JPH08177401A - Ceramic made turbine rotor - Google Patents

Ceramic made turbine rotor

Info

Publication number
JPH08177401A
JPH08177401A JP32333094A JP32333094A JPH08177401A JP H08177401 A JPH08177401 A JP H08177401A JP 32333094 A JP32333094 A JP 32333094A JP 32333094 A JP32333094 A JP 32333094A JP H08177401 A JPH08177401 A JP H08177401A
Authority
JP
Japan
Prior art keywords
blade
pressure surface
turbine rotor
thickness
negative pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32333094A
Other languages
Japanese (ja)
Inventor
Yoji Kosaka
洋二 小坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP32333094A priority Critical patent/JPH08177401A/en
Publication of JPH08177401A publication Critical patent/JPH08177401A/en
Pending legal-status Critical Current

Links

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PURPOSE: To reduce the maximum stress generated at a blade root part on a negative pressure surface side by forming a blade so that its positive pressure surface side facing backward in rotation is curved from its upstream part toward its downstream part and offsetting the center of gravity of the blade to the negative pressure surface side facing frontward in rotation against a blade thickness central line. CONSTITUTION: A turbine rotor 1 is integrally constituted of a disc 5 positioned on its rotational central part and a plural number of blades 2 projected in the diametrical direction from this disc 5 by ceramics. This blade 2 has a negative pressure surface 3 facing the rotational front direction and a positive pressure surface 6 facing the rotational back direction. Additionally, a sectional shape of the blade 2 is formed asymmetricalon the negative pressure surface 3 and the positive pressure surface 6 against a blade thickness central line 10 so that a center 8 of gravity of the blade 2 is offset to the side of the negative pressure surface 3 of the blade 2 against the blade thickness central line 10. A position of the center 8 of gravity of the blade 2 against the blade thickness central line 10 is decided in accordance with a degree of the blade 2 to be curved in a bow-shape, an outer diameter of the blade 2, thickness of the blade 2, etc., and accordingly, the maximum stress of the negative pressure surface side is reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、セラミック製タービン
ロータの改良に関するものである。
FIELD OF THE INVENTION This invention relates to improvements in ceramic turbine rotors.

【0002】[0002]

【従来の技術】自動車用エンジンに備えられるターボチ
ャージャやガスタービンエンジンに備えられるタービン
ロータをセラミックスで形成し、タービンロータの耐熱
性を高めるとともに、軽量化がはかられているが、セラ
ミック材を用いて十分な強度を確保することが難しい。
2. Description of the Related Art A turbocharger for an automobile engine and a turbine rotor for a gas turbine engine are made of ceramics to increase the heat resistance of the turbine rotor and reduce the weight. It is difficult to secure sufficient strength by using it.

【0003】従来のターボチャージャとして、例えば図
8〜図11に示すようなものがある(特開昭61−14
9504号公報、参照)。
As a conventional turbocharger, there is, for example, one shown in FIGS. 8 to 11 (Japanese Patent Laid-Open No. 61-14).
9504 publication).

【0004】これについて説明すると、タービンロータ
1は、その回転中心部に位置するディスク5と、このデ
ィスク5から径方向に突出する翼2がセラミックにより
一体形成されている。
To explain this, in the turbine rotor 1, a disk 5 located at the center of rotation of the turbine rotor 1 and blades 2 projecting radially from the disk 5 are integrally formed of ceramic.

【0005】翼2はその上流部13から下流部14にか
けて弓形に湾曲して形成される。翼2は正圧面6が凹状
に窪むように湾曲している。そして、タービンロータ1
は図8、図11に矢印で示す方向に回転する。
The blade 2 is formed in an arcuate shape from its upstream portion 13 to its downstream portion 14. The blade 2 is curved so that the positive pressure surface 6 is recessed. And the turbine rotor 1
Rotates in the direction indicated by the arrow in FIGS.

【0006】翼2の断面形状は、翼2からディスク5に
かけて漸次肉厚が増大するように滑らか曲面をもってつ
ながり、翼2の翼厚中心線10について正圧面6と負圧
面3が対称的に形成されている。
The cross-sectional shape of the blade 2 is connected with a smooth curved surface so that the wall thickness gradually increases from the blade 2 to the disk 5, and the pressure surface 6 and the suction surface 3 are formed symmetrically with respect to the blade thickness center line 10 of the blade 2. Has been done.

