JP2002047944A - High speed rotation type impeller - Google Patents

High speed rotation type impeller

Info

Publication number
JP2002047944A
JP2002047944A JP2000230999A JP2000230999A JP2002047944A JP 2002047944 A JP2002047944 A JP 2002047944A JP 2000230999 A JP2000230999 A JP 2000230999A JP 2000230999 A JP2000230999 A JP 2000230999A JP 2002047944 A JP2002047944 A JP 2002047944A
Authority
JP
Japan
Prior art keywords
disk
impeller
outer peripheral
flat portion
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000230999A
Other languages
Japanese (ja)
Inventor
Takayoshi Kitada
孝佳 北田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2000230999A priority Critical patent/JP2002047944A/en
Publication of JP2002047944A publication Critical patent/JP2002047944A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/661Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps
    • F04D29/662Balancing of rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/284Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/40Application in turbochargers

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supercharger (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high speed rotation type impeller capable of reducing centrifugal stress generated when rotating at a high speed and improving service life against fatigue when rotating at a high speed. SOLUTION: This high speed rotation type impeller 11 is applied to a compressor of a turbo charger and has a disk 13 having curved front face 12 and a plurality of blades 14 arranged in the disk. A rear surface 17 of the disk 13 is formed into such shape that has a difference in level in which the thickness of its outer peripheral side end part becomes the smallest, and a part on an outer peripheral side in the rear surface 17 is cut to correct balance of the impeller 11. Since a thickness of the disk on the inside in the radial direction is thicker than the outer peripheral side end part, centrifugal stress generated in the part is reduced. Moreover, since the part on the outer peripheral side in the rear surface 17 is cut to correct balance, centrifugal stress in the correction part is not increased while rotating at a high speed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、内燃機関用ターボ
チャージャのコンプレッサに用いられるインペラに関
し、特に、高速回転に適した高回転型インペラに関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an impeller used for a compressor of a turbocharger for an internal combustion engine, and more particularly, to a high-speed impeller suitable for high-speed rotation.

【0002】[0002]

【従来の技術】従来のインペラとして、図5(a)に示
すものが知られている(発明協会公開技報:公技番号8
9−2923)。このインペラ50は、空気を案内する
曲面状の前面51を有する略円錐形状のディスク52
と、同ディスク52の前面51に周方向に等間隔に配置
された複数枚の羽根53とからなる。前面51は、空気
の入口側からその出口側へ向かってディスク52の軸心
からの距離が次第に大きくなる曲面に形成されている。
また、ディスク52の前面51の外周側端部近傍には、
軸心に略垂直な平面部54が形成されている。そして、
ディスク52の背面55全体は、軸心に略垂直な平面に
形成されている。その背面55の径方向の中間部に、イ
ンペラ50のバランスを修正するために凹部56が形成
されている。
2. Description of the Related Art As a conventional impeller, there is known an impeller shown in FIG.
9-2923). The impeller 50 has a substantially conical disk 52 having a curved front surface 51 for guiding air.
And a plurality of blades 53 arranged on the front surface 51 of the disk 52 at equal intervals in the circumferential direction. The front surface 51 is formed into a curved surface in which the distance from the axis of the disk 52 gradually increases from the air inlet side to the air outlet side.
In the vicinity of the outer peripheral end of the front surface 51 of the disk 52,
A plane portion 54 substantially perpendicular to the axis is formed. And
The entire back surface 55 of the disk 52 is formed in a plane substantially perpendicular to the axis. A concave portion 56 is formed at a radially intermediate portion of the rear surface 55 to correct the balance of the impeller 50.

【0003】また、インペラの別の従来例として、図6
に示すものが知られている。このインペラ50´を説明
する上で、図5(a)に示す上記従来のインペラ50と
同様の部位には同一の符号を付して重複した説明を省略
する。このインペラ50´の背面55´は、平面部54
との間で所定の厚さaの外周側端部を形成するように、
同外周側端部の外周面から径方向内方へ軸心に略垂直に
延びる平面部57と、同平面部57に連続する円弧部5
8とを有する形状になっている。
FIG. 6 shows another conventional example of an impeller.
The following are known. In describing the impeller 50 ′, the same parts as those of the above-described conventional impeller 50 shown in FIG. 5A are denoted by the same reference numerals, and redundant description will be omitted. The back surface 55 'of the impeller 50'
So as to form an outer peripheral end portion having a predetermined thickness a between
A flat portion 57 extending radially inward from the outer circumferential surface of the outer circumferential end portion substantially perpendicularly to the axis, and an arc portion 5 continuing to the flat surface portion 57
8.

