
減圧下。
The heating conditions are as follows, and the heating was performed by electric heating. Heating temperature: 1450 ° C. Heating time: 10 hours Atmosphere: 100% H 2 atmosphere under reduced pressure of 100 Torr.

【0031】以上の手法により、加熱による膜厚減少量
を測定したところ熱分解黒鉛層の減少量は10時間で
0.17μmであり、単位時間当りの減少量は0.01
7μm/時であった。この減少速度によると、30μm
の厚さの熱分解黒鉛層が安全に消失するまでの時間は、
30/0.017=約1765時間である。なお、熱分
解黒鉛層の厚さを100μmとすると、その寿命は、1
00/0.017=約5882時間となる。
When the amount of reduction in film thickness due to heating was measured by the above method, the reduction amount of the pyrolytic graphite layer was 0.17 μm in 10 hours, and the reduction amount per unit time was 0.01.
It was 7 μm / hour. According to this decreasing speed, 30 μm
The time it takes for the pyrolytic graphite layer of
30 / 0.017 = about 1765 hours. When the thickness of the pyrolytic graphite layer is 100 μm, its life is 1
00 / 0.017 = approximately 5882 hours.

【0032】これに対し、従来のSiC被覆黒鉛製ヒー
タにおいては、SiCの膜厚減少量は10時間で2.7
4μmであり、単位時間当りの膜厚減少量は0.274
μm/時であった。この減少速度によると、100μm
の厚さのSiC層が完全に消失しヒータとして寿命を迎
えるまでの時間は、100/0.274=約365時間
となる。
On the other hand, in the conventional SiC-coated graphite heater, the SiC film thickness reduction amount is 2.7 in 10 hours.
4 μm, the amount of film thickness reduction per unit time is 0.274
It was μm / hour. According to this decreasing speed, 100 μm
The time until the SiC layer having the thickness of 1 is completely lost and the life of the heater is reached is 100 / 0.274 = about 365 hours.

【0033】本発明のヒータにおいて、保護膜がSiC
層と熱分解黒鉛層との積層構造からなる場合、寿命は、
SiC層の寿命時間と熱分解黒鉛層の寿命時間との合計
時間となる。
In the heater of the present invention, the protective film is SiC.
When it has a laminated structure of a layer and a pyrolytic graphite layer, the life is
It is the total of the lifetime of the SiC layer and the lifetime of the pyrolytic graphite layer.

【0034】なお、上記条件で半導体ウエハを加熱した
後の半導体ウエハについて不純物分析も行った。結果を
表2に併せて示す。この結果からもわかるように、本発
明のヒータは半導体ウエハを汚染することなく半導体ウ
エハを加熱処理できる。
Impurity analysis was also performed on the semiconductor wafer after heating the semiconductor wafer under the above conditions. The results are also shown in Table 2. As can be seen from this result, the heater of the present invention can heat-treat the semiconductor wafer without contaminating the semiconductor wafer.

【0035】[0035]

【表2】 [Table 2]

【0036】[0036]

【発明の効果】以上述べたように、本発明によれば、可
使寿命が著しく向上した、半導体CVD処理装置の加熱
用ヒータが提供される。
As described above, according to the present invention, there is provided a heater for heating a semiconductor CVD processing apparatus, which has a significantly improved service life.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のヒータを組み込んだ、半導体CVD処
理装置の加熱系の概略図。
FIG. 1 is a schematic diagram of a heating system of a semiconductor CVD processing apparatus incorporating a heater of the present invention.

【図2】本発明の第1の態様によるヒータの断面図。FIG. 2 is a cross-sectional view of a heater according to the first aspect of the present invention.

【図3】本発明の第2の態様によるヒータの断面図。FIG. 3 is a sectional view of a heater according to a second aspect of the present invention.

【図4】本発明の第3の態様によるヒータの断面図。FIG. 4 is a sectional view of a heater according to a third aspect of the present invention.

【図5】本発明の第4の態様によるヒータの断面図。FIG. 5 is a sectional view of a heater according to a fourth aspect of the present invention.

【図6】本発明の第5の態様によるヒータの部分断面
図。
FIG. 6 is a partial cross-sectional view of a heater according to a fifth aspect of the present invention.

【図7】本発明の第6の態様によるヒータの部分断面
図。
FIG. 7 is a partial cross-sectional view of a heater according to a sixth aspect of the present invention.

【図8】本発明の第1の態様によるヒータの保護膜周辺
の結晶構造を示す電子顕微鏡写真図。
FIG. 8 is an electron micrograph showing a crystal structure around a protective film of a heater according to the first aspect of the present invention.