【0007】図9、図10において、10は、タービン
ロータ1の回転中心9から放射状に延びて、翼2を略等
分する翼厚中心線である。8は翼2の重力中心である。
In FIGS. 9 and 10, reference numeral 10 denotes a blade thickness center line that extends radially from the rotation center 9 of the turbine rotor 1 and divides the blade 2 into substantially equal parts. 8 is the center of gravity of the wing 2.

【0008】翼2の重力中心8は翼厚中心線10上に配
置されるように、翼2の断面形状は、翼厚中心線10に
ついて負圧面3と正圧面6が対称的に形成される。
As the gravity center 8 of the blade 2 is arranged on the blade thickness center line 10, the cross-sectional shape of the blade 2 is such that the suction surface 3 and the pressure surface 6 are symmetrical with respect to the blade thickness center line 10. .

【0009】[0009]

【発明が解決しようとする課題】しかしながら、このよ
うな従来のセラミック製タービンロータ1にあっては、
遠心力によって翼2を弓形に強く湾曲させようとする力
によって、図7に実線で示すように、翼2が正圧面6側
へ倒れるように変形し、負圧面3側の翼付け根部4に引
張応力が集中する可能性がある。このため、十分な強度
を確保することが難しいという問題点があった。
However, in such a conventional ceramic turbine rotor 1 as described above,
Due to the force that strongly bends the blade 2 into a bow shape by the centrifugal force, as shown by the solid line in FIG. 7, the blade 2 is deformed so as to fall toward the pressure surface 6 side, and the blade root portion 4 on the suction surface 3 side is deformed. The tensile stress may be concentrated. Therefore, there is a problem that it is difficult to secure sufficient strength.

【0010】本発明は上記の問題点を解消し、セラミッ
ク製タービンロータの重量増大を抑えつつ、十分な強度
を確保することを目的とする。
It is an object of the present invention to solve the above problems and to secure sufficient strength while suppressing an increase in weight of a ceramic turbine rotor.

【0011】[0011]

【課題を解決するための手段】請求項1記載の発明は、
回転中心部に位置するディスクと、ディスクから径方向
に突出する複数の翼がセラミックにより一体形成される
セラミック製タービンロータにおいて、翼を、その上流
部から下流部にかけて、回転後方を向いた正圧面側が窪
むように湾曲して形成し、翼の重力中心を翼厚中心線に
対して、回転前方を向いた負圧面側にオフセットする。
According to the first aspect of the present invention,
In a ceramic turbine rotor in which a disk located at the center of rotation and a plurality of blades protruding in the radial direction from the disk are integrally formed of ceramic, in a blade, from the upstream portion to the downstream portion, a positive pressure surface facing rearward in rotation. The blade is formed so as to be concave so that the center of gravity of the blade is offset with respect to the blade thickness center line to the suction side facing forward in the rotation.

【0012】請求項2記載のセラミック製タービンロー
タは、請求項1記載の発明において、翼の負圧面の付け
根部の肉厚を、翼の正圧面の付け根部の肉厚より大きく
形成する。
According to a second aspect of the present invention, in the ceramic turbine rotor according to the first aspect, the wall thickness of the root portion of the suction surface of the blade is made larger than the wall thickness of the root portion of the pressure surface of the blade.

【0013】請求項3記載のセラミック製タービンロー
タは、請求項1記載の発明において、翼の負圧面の先端
部の肉厚を、翼の正圧面の先端部の肉厚より大きく形成
する。
According to a third aspect of the present invention, in the ceramic turbine rotor according to the first aspect of the present invention, the thickness of the tip of the suction surface of the blade is larger than the thickness of the tip of the pressure surface of the blade.

【0014】請求項4記載のセラミック製タービンロー
タは、請求項1から3のいずれかに記載の発明におい
て、翼の上流側に位置する部位を、翼厚中心線について
負圧面と正圧面を非対称的に形成し、翼の下流側に位置
する部位を、翼厚中心線について負圧面と正圧面を対称
的に形成する。
According to a fourth aspect of the present invention, in the ceramic turbine rotor according to the first aspect of the present invention, a portion located upstream of the blade has a negative pressure surface and a positive pressure surface which are asymmetric with respect to a blade thickness center line. And a portion located downstream of the blade is formed symmetrically with respect to the center line of the blade thickness.