【0004】[0004]

【発明が解決しようとする課題】ところで、図5(a)
に示す上記インペラ50(従来例1)では、全体を軸心
に略垂直な平面に形成した背面55の径方向中間部にバ
ランス修正のための凹部56を形成しているので、図5
(b)及び図4の各グラフで示すように、凹部56のA
部に発生する遠心応力が大きい。特に、最近の車両用内
燃機関では、エンジン回転速度が高くなってきているの
で、インペラの小型化を図りつつその回転速度を上げて
同量の空気を燃焼室へ送り込むために、インペラの各部
に生じる応力を下げることが要求される。一方、最近で
は、内燃機関を保証する走行距離が長くなってきてお
り、インペラの疲労寿命を長くするためにも、インペラ
に生じる応力を下げることが要求されている。しかしな
がら、上記インペラ50では、凹部56のA部の遠心応
力が大きいために、インペラ50を高速度で回転させる
と、インペラ50がA部で破損する虞があり、高回転時
の疲労寿命を長くすることができない。
FIG. 5 (a)
In the above impeller 50 (conventional example 1) shown in FIG. 5, a concave portion 56 for correcting the balance is formed at a radially intermediate portion of a back surface 55 formed entirely on a plane substantially perpendicular to the axis.
As shown in FIG. 4B and each graph of FIG.
The centrifugal stress generated in the part is large. In particular, in recent internal combustion engines for vehicles, the engine rotation speed has been increasing, so in order to reduce the size of the impeller and increase the rotation speed to send the same amount of air to the combustion chamber, It is required to reduce the generated stress. On the other hand, in recent years, the traveling distance that guarantees the internal combustion engine has become longer, and it is required to reduce the stress generated in the impeller in order to extend the fatigue life of the impeller. However, in the impeller 50, since the centrifugal stress at the portion A of the concave portion 56 is large, when the impeller 50 is rotated at a high speed, the impeller 50 may be damaged at the portion A, and the fatigue life at the time of high rotation is prolonged. Can not do it.

【0005】また、上記後者のインペラ50´(従来例
2)では、図3(b)及び図4のグラフで示すように、
背面55の中間部付近にあるB部に発生する遠心応力が
大きくなる。これは、そのB部の厚さが薄いことによ
る。また、このインペラ50´では、同インペラのバラ
ンスを修正するために、背面55´の平面部57の一部
(図6の斜線部)を削ると、B部に発生する遠心応力が
より大きくなってしまう。このために、インペラ50´
を高速度で回転させると、インペラ50´がB部が破損
する虞があり、高回転時の疲労寿命を長くすることがで
きない。
In the latter impeller 50 '(conventional example 2), as shown in the graphs of FIGS.
The centrifugal stress generated in the portion B near the middle portion of the back surface 55 increases. This is because the thickness of the portion B is thin. Further, in this impeller 50 ', if a part of the flat portion 57 of the back surface 55' (shaded portion in FIG. 6) is cut in order to correct the balance of the impeller, the centrifugal stress generated in the portion B becomes larger. Would. Because of this, impeller 50 '
When the is rotated at a high speed, the impeller 50 'may be damaged at the portion B, and the fatigue life at the time of high rotation cannot be extended.

【0006】本発明はこのような実情に鑑みてなされた
ものであって、その目的は、高回転時に発生する遠心応
力を緩和して、高回転時の疲労寿命を向上させた高回転
型インペラを提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of such circumstances, and has as its object to reduce the centrifugal stress generated at the time of high rotation, thereby improving the fatigue life at high rotation. Is to provide.