【図9】本発明の第1の態様によるヒータの加熱後の保
護膜周辺の結晶構造を示す電子顕微鏡写真図。
FIG. 9 is an electron micrograph showing a crystal structure around a protective film after heating of a heater according to the first embodiment of the present invention.

【図10】従来のヒータの加熱後の保護膜周辺の結晶構
造を示す電子顕微鏡写真図。
FIG. 10 is an electron micrograph showing a crystal structure around a protective film after heating by a conventional heater.

【符号の説明】[Explanation of symbols]

10…ヒータ、11…ヒータ本体、12…保護膜、13
…半導体ウエハ、14…治具、21…高純度熱分解黒鉛
層、22…高純度SiC層。
10 ... Heater, 11 ... Heater main body, 12 ... Protective film, 13
... semiconductor wafer, 14 ... jig, 21 ... high-purity pyrolytic graphite layer, 22 ... high-purity SiC layer.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 半導体CVD処理装置の半導体ウエハ直
接加熱用ヒータであって、黒鉛からなるヒータ本体、お
よび該ヒータ本体の全表面を覆って形成された保護膜を
備え、該保護膜は、高純度熱分解黒鉛からなる単一層
膜、または高純度熱分解黒鉛からなる第1の層と高純度
炭化ケイ素からなる第2の層との積層膜からなることを
特徴とするヒータ。
1. A heater for directly heating a semiconductor wafer of a semiconductor CVD processing apparatus, comprising: a heater main body made of graphite; and a protective film formed so as to cover the entire surface of the heater main body. A heater comprising a single-layer film made of high-purity pyrolytic graphite or a laminated film of a first layer made of high-purity pyrolytic graphite and a second layer made of high-purity silicon carbide.
【請求項2】 保護膜が、単一層膜である請求項1記載
のヒータ。
2. The heater according to claim 1, wherein the protective film is a single layer film.
【請求項3】 保護膜が、積層膜からなる請求項1記載
のヒータ。
3. The heater according to claim 1, wherein the protective film is a laminated film.
【請求項4】 第1の層が、ヒータ本体の表面に直接接
触して形成されている請求項3記載のヒータ。
4. The heater according to claim 3, wherein the first layer is formed in direct contact with the surface of the heater body.
【請求項5】 保護層が3層以上からなり、第1の層と
第2の層とが交互に積層されている請求項4記載のヒー
タ。
5. The heater according to claim 4, wherein the protective layer comprises three or more layers, and the first layer and the second layer are alternately laminated.
【請求項6】 第2の層が、ヒータ本体の表面に直接接
触して形成されている請求項3記載のヒータ。
6. The heater according to claim 3, wherein the second layer is formed in direct contact with the surface of the heater body.
【請求項7】 保護層が3層以上からなり、第1の層と
第2の層とが交互に積層されている請求項6記載のヒー
タ。
7. The heater according to claim 6, wherein the protective layer comprises three or more layers, and the first layer and the second layer are alternately laminated.
JP14905394A 1994-06-30 1994-06-30 heater Expired - Lifetime JP3361385B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14905394A JP3361385B2 (en) 1994-06-30 1994-06-30 heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14905394A JP3361385B2 (en) 1994-06-30 1994-06-30 heater

Publications (2)

Publication Number Publication Date
JPH0817745A true JPH0817745A (en) 1996-01-19
JP3361385B2 JP3361385B2 (en) 2003-01-07

Family

ID=15466635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14905394A Expired - Lifetime JP3361385B2 (en) 1994-06-30 1994-06-30 heater

Country Status (1)

Country Link
JP (1) JP3361385B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5904778A (en) * 1996-07-26 1999-05-18 Applied Materials, Inc. Silicon carbide composite article particularly useful for plasma reactors
US6506254B1 (en) 2000-06-30 2003-01-14 Lam Research Corporation Semiconductor processing equipment having improved particle performance
US6673198B1 (en) 1999-12-22 2004-01-06 Lam Research Corporation Semiconductor processing equipment having improved process drift control
US6890861B1 (en) 2000-06-30 2005-05-10 Lam Research Corporation Semiconductor processing equipment having improved particle performance
JP2006028625A (en) * 2004-07-21 2006-02-02 Denso Corp Cvd apparatus
EP1760170A2 (en) 2005-09-05 2007-03-07 Japan Pionics Co., Ltd. Chemical vapor deposition apparatus
JP2007335831A (en) * 2006-06-11 2007-12-27 Momentive Performance Materials Inc Durable graphite connector and its manufacturing method
JP2012184152A (en) * 2011-03-08 2012-09-27 Ibiden Co Ltd Ceramic base material support and method of manufacturing ceramic member
JP2020100528A (en) * 2018-12-21 2020-07-02 住友金属鉱山株式会社 Laminate, method for manufacturing laminate and method for manufacturing silicon carbide polycrystal substrate
WO2021113051A1 (en) * 2019-12-05 2021-06-10 Applied Materials, Inc. Solid state heater and method of manufacture