【0015】[0015]

【作用】請求項1に記載のセラミック製タービンロータ
において、タービンロータは例えばレシプロエンジンの
燃焼室またはガスタービンエンジンの燃焼器等から送ら
れるガスが回転径方向から導かれることにより、ガスの
流れを回転軸方向に換えながら回転力を取出し、高速回
転する。
In the ceramic turbine rotor according to the first aspect of the present invention, the turbine rotor is configured so that a gas sent from, for example, a combustion chamber of a reciprocating engine or a combustor of a gas turbine engine is guided in the radial direction of rotation, thereby allowing the gas flow to flow. Rotate at high speed by extracting the rotational force while changing the direction of the rotation axis.

【0016】翼を弓形に強く湾曲させようとする力が、
負圧面側の翼付け根部へ引張応力として作用する。この
引張応力に対して、翼の重力中心を負圧面側にオフセッ
トしているために発生する遠心力が、負圧面側の翼付け
根部へ圧縮応力として作用して相殺するため、負圧面側
の翼付け根部に生じる最大応力を低減することができ
る。
The force that strongly bends the wing into a bow shape is
It acts as a tensile stress on the root of the blade on the suction side. With respect to this tensile stress, the centrifugal force generated because the center of gravity of the blade is offset to the suction surface side acts as a compressive stress on the blade root portion on the suction surface side and cancels it out. It is possible to reduce the maximum stress generated at the root portion of the blade.

【0017】脆性材料であるセラミックを用いたタービ
ンロータでは、金属材料のように過度な応力下で塑性変
形ができないため、材料強度以上の応力が発生すると直
ちに破壊に至るため、セラミック製タービンロータの最
大応力を低下させることにより破壊に至ることを回避で
きる。
A turbine rotor using a brittle material such as ceramic cannot be plastically deformed under an excessive stress like a metal material. Therefore, when a stress higher than the material strength is generated, the turbine rotor is immediately destroyed. Reducing the maximum stress can prevent destruction.

【0018】請求項2に記載のセラミック製タービンロ
ータにおいて、翼の付け根部に余肉を形成する構造によ
り、タービンロータの鋳造時に用いられる翼型の製作お
よび型抜きが容易に行え、生産性を高められる。
In the ceramic turbine rotor according to the second aspect of the present invention, due to the structure in which the excess thickness is formed at the root portion of the blade, the blade shape used for casting the turbine rotor can be easily manufactured and demolded, and the productivity is improved. To be enhanced.

【0019】請求項3に記載のセラミック製タービンロ
ータにおいて、翼の先端部に余肉を形成する構造によ
り、翼の付け根部の断面形状が非対称的に形成される構
造に比べて、翼に加えられる余肉が少なくて済み、翼の
重量増加を抑えて慣性モーメントの増加を抑えられる。
In the ceramic turbine rotor according to claim 3, in addition to the structure in which the cross-sectional shape of the root portion of the blade is formed asymmetrically due to the structure in which excess thickness is formed at the tip of the blade, The surplus thickness is small, and the increase in the moment of inertia is suppressed by suppressing the increase in the weight of the blade.

【0020】請求項4に記載のセラミック製タービンロ
ータにおいて、翼が回転中心軸に対して弓形に湾曲して
いるために発生する遠心応力は、翼の下流部より上流部
で大きくなるが、上流部に限定して翼を翼厚中心線につ
いて非対称的に形成し、下流部を翼厚中心線について対
称的に形成する構造により、翼に加えられる余肉が少な
くて済み、タービンロータの重量増大を抑えつつ、十分
な強度を確保することができる。
In the ceramic turbine rotor according to a fourth aspect of the present invention, the centrifugal stress generated because the blade is curved in an arc shape with respect to the center axis of rotation is greater in the upstream portion than in the downstream portion of the blade, but is upstream. Due to the structure in which the blade is formed asymmetrically with respect to the blade thickness centerline only in the section, and the downstream portion is formed symmetrically with respect to the blade thickness centerline, less surplus is added to the blade and the weight of the turbine rotor is increased. It is possible to secure sufficient strength while suppressing the above.

【0021】[0021]

【実施例】以下、本発明の実施例を添付図面に基づいて
説明する。
Embodiments of the present invention will be described below with reference to the accompanying drawings.

【0022】図2に示すように、タービンロータ1は、
その回転中心部に位置するディスク5と、このディスク
5から径方向に突出する複数の翼2がセラミックにより
一体形成されている。
As shown in FIG. 2, the turbine rotor 1 is
A disk 5 located at the center of rotation and a plurality of blades 2 projecting radially from the disk 5 are integrally formed of ceramic.