【0007】[0007]

【課題を解決するための手段】以下、上記課題を解決す
るための手段及びその作用効果について記載する。上記
課題を解決するため、請求項1に係る発明では、内燃機
関用ターボチャージャのコンプレッサに適用され、流体
を案内する曲面状の前面を有する略円錐形状のディスク
と、同ディスクの前面に周方向に等間隔に配置された複
数枚の羽根とを有する高回転型インペラであって、前記
ディスクの背面を、同ディスクの外周側端部の厚さが最
も薄くなるような段差のある形状とし、そして、前記背
面内の外周側の部分をインペラのバランス修正のために
削ることを特徴としている。
The means for solving the above problems and the operation and effects thereof will be described below. In order to solve the above problem, the invention according to claim 1 is applied to a compressor of a turbocharger for an internal combustion engine, and has a substantially conical disk having a curved front surface for guiding a fluid, and a circumferential direction on the front surface of the disk. A high-rotation type impeller having a plurality of blades arranged at equal intervals, wherein the rear surface of the disk has a stepped shape such that the thickness of the outer peripheral end of the disk is the thinnest, Then, a portion on the outer peripheral side in the back surface is cut to correct the balance of the impeller.

【0008】この発明によれば、インペラの背面以外の
部分の寸法を同じにして上記従来例1と比較すると、デ
ィスクの背面をその外周側端部の厚さが最も薄くなるよ
うな段差のある形状としたので、ディスクの外周側端部
の厚さ(ディスク厚)を同じとした場合に、外周側端部
より径方向内側のディスク厚は上記従来例1よりも厚く
なる。これにより、従来例1のインペラ50のA部に対
応するA´部に発生する遠心応力が緩和される(図4の
グラフを参照)。また、本発明では、背面内の外周側の
部分をインペラのバランス修正のために削るので、この
バランス修正部での遠心応力が高回転時に大きくならな
い。
According to the present invention, when compared with the prior art example 1 in which the dimensions of the portion other than the rear surface of the impeller are the same, the rear surface of the disk has a step at which the thickness of the outer peripheral end is the thinnest. Because of the shape, when the thickness (disc thickness) of the outer peripheral end of the disk is the same, the thickness of the disk radially inward of the outer peripheral end is greater than that of the first conventional example. As a result, the centrifugal stress generated at the portion A ′ corresponding to the portion A of the impeller 50 of the first conventional example is reduced (see the graph of FIG. 4). Further, in the present invention, the portion on the outer peripheral side in the back surface is shaved to correct the balance of the impeller, so that the centrifugal stress in the balance correcting portion does not increase at high rotation.

【0009】また、本発明を上記従来例1と同じ条件で
上記従来例2と比較すると、ディスクの背面をその外周
側端部の厚さが最も薄くなるような段差のある形状とし
たので、外周側端部より径方向内側のディスク厚は上記
従来例2よりも厚くなる。このため、従来例2のインペ
ラ50´のB部に対応するB´部に発生する遠心応力が
緩和される(図3(a),(b)、及び図4を参照)。
また、本発明では、背面内の外周側の部分をインペラの
バランス修正のために削るので、このバランス修正部で
の遠心応力が高回転時に大きくならない。
Further, when the present invention is compared with the above-mentioned conventional example 2 under the same conditions as the above-mentioned conventional example 1, the rear surface of the disk has a stepped shape such that the thickness of the outer peripheral end is the thinnest. The thickness of the disk radially inward from the outer peripheral end is greater than that of Conventional Example 2 described above. For this reason, the centrifugal stress generated in the portion B ′ corresponding to the portion B of the impeller 50 ′ of the second conventional example is reduced (see FIGS. 3A, 3 B, and 4).
Further, in the present invention, the portion on the outer peripheral side in the back surface is shaved to correct the balance of the impeller, so that the centrifugal stress in the balance correcting portion does not increase at high rotation.

【0010】したがって、本発明によれば、高回転時に
発生する遠心応力を緩和することができ、高回転時の疲
労寿命を向上させることができる。請求項2に係る発明
では、請求項1に記載の高回転型インペラにおいて、前
記ディスクの背面は、所定の厚さaの外周側端部を形成
する前記ディスクの軸心に略垂直な第1平面部と、同第
1平面部より径方向内側で、第1平面部に対し所定の高
さbの段差を持つように形成された第2平面部とを備え
ることを特徴としている。
Therefore, according to the present invention, the centrifugal stress generated at high rotation can be reduced, and the fatigue life at high rotation can be improved. According to a second aspect of the present invention, in the high-rotation type impeller according to the first aspect, the back surface of the disk has a first thickness substantially a perpendicular to an axis of the disk forming an outer peripheral end portion having a predetermined thickness a. A flat portion and a second flat portion formed radially inward of the first flat portion and having a predetermined height b with respect to the first flat portion are provided.