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5904778A (en) * 1996-07-26 1999-05-18 Applied Materials, Inc. Silicon carbide composite article particularly useful for plasma reactors
US6673198B1 (en) 1999-12-22 2004-01-06 Lam Research Corporation Semiconductor processing equipment having improved process drift control
US6881608B2 (en) 1999-12-22 2005-04-19 Lam Research Corporation Semiconductor processing equipment having improved process drift control
US7802539B2 (en) 2000-06-30 2010-09-28 Lam Research Corporation Semiconductor processing equipment having improved particle performance
US6506254B1 (en) 2000-06-30 2003-01-14 Lam Research Corporation Semiconductor processing equipment having improved particle performance
US6890861B1 (en) 2000-06-30 2005-05-10 Lam Research Corporation Semiconductor processing equipment having improved particle performance
JP2006028625A (en) * 2004-07-21 2006-02-02 Denso Corp Cvd apparatus
EP1760170A2 (en) 2005-09-05 2007-03-07 Japan Pionics Co., Ltd. Chemical vapor deposition apparatus
US8277893B2 (en) 2005-09-05 2012-10-02 Japan Pionics Co., Ltd. Chemical vapor deposition apparatus
JP2007335831A (en) * 2006-06-11 2007-12-27 Momentive Performance Materials Inc Durable graphite connector and its manufacturing method
JP2012184152A (en) * 2011-03-08 2012-09-27 Ibiden Co Ltd Ceramic base material support and method of manufacturing ceramic member
JP2020100528A (en) * 2018-12-21 2020-07-02 住友金属鉱山株式会社 Laminate, method for manufacturing laminate and method for manufacturing silicon carbide polycrystal substrate
WO2021113051A1 (en) * 2019-12-05 2021-06-10 Applied Materials, Inc. Solid state heater and method of manufacture
US11665786B2 (en) 2019-12-05 2023-05-30 Applied Materials, Inc. Solid state heater and method of manufacture

Also Published As

Publication number Publication date
JP3361385B2 (en) 2003-01-07

Similar Documents

Publication Publication Date Title
JP4641569B2 (en) Aluminum nitride sintered body, corrosion resistant member, metal burying and semiconductor holding device
KR100809500B1 (en) Articles coated with aluminum nitride by chemical vapor deposition
US4987016A (en) Component for producing semiconductor devices and process of producing it
JPH0530299B2 (en)
JP3361385B2 (en) heater
KR20000076134A (en) Method of reducing metal contamination during semiconductor processing in a reactor having metal components
JPH069295A (en) Chuck made of graphite with hydrogen- impermeable outer coating layer
JP3963788B2 (en) Heating device with electrostatic adsorption function
KR20120138636A (en) Ceramic heater
US6515297B2 (en) CVD-SiC self-supporting membrane structure and method for manufacturing the same
EP1416520B1 (en) Heating apparatus with electrostatic attraction function and method for producing it
EP0529593B1 (en) A glass carbon coated graphite chuck for use in producing polycrystalline silicon
US5229193A (en) Silicon carbide member
EP0781739A1 (en) Jig for heat treatment and process for fabricating the jig
US5350720A (en) Triple-layered ceramic heater
JP3481717B2 (en) Wafer heating device with electrostatic suction function
US6207305B1 (en) Corrosion-resistant members against a chlorine-based gas
JP2011100844A (en) Device having electrostatic chucking function and method of manufacturing the same
JPH04124076A (en) Ceramic heater having plural layers
JPH0817746A (en) Heater
JPH01290521A (en) Jig for heat treatment
JP3739507B2 (en) Manufacturing method of heat treatment jig
JPH06140133A (en) Layered ceramic heater
JP3869160B2 (en) Multilayer ceramic heater and manufacturing method thereof
JP3553744B2 (en) Manufacturing method of laminated member

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081018

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081018

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091018

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20091018

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101018

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111018

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20111018

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121018

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131018

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

EXPY Cancellation because of completion of term