【0023】図1において、タービンロータ1は図中矢
印で示すように回転し、翼2は回転前方向に向いた負圧
面3と、回転後方向を向いた正圧面6を有する。
In FIG. 1, the turbine rotor 1 rotates as indicated by the arrow in the figure, and the blades 2 have a suction surface 3 facing the front direction of rotation and a pressure surface 6 facing the rear direction of rotation.

【0024】図3に示すように、翼2はその上流部13
から下流部14にかけて弓形に湾曲して形成される。翼
2は正圧面6が凹状に窪むように湾曲している。
As shown in FIG. 3, the blade 2 has an upstream portion 13 thereof.
To the downstream portion 14 are curved in an arc shape. The blade 2 is curved so that the positive pressure surface 6 is recessed.

【0025】負圧面3と正圧面6の各付け根部4,7は
その翼端部からディスク5にかけて漸次肉厚が増大する
ように円弧状に湾曲する曲面をもってつながっている。
また、各付け根部はその翼端部からディスク5にかけて
楕円弧状に湾曲する曲面をもってつながるように形成し
てもよい。
The root portions 4 and 7 of the negative pressure surface 3 and the positive pressure surface 6 are connected by a curved surface curved in an arc shape so that the wall thickness gradually increases from the blade end portion to the disk 5.
Further, each root may be formed so as to be connected to each other with a curved surface curved in an elliptic arc shape from the blade end to the disk 5.

【0026】図1において、10は、タービンロータ1
の回転中心軸9から放射状に延びて、翼2を略等分する
翼厚中心線である。8は翼2の重力中心である。
In FIG. 1, 10 is a turbine rotor 1.
Is a blade thickness center line that extends radially from the rotation center axis 9 and divides the blade 2 substantially equally. 8 is the center of gravity of the wing 2.

【0027】本発明の要旨とするところであるが、翼2
の重力中心8は翼厚中心線10に対して翼2の負圧面3
側にオフセットされるように、翼2の断面形状は、翼厚
中心線10について負圧面3と正圧面6が非対称的に形
成される。
As the gist of the present invention, the wing 2
The center of gravity 8 of the blade is the suction surface 3 of the blade 2 with respect to the blade thickness center line 10.
The cross-sectional shape of the blade 2 is formed so that the suction surface 3 and the pressure surface 6 are asymmetrical with respect to the blade thickness center line 10 so as to be offset to the side.

【0028】翼厚中心線10に対する翼2の重力中心8
の位置は、翼2が弓形に湾曲する度合い、翼2の外径、
翼2の厚さ等に応じて決定される。
Center of gravity 8 of blade 2 with respect to blade thickness center line 10
The position of is the degree to which the wing 2 bends in an arc, the outer diameter of the wing 2,
It is determined according to the thickness of the blade 2 and the like.

【0029】この実施例では、翼2の付け根部分の断面
形状が非対称的に形成されている。すなわち、負圧面3
の付け根部4の肉厚が、正圧面6の付け根部7の肉厚よ
り大きくなるように形成される。図1において、破線は
負圧面3の付け根部4を正圧面6の付け根部7について
翼厚中心線10に対して対称的に形成した場合の表面を
表しており、負圧面3の付け根部4は、正圧面6の付け
根部7の肉厚に対して、翼2とディスク5のつくる隅部
を埋めるように分布している。
In this embodiment, the cross-sectional shape of the root portion of the blade 2 is formed asymmetrically. That is, the suction surface 3
The root portion 4 is formed to have a thickness larger than that of the root portion 7 of the positive pressure surface 6. In FIG. 1, the broken line represents the surface when the root portion 4 of the suction surface 3 is formed symmetrically with respect to the root portion 7 of the pressure surface 6 with respect to the blade thickness center line 10, and the root portion 4 of the suction surface 3 is shown. Are distributed so as to fill the corners formed by the blade 2 and the disk 5 with respect to the wall thickness of the root portion 7 of the positive pressure surface 6.