【0011】この発明によれば、第1平面部のディスク
厚を上記従来例(1),(2)と同じとした場合に、第
2平面部のディスク厚が両従来例のものよりも厚くなる
ので、高回転時に第2平面部に発生する遠心応力を緩和
することができる。
According to the present invention, when the disk thickness of the first flat portion is the same as that of the prior arts (1) and (2), the disk thickness of the second flat portion is larger than those of the prior arts. Therefore, the centrifugal stress generated in the second flat portion at the time of high rotation can be reduced.

【0012】請求項3に係る発明では、請求項1又は2
に記載の高回転型インペラにおいて、前記背面の第1平
面部と第2平面部は曲率半径の小さい円弧部を介して連
続していることを特徴としている。
In the invention according to claim 3, claim 1 or 2
In the high-rotation type impeller described in (1), the first flat portion and the second flat portion on the back surface are continuous via an arc portion having a small radius of curvature.

【0013】この発明によれば、第1,第2平面部を曲
率半径の小さい円弧部を介して連続しているので、高回
転時に両平面部の間の部位に生ずる遠心応力を緩和する
ことができる。
According to the present invention, since the first and second flat portions are continuous via the arc portion having a small radius of curvature, the centrifugal stress generated at the portion between the two flat portions during high rotation can be reduced. Can be.

【0014】請求項4に係る発明では、請求項1〜3の
いずれか一項に記載の高回転型インペラにおいて、前記
背面の第2平面部より径方向内側には、曲率半径の大き
い円弧部が、第2平面部と連続して設けられていること
を特徴としている。
According to a fourth aspect of the present invention, in the high-rotation type impeller according to any one of the first to third aspects, an arc portion having a large radius of curvature is provided radially inward of the second flat portion on the back surface. Are provided continuously with the second plane portion.

【0015】この発明によれば、インペラの第2平面部
より径方向内側に生ずる遠心応力を、曲率半径の大きい
円弧部により緩和することができる。請求項5に係る発
明では、請求項1〜4のいずれか一項に記載の高回転型
インペラにおいて、前記所定の高さbは、前記ディスク
の中心孔の、前記外周側端部に対応する部位に生じる遠
心応力が耐久目標の許容値内の値に設定されていること
を特徴としている。
According to the present invention, the centrifugal stress generated radially inward of the second plane portion of the impeller can be reduced by the arc portion having a large radius of curvature. In the invention according to claim 5, in the high-rotation type impeller according to any one of claims 1 to 4, the predetermined height b corresponds to the outer peripheral side end of the center hole of the disk. It is characterized in that the centrifugal stress generated at the part is set to a value within the tolerance of the endurance target.

【0016】この発明によれば、ディスクの中心孔の、
外周側端部に対応する部位に生じる遠心応力を耐久目標
の許容値内の値に抑えることができる。
According to the present invention, the center hole of the disc is
The centrifugal stress generated at the portion corresponding to the outer peripheral end can be suppressed to a value within the allowable value of the durability target.

【0017】[0017]

【発明の実施の形態】以下、本発明に係る高回転型イン
ペラの一実施形態を図1〜図4に基づいて説明する。図
2(a),(b)は、それぞれ図1のD部の拡大図であ
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a high-rotation type impeller according to the present invention will be described below with reference to FIGS. 2A and 2B are enlarged views of a portion D in FIG.

【0018】本実施形態に係る高回転型インペラ11
は、内燃機関用ターボチャージャのコンプレッサに用い
られる。この高回転型インペラ11(以下、単にインペ
ラという。)は、空気を案内する曲面状の前面12を有
する略円錐形状のディスク13と、同ディスク13の前
面12に周方向に等間隔に配置された複数枚の羽根14
とからなる。
High-speed impeller 11 according to this embodiment
Is used for a compressor of a turbocharger for an internal combustion engine. The high-rotation type impeller 11 (hereinafter, simply referred to as an impeller) is disposed on a substantially conical disk 13 having a curved front surface 12 for guiding air, and at equal intervals in the circumferential direction on the front surface 12 of the disk 13. Multiple blades 14
Consists of

【0019】ディスク13の前面12の外周側端部に
は、図1及び図2(a)に示すように、ディスク13の
軸心15に略垂直な平面部16が形成されている。ディ
スク13の背面17は、同ディスク13の外周側端部の
厚さが最も薄くなるような段差のある形状になってい
る。
As shown in FIGS. 1 and 2A, a flat portion 16 substantially perpendicular to the axis 15 of the disk 13 is formed at the outer peripheral end of the front surface 12 of the disk 13. The back surface 17 of the disk 13 has a stepped shape such that the outer peripheral end of the disk 13 has the smallest thickness.

【0020】具体的には、ディスク13の背面17は、
平面部16との間で所定の厚さaの外周側端部を形成
し、ディスク13の外周面18から径方向内方へディス
ク13の軸心15に略垂直に延びる第1平面部19と、
同第1平面部19より径方向内側にあり、第1平面部1
9に対し所定の高さbの段差を持って突出形成された第
2平面部20とを備える。この第2平面部20は、第1
平面部19と同様に軸心15に略垂直に延びている。
Specifically, the back surface 17 of the disk 13
An outer peripheral end having a predetermined thickness a is formed between the outer peripheral surface 18 of the disk 13 and the first planar portion 19 extending radially inward from the outer peripheral surface 18 of the disk 13 substantially perpendicular to the axis 15 of the disk 13; ,
The first flat portion 1 is located radially inward of the first flat portion 19 and
9 and a second flat portion 20 protruding with a step of a predetermined height b. The second plane portion 20 is provided with a first
Like the plane portion 19, it extends substantially perpendicular to the axis 15.

【0021】背面17の第1平面部19と第2平面部2
0は、曲率半径の小さい円弧部21を介して連続してい
る。また、背面17の第2平面部20より径方向内側に
は、曲率半径の大きい円弧部22が第2平面部20と連
続して形成されている。
The first flat portion 19 and the second flat portion 2 of the back surface 17
0 is continuous through the arc portion 21 having a small radius of curvature. An arc portion 22 having a large radius of curvature is formed radially inward of the back surface 17 from the second flat portion 20 so as to be continuous with the second flat portion 20.

【0022】また、円弧部22より径方向内側には、軸
心15に略垂直に延びる第3平面部23が円弧部22と
連続して形成されている。そして、ディスク13の中心
孔24には、一端側が不図示のタービンホイールに取り
付けられる回転軸の他端が取り付けられる。
A third flat portion 23 extending substantially perpendicular to the axis 15 is formed radially inward of the arc portion 22 so as to be continuous with the arc portion 22. The other end of the rotating shaft whose one end is attached to a turbine wheel (not shown) is attached to the center hole 24 of the disk 13.

【0023】そして、ディスク13の前面12の外周側
の部分、即ち、ディスク13の径の大きい側の部分を高
回転型インペラ11のバランス修正のために削るように
なっている。具体的には、図2(a)の斜線部31で示
すように、背面17の第1平面部19をバランス修正の
ために削るのが最も好ましい。或いは、図2(b)の斜
線部32で示すように、背面17の第2平面部20をバ
ランス修正のために削るようにしてもよい。
The outer peripheral portion of the front surface 12 of the disk 13, that is, the portion on the larger diameter side of the disk 13 is cut to correct the balance of the high-rotation type impeller 11. Specifically, as shown by the hatched portion 31 in FIG. 2A, it is most preferable to cut the first flat portion 19 of the back surface 17 to correct the balance. Alternatively, as shown by a hatched portion 32 in FIG. 2B, the second flat portion 20 of the back surface 17 may be cut for balance correction.

【0024】なお、ディスク13の外周側端部の厚さa
は所定の高さbより大きい。この高さbは、ディスク1
3の中心孔24の、外周側端部に対応するC部に生じる
遠心応力が図7のグラフで示す耐久目標の許容値E内の
値に設定されている。
The thickness a of the outer peripheral end of the disk 13
Is greater than a predetermined height b. This height b is
The centrifugal stress generated in the portion C corresponding to the outer peripheral end of the center hole 24 of No. 3 is set to a value within the allowable value E of the durability target shown in the graph of FIG.