【0030】図4に示すように、翼2の中心軸9方向に
ついて中間部より上流側に位置する上流部13は、翼厚
中心線10について負圧面3と正圧面6が非対称的に形
成される。図5に示すように、翼2の中心軸9方向につ
いて中間部より下流側に位置する下流部14は、翼厚中
心線10について負圧面3と正圧面6が対称的に形成さ
れる。
As shown in FIG. 4, in the upstream portion 13 located upstream of the intermediate portion in the direction of the central axis 9 of the blade 2, the suction surface 3 and the pressure surface 6 are formed asymmetrically with respect to the blade thickness center line 10. It As shown in FIG. 5, in the downstream portion 14 located downstream of the intermediate portion in the direction of the central axis 9 of the blade 2, the suction surface 3 and the pressure surface 6 are formed symmetrically with respect to the blade thickness center line 10.

【0031】以上のように構成され、次に作用について
説明する。
With the above construction, the operation will be described below.

【0032】タービンロータ1はレシプロエンジンの燃
焼室またはガスタービンエンジンの燃焼器等から送られ
るガスが回転径方向から導かれることにより、ガスの流
れを回転軸9方向に換えながら回転力を取出し、高速回
転する。
The turbine rotor 1 extracts the rotational force while changing the gas flow in the direction of the rotation axis 9 by introducing the gas sent from the combustion chamber of the reciprocating engine or the combustor of the gas turbine engine from the radial direction of rotation. Rotate at high speed.

【0033】図6は本実施例における翼2について、解
析計算による応力分布と、翼2の変形図とを示してい
る。解析は、ヤング率310GPa、翼2の周速度を7
00m/secとした時の遠心応力を表している。
FIG. 6 shows the stress distribution by the analytical calculation and the deformation diagram of the blade 2 in the present embodiment. The analysis was performed with a Young's modulus of 310 GPa and a peripheral velocity of the blade 2 of 7
It represents the centrifugal stress when the pressure is set to 00 m / sec.

【0034】この場合、翼2を弓形に強く湾曲させよう
とする力が、負圧面3側の翼付け根部4へ引張応力とし
て作用するのに対して、翼2の重力中心8を負圧面3側
にオフセットしているために発生する遠心力が、負圧面
3側の翼付け根部4へ圧縮応力として作用して相殺する
ため、負圧面3側の翼付け根部4に生じる最大応力を2
93MPaとすることができる。
In this case, the force that strongly bends the blade 2 into an arcuate shape acts as a tensile stress on the blade root portion 4 on the suction surface 3 side, whereas the gravity center 8 of the blade 2 moves toward the suction surface 3. Since the centrifugal force generated due to the offset to the side acts as a compressive stress on the blade root 4 on the suction surface 3 side to cancel it, the maximum stress generated on the blade root 4 on the suction surface 3 side is 2
It can be 93 MPa.

【0035】図7は翼2の重力中心8を翼厚中心線10
に配置した従来例について、解析計算による応力分布
と、翼2の変形図とを示している。
FIG. 7 shows the center of gravity 8 of the blade 2 as the center line 10 of the blade thickness.
The stress distribution by the analytical calculation and the deformation diagram of the blade 2 are shown for the conventional example arranged in FIG.

【0036】この場合、翼2を弓形に強く湾曲させよう
とする遠心力が、負圧面3側の翼付け根部4へ引張とし
て作用するため、最大応力は346MPaとなる。
In this case, the centrifugal force tending to strongly bend the blade 2 into an arc acts as a tensile force on the blade root 4 on the suction surface 3 side, and the maximum stress is 346 MPa.

【0037】すなわち本発明は、翼2の重力中心8を翼
厚中心線10について負圧面3側へオフセットすること
により、翼2に発生する最大応力を15%程度低減する
ことができる。
That is, in the present invention, the maximum stress generated in the blade 2 can be reduced by about 15% by offsetting the gravity center 8 of the blade 2 with respect to the blade thickness center line 10 toward the suction surface 3 side.

【0038】また、正圧面6と負圧面3とでの応力を平
均化し、かつ高応力が占める部位を減らすため、脆性材
料であるセラミック製ロータの破壊確率を1/104
ら1/106へと改善して、信頼性を高められる。
Further, in order to average the stresses on the positive pressure surface 6 and the negative pressure surface 3 and reduce the portion occupied by high stress, the fracture probability of the brittle ceramic rotor is 1/10 4 to 1/10 6. To improve reliability.