【0025】また、第1平面部19の径方向長さL1及
び第2平面部20の径方向長さL2は、それぞれディス
ク13の外周側端部の外径dの略0.1〜0.2倍の値
に設定されている。
The radial length L1 of the first flat portion 19 and the radial length L2 of the second flat portion 20 are each approximately 0.1 to 0.1 mm of the outer diameter d of the outer peripheral end of the disk 13. It is set to twice the value.

【0026】以上説明した一実施形態に係る高回転型イ
ンペラ11によれば、次のような作用効果を奏すること
ができる。 (1)インペラ11の背面17以外の部分の寸法を同じ
にして上記従来例1と比較すると、ディスク13の背面
17をその外周側端部の厚さ(第1平面部19のあるデ
ィスク厚)が最も薄くなるような段差のある形状とした
ので、ディスク13の外周側端部の厚さを同じとした場
合に、第1平面部19より径方向内側にある第2平面部
20のディスク厚は上記従来例1のA部のディスク厚よ
りも厚くなる。これにより、従来例1のインペラ50の
A部に対応するA´部に発生する遠心応力が緩和される
(図4のグラフを参照)。また、図2(a)の斜線部3
1で示すように背面17の第1平面部19をバランス修
正のために削るか、或いは、図2(b)の斜線部32で
示すように背面17の第2平面部20を削るので、この
バランス修正部での遠心応力が高回転時に大きくならな
い。
According to the high-rotation type impeller 11 according to the embodiment described above, the following operational effects can be obtained. (1) Compared with the above-described conventional example 1 by making the dimensions of the portion other than the back surface 17 of the impeller 11 the same, the thickness of the back surface 17 of the disk 13 at the outer peripheral end thereof (the disk thickness with the first flat portion 19) Of the second flat portion 20 radially inward of the first flat portion 19 when the outer peripheral end of the disk 13 has the same thickness. Is thicker than the disk thickness of the portion A in the conventional example 1. As a result, the centrifugal stress generated at the portion A ′ corresponding to the portion A of the impeller 50 of the first conventional example is reduced (see the graph of FIG. 4). 2 (a).
As shown by 1, the first flat portion 19 of the back surface 17 is shaved to correct the balance, or the second flat portion 20 of the back surface 17 is shaved as shown by a hatched portion 32 in FIG. Centrifugal stress in the balance correction section does not increase at high rotation.

【0027】また、本実施形態を上記従来例1と同じ条
件で上記従来例2と比較すると、ディスク13の背面1
7をその外周側端部の厚さ(第1平面部19のあるディ
スク厚)が最も薄くなるような段差のある形状としたの
で、外周側端部より径方向内側にある第2平面部20の
ディスク厚は上記従来例2のB部のディスク厚よりも厚
くなる。このため、従来例2のインペラ50´のB部に
対応するB´部に発生する遠心応力が緩和される(図3
(a),(b)、及び図4を参照)。また、本実施形態
では、背面17内の外周側の部分(径の大きい側の部
分)、例えば、図2(a)の斜線部31或いは図2
(b)の斜線部32をインペラ11のバランス修正のた
めに削るので、このバランス修正部での遠心応力が高回
転時に大きくならない。
Further, when this embodiment is compared with the above-mentioned conventional example 2 under the same conditions as the above-mentioned conventional example 1, the back 1
7 has a stepped shape such that the thickness of the outer peripheral end portion (the thickness of the disk with the first flat portion 19) is the smallest, so that the second flat portion 20 radially inward from the outer peripheral end portion is formed. Is thicker than the disk thickness of the portion B in the conventional example 2. For this reason, the centrifugal stress generated at the portion B ′ corresponding to the portion B of the impeller 50 ′ of the conventional example 2 is reduced (FIG. 3).
(See (a), (b) and FIG. 4). Further, in the present embodiment, a portion on the outer peripheral side (a portion on a larger diameter side) in the back surface 17, for example, a hatched portion 31 in FIG.
Since the hatched portion 32 shown in FIG. 3B is shaved to correct the balance of the impeller 11, the centrifugal stress in the balance correcting portion does not increase during high rotation.