【0039】翼2が回転中心軸9に対して弓形に湾曲し
ているために発生する遠心応力は、翼2の下流部14よ
り上流部13で大きくなるが、上流部13に限定して翼
2を翼厚中心線10について非対称的に形成し、下流部
14を翼厚中心線10について対称的に形成する構造に
より、翼2に加えられる余肉が少なくて済み、タービン
ロータ1の重量増大を抑えつつ、十分な強度を確保する
ことができる。
The centrifugal stress generated because the blade 2 is curved in an arc shape with respect to the rotation center axis 9 is larger in the upstream portion 13 than in the downstream portion 14 of the blade 2, but is limited to the upstream portion 13. Due to the structure in which 2 is formed asymmetrically with respect to the blade thickness centerline 10 and the downstream portion 14 is formed symmetrically with respect to the blade thickness centerline 10, less surplus is added to the blade 2 and the weight of the turbine rotor 1 is increased. It is possible to secure sufficient strength while suppressing the above.

【0040】他の実施例として、翼2の先端部の断面形
状を非対称的に形成してもよい。すなわち、翼2の高さ
(回転中心軸9に対する半径方向の距離)が中間部より
高い位置において、負圧面3の肉厚が、正圧面6の肉厚
より大きくなるように形成される。
As another example, the cross-sectional shape of the tip of the blade 2 may be formed asymmetrically. That is, the wall thickness of the suction surface 3 is formed to be larger than the wall thickness of the positive pressure surface 6 at a position where the height of the blade 2 (distance in the radial direction with respect to the rotation center axis 9) is higher than the middle portion.

【0041】この場合、翼2の付け根部分の断面形状が
非対称的に形成される前記実施例に比べて、翼2に加え
られる余肉が少なくて済み、翼2の重量増加を抑えて慣
性モーメントの増加を抑えられる。
In this case, as compared with the above-described embodiment in which the cross-sectional shape of the root portion of the blade 2 is formed asymmetrically, the extra thickness added to the blade 2 is small, the weight increase of the blade 2 is suppressed, and the moment of inertia is reduced. Can be suppressed.

【0042】また、前記実施例の場合、翼2の付け根部
に余肉を形成する構造により、ロータ1の鋳造時に用い
られる翼型の製作および型抜きが容易に行え、生産性を
高められる。
Further, in the case of the above-mentioned embodiment, due to the structure in which the excess thickness is formed at the root portion of the blade 2, the blade shape used during the casting of the rotor 1 can be easily manufactured and demolded, and the productivity can be improved.

【0043】[0043]

【発明の効果】以上説明したように請求項1記載の発明
は、回転中心部に位置するディスクと、ディスクから径
方向に突出する複数の翼がセラミックにより一体形成さ
れるセラミック製タービンロータにおいて、翼を、その
上流部から下流部にかけて、回転後方を向い正負圧面側
が窪むように湾曲して形成し、翼の重力中心を翼厚中心
線に対して、回転前方を向いた負圧面側にオフセットし
たため、負圧面側の翼付け根部に生じる最大応力を低減
し、翼の質量増加を抑えてタービンロータの強度を十分
に確保して、信頼性を高めることができる。
As described above, the invention according to claim 1 is a ceramic turbine rotor in which a disk located at the center of rotation and a plurality of blades projecting radially from the disk are integrally formed of ceramic. The blade was formed from the upstream part to the downstream part so as to be curved so that the positive and negative pressure surface side was concave toward the rear of the rotation, and the gravity center of the blade was offset to the negative pressure surface side facing the front of rotation with respect to the blade thickness center line. It is possible to reduce the maximum stress generated at the blade root portion on the suction surface side, suppress the increase in the blade mass, sufficiently secure the strength of the turbine rotor, and improve the reliability.

【0044】請求項2記載のセラミック製タービンロー
タは、請求項1記載の発明において、翼の負圧面の付け
根部の肉厚を、翼の正圧面の付け根部の肉厚より大きく
形成したため、タービンロータの鋳造時に用いられる翼
型の製作および型抜きが容易に行え、生産性を高められ
る。。
According to a second aspect of the invention, in the ceramic turbine rotor according to the first aspect of the invention, the thickness of the root portion of the suction surface of the blade is made larger than the thickness of the root portion of the pressure surface of the blade. The blade shape used for casting the rotor can be easily manufactured and die-cut, and the productivity can be improved. .

【0045】請求項3記載のセラミック製タービンロー
タは、請求項1記載の発明において、翼の負圧面の先端
部の肉厚を、翼の正圧面の先端部の肉厚より大きく形成
したため、翼に加えられる余肉が少なくて済み、翼の重
量増加を抑えて慣性モーメントの増加を抑えられる。
According to a third aspect of the present invention, in the ceramic turbine rotor according to the first aspect of the invention, the wall thickness of the tip of the suction surface of the blade is made larger than the wall thickness of the tip of the pressure surface of the blade. The amount of surplus added to the is small, and the increase in the moment of inertia can be suppressed by suppressing the increase in the weight of the wing.

【0046】請求項4記載のセラミック製タービンロー
タは、請求項1から3のいずれかに記載の発明におい
て、翼の上流側に位置する部位を、翼厚中心線について
負圧面と正圧面を非対称的に形成し、翼の下流側に位置
する部位を、翼厚中心線について負圧面と正圧面を対称
的に形成したため、翼に加えられる余肉が少なくて済
み、タービンロータの重量増大を抑えつつ、十分な強度
を確保して、信頼性を高めることができる。
According to a fourth aspect of the present invention, in the ceramic turbine rotor according to the first aspect of the present invention, a portion located upstream of the blade has a negative pressure surface and a positive pressure surface with respect to a blade thickness center line. The suction surface and the pressure surface are formed symmetrically with respect to the blade thickness center line in the portion located downstream of the blade, so that the surplus wall added to the blade is small and the increase in the weight of the turbine rotor is suppressed. At the same time, sufficient strength can be secured and reliability can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を示し、タービンロータを図2
の矢印Z方向から見た図。
FIG. 1 shows an embodiment of the present invention, and FIG.
The figure seen from the arrow Z direction.

【図2】同じくタービンロータの断面図。FIG. 2 is a sectional view of the same turbine rotor.

【図3】同じく翼の断面図。FIG. 3 is a sectional view of the same wing.

【図4】同じく図2のC−C線に沿う断面図。FIG. 4 is a sectional view taken along line CC of FIG.

【図5】同じく図2のD−D線に沿う断面図。FIG. 5 is a sectional view taken along line D-D of FIG.

【図6】同じく翼の応力分布を示す図。FIG. 6 is a diagram showing a stress distribution of the blade.

【図7】比較例の翼の応力分布を示す図。FIG. 7 is a diagram showing a stress distribution of a blade of a comparative example.

【図8】従来例を示す翼の断面図。FIG. 8 is a sectional view of a blade showing a conventional example.

【図9】同じく図8のA−A線に沿う断面図。9 is a sectional view taken along line AA of FIG.

【図10】同じく図8のB−B線に沿う断面図。FIG. 10 is a sectional view taken along line BB of FIG.

【図11】同じくタービンロータの正面図。FIG. 11 is a front view of the turbine rotor of the same.

【符号の説明】[Explanation of symbols]

1 タービンロータ 2 翼 3 負圧面 4 負圧面付け根部 5 ディスク 6 正圧面 7 正圧面付け根部 8 重力中心 9 回転中心軸 10 翼厚中心線 13 上流部 14 下流部 1 Turbine Rotor 2 Blade 3 Negative Pressure Surface 4 Negative Pressure Surface Root 5 Disk 6 Positive Pressure Surface 7 Positive Pressure Root 8 Center of Gravity 9 Rotation Center Axis 10 Blade Thickness Centerline 13 Upstream 14 Downstream