【0028】したがって、高回転時に発生する遠心応力
を緩和することができ、高回転時におけるインペラ11
の破損を防止することができる。これにより、高回転時
の疲労寿命を向上させることができる。
Therefore, the centrifugal stress generated at the time of high rotation can be reduced, and the impeller 11 at the time of high rotation can be reduced.
Can be prevented from being damaged. Thereby, the fatigue life at the time of high rotation can be improved.

【0029】(2)第1平面部19のディスク厚aを上
記従来例(1),(2)と同じにした場合に、第2平面
部20のディスク厚が両従来例の対応する部分のディス
ク厚よりも高さbの分だけ厚くなるので、高回転時に第
2平面部20に発生する遠心応力を緩和することができ
る。
(2) When the disk thickness a of the first flat portion 19 is the same as that of the above-mentioned conventional examples (1) and (2), the disk thickness of the second flat portion 20 is the same as that of the two conventional examples. Since the thickness becomes larger by the height b than the disk thickness, the centrifugal stress generated in the second plane portion 20 at the time of high rotation can be reduced.

【0030】(3)第1,第2平面部19,20を曲率
半径の小さい円弧部21を介して連続しているので、高
回転時に両平面部19,20の間の部位に生ずる遠心応
力を緩和することができる。
(3) Since the first and second flat portions 19 and 20 are continuous via the arc portion 21 having a small radius of curvature, centrifugal stress generated at a portion between the two flat portions 19 and 20 during high rotation. Can be alleviated.

【0031】(4)インペラ11の第2平面部20より
径方向内側に生ずる遠心応力、特に中心孔24の、ディ
スク13の外周側端部に対応するC部に生ずる遠心応力
を、曲率半径の大きい円弧部22により緩和することが
できる。
(4) The centrifugal stress generated radially inward of the second flat portion 20 of the impeller 11, particularly the centrifugal stress generated at the portion C of the center hole 24 corresponding to the outer peripheral end of the disk 13, is determined by the radius of curvature. This can be mitigated by the large arc portion 22.

【0032】(5)所定の高さbは、ディスク13の中
心孔24の、外周側端部に対応するC部に生じる遠心応
力が図7のグラフで示す耐久目標の許容値E内の値に設
定されているので、ディスク13の中心孔24の、外周
側端部に対応する部位に生じる遠心応力を図7に示す耐
久目標の許容値E内の値に抑えることができる。
(5) The predetermined height b is such that the centrifugal stress generated at the portion C corresponding to the outer peripheral end of the center hole 24 of the disk 13 is within the allowable value E of the durability target shown in the graph of FIG. Therefore, the centrifugal stress generated at the portion corresponding to the outer peripheral end of the center hole 24 of the disk 13 can be suppressed to a value within the allowable value E of the durability target shown in FIG.

【0033】(6)図2(a),(b)の斜線部31,
32で示す部分をバランス修正のために削る際に、図5
に示す従来例1でバランス修正のための凹部を加工する
のに用いるカッタと同形状のものを使える。このため、
製造ラインの大幅な改造なしで対応可能となり、設備投
資が少なくてすみ、製造コストのアップを回避すること
ができる。
(6) The hatched portions 31 in FIGS. 2 (a) and 2 (b)
When shaving the portion indicated by 32 for balance correction, FIG.
A cutter having the same shape as the cutter used for processing the concave portion for correcting the balance in the conventional example 1 shown in FIG. For this reason,
It is possible to cope without a major remodeling of the production line, which requires less capital investment and avoids an increase in production cost.

【0034】以上本発明の一実施形態について説明した
が、この一実施形態は以下に示すようにその構成を変更
して実施することもできる。 ・上記一実施形態において、高回転型インペラ11は、
内燃機関用ターボチャージャのコンプレッサに用いられ
るが、高回転型インペラ11をターボチャージャのコン
プレッサ以外の遠心コンプレッサにも適用できる。
Although the embodiment of the present invention has been described above, this embodiment can be implemented by changing its configuration as described below. In the above embodiment, the high-rotation type impeller 11 is
Although used for a compressor of a turbocharger for an internal combustion engine, the high-rotation type impeller 11 can be applied to a centrifugal compressor other than the compressor of the turbocharger.