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】回転中心部に位置するディスクと、 ディスクから径方向に突出する複数の翼がセラミックに
より一体形成されるセラミック製タービンロータにおい
て、 翼を、その上流部から下流部にかけて、回転後方を向い
た正圧面側が窪むように湾曲して形成し、 翼の重力中心を翼厚中心線に対して、回転前方を向いた
負圧面側にオフセットしたことを特徴とするセラミック
製タービンロータ。
1. A ceramic turbine rotor in which a disk located at the center of rotation and a plurality of blades projecting in the radial direction from the disk are integrally formed of ceramics. The blade is rotated backward from the upstream portion to the downstream portion. A ceramic turbine rotor characterized in that it is formed so as to be curved so that the pressure surface side that faces toward is concave, and the gravity center of the blade is offset to the suction surface side that faces forward in the rotation with respect to the blade thickness center line.
【請求項2】翼の負圧面の付け根部の肉厚を、翼の正圧
面の付け根部の肉厚より大きく形成したことを特徴とす
る請求項1に記載のセラミック製タービンロータ。
2. The ceramic turbine rotor according to claim 1, wherein the thickness of the root portion of the suction surface of the blade is larger than the thickness of the root portion of the pressure surface of the blade.
【請求項3】翼の負圧面の先端部の肉厚を、翼の正圧面
の先端部の肉厚より大きく形成したことを特徴とする請
求項1に記載のセラミック製タービンロータ。
3. The ceramic turbine rotor according to claim 1, wherein the wall thickness of the tip of the suction surface of the blade is larger than the wall thickness of the tip of the pressure surface of the blade.
【請求項4】翼の上流側に位置する部位を、翼厚中心線
について負圧面と正圧面を非対称的に形成し、 翼の下流側に位置する部位を、翼厚中心線について負圧
面と正圧面を対称的に形成したことを特徴とする請求項
1から3のいずれかに記載のセラミック製タービンロー
タ。
4. A portion located upstream of the blade has a suction surface and a pressure surface asymmetrical with respect to the blade thickness centerline, and a portion located downstream of the blade has a suction surface about the blade thickness centerline. The ceramic turbine rotor according to claim 1, wherein the positive pressure surface is formed symmetrically.
JP32333094A 1994-12-26 1994-12-26 Ceramic made turbine rotor Pending JPH08177401A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32333094A JPH08177401A (en) 1994-12-26 1994-12-26 Ceramic made turbine rotor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32333094A JPH08177401A (en) 1994-12-26 1994-12-26 Ceramic made turbine rotor

Publications (1)

Publication Number Publication Date
JPH08177401A true JPH08177401A (en) 1996-07-09

Family

ID=18153595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32333094A Pending JPH08177401A (en) 1994-12-26 1994-12-26 Ceramic made turbine rotor

Country Status (1)

Country Link
JP (1) JPH08177401A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998057042A1 (en) * 1997-06-12 1998-12-17 Mitsubishi Heavy Industries, Ltd. Cooled moving blade for gas turbines
DE19941134C1 (en) * 1999-08-30 2000-12-28 Mtu Muenchen Gmbh Blade crown ring for gas turbine aircraft engine has each blade provided with transition region between blade surface and blade platform having successively decreasing curvature radii

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998057042A1 (en) * 1997-06-12 1998-12-17 Mitsubishi Heavy Industries, Ltd. Cooled moving blade for gas turbines
US6190128B1 (en) 1997-06-12 2001-02-20 Mitsubishi Heavy Industries, Ltd. Cooled moving blade for gas turbine
DE19941134C1 (en) * 1999-08-30 2000-12-28 Mtu Muenchen Gmbh Blade crown ring for gas turbine aircraft engine has each blade provided with transition region between blade surface and blade platform having successively decreasing curvature radii
FR2797906A1 (en) 1999-08-30 2001-03-02 Mtu Muenchen Gmbh GAS TURBINE BLADE CROWN
US6478539B1 (en) 1999-08-30 2002-11-12 Mtu Aero Engines Gmbh Blade structure for a gas turbine engine

Similar Documents

Publication Publication Date Title
JP3876195B2 (en) Centrifugal compressor impeller
RU2635734C2 (en) Turbomachine rotor blade
US6478539B1 (en) Blade structure for a gas turbine engine
JP3927886B2 (en) Axial flow compressor
JP4691002B2 (en) Mixed flow turbine or radial turbine
EP1394359A2 (en) Mixed flow turbine and mixed flow turbine rotor blade
EP2339115B1 (en) Turbine rotor assembly and steam turbine
JP2001271602A (en) Gas turbine engine
PL196777B1 (en) Compressor's vane in particular for a gas turbine engine
JP2002536577A (en) Hard wall fan case including bumper structure
JP2001289050A (en) Variable capacity turbo supercharger
EP2096320B1 (en) Cascade of axial compressor
JP2008163946A (en) Method and apparatus for fabricating fan assembly for use with turbine engine
JPH05106403A (en) Deformable protective film of blade shroud
JP2002047944A (en) High speed rotation type impeller
US7503751B2 (en) Apparatus and method for attaching a rotor blade to a rotor
US6503053B2 (en) Blade with optimized vibration behavior
JP4115180B2 (en) Impeller and centrifugal compressor
JP4946901B2 (en) Impeller structure
JPH08177401A (en) Ceramic made turbine rotor
JPH11343998A (en) Axial flow compressor
JPH11229805A (en) Turbine blade and steam turbine
JPS61149504A (en) Turbine rotor structure in pneumatic machine
JPS6139482B2 (en)
NO760674L (en)