【0035】・上記実施形態では、高回転型インペラ1
1の背面17を、高さbの段差のある第1平面部19と
第2平面部20を有する形状としたが、その背面17
を、階段状に段差を持って連続する3以上の平面部を有
する形状としてもよい。
In the above embodiment, the high-rotation type impeller 1
1 has a shape having a first flat portion 19 and a second flat portion 20 having a step of height b.
May be a shape having three or more flat portions that are continuous with a step in a stepwise manner.

【0036】・上記一実施形態において、背面17に、
円弧部22及び第3平面部23を設けずに、軸心15に
略垂直な第2平面部20を中心部まで延ばすようにして
もよい。
In the above embodiment, the rear surface 17
Instead of providing the arc portion 22 and the third flat portion 23, the second flat portion 20 substantially perpendicular to the axis 15 may be extended to the center.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 一実施形態に係る高回転型インペラを、その
下半分を省略して示した断面図。
FIG. 1 is a sectional view of a high-rotation type impeller according to an embodiment, with a lower half thereof omitted;

【図2】 (a),(b)は図1のD部の拡大図で、バ
ランス修正部を設ける位置を示す説明図。
FIGS. 2 (a) and 2 (b) are enlarged views of a portion D in FIG. 1, and are explanatory diagrams showing positions where a balance correcting section is provided.

【図3】 (a)は図1のインペラと図6に示すインペ
ラを一緒に示した概略構成図、(b)は両インペラ各部
の遠心応力を単純化して示したグラフ。
3 (a) is a schematic configuration diagram showing the impeller of FIG. 1 and the impeller shown in FIG. 6 together, and FIG. 3 (b) is a graph showing simplified centrifugal stress of each part of both impellers.

【図4】 図1のインペラの各部と、図5及び図6に示
す各従来例の各部に生じる遠心応力の実験結果を示すグ
ラフ。
FIG. 4 is a graph showing experimental results of centrifugal stress generated in each part of the impeller of FIG. 1 and each part of the conventional example shown in FIGS. 5 and 6;

【図5】 (a)は従来のインペラを示す概略構成図、
(b)は同インペラの各部に生じる遠心応力を単純化し
て示すグラフ。
FIG. 5A is a schematic configuration diagram showing a conventional impeller,
(B) is a graph showing a simplified centrifugal stress generated in each part of the impeller.

【図6】 別の従来のインペラを示す概略構成図。FIG. 6 is a schematic configuration diagram showing another conventional impeller.

【図7】 疲労寿命を示すグラフ。FIG. 7 is a graph showing fatigue life.

【符号の説明】[Explanation of symbols]

11…高回転型インペラ、12…前面、13…ディス
ク、14…羽根、15…軸心、17…背面、19…第1
平面部、20…第2平面部、21,22…円弧部、24
…中心孔。
11 high-rotation type impeller, 12 front, 13 disk, 14 blade, 15 axis, 17 back, 19 first
Plane part, 20... Second plane part, 21, 22... Arc part, 24
... Center hole.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 内燃機関用ターボチャージャのコンプレ
ッサに適用され、流体を案内する曲面状の前面を有する
略円錐形状のディスクと、同ディスクの前面に周方向に
等間隔に配置された複数枚の羽根とを有する高回転型イ
ンペラであって、 前記ディスクの背面を、同ディスクの外周側端部の厚さ
が最も薄くなるような段差のある形状とし、そして、前
記背面内の外周側の部分をインペラのバランス修正のた
めに削ることを特徴とする高回転型インペラ。
The present invention is applied to a compressor of a turbocharger for an internal combustion engine, and includes a substantially conical disk having a curved front surface for guiding a fluid, and a plurality of disks arranged at regular intervals in a circumferential direction on the front surface of the disk. A high-rotation impeller having blades, wherein the rear surface of the disk has a stepped shape such that the thickness of the outer peripheral end of the disk is the thinnest, and an outer peripheral portion in the rear surface. A high-speed impeller characterized by shaving the wheel to correct the balance of the impeller.
【請求項2】 前記ディスクの背面は、所定の厚さaの
外周側端部を形成する前記ディスクの軸心に略垂直な第
1平面部と、同第1平面部より径方向内側で、第1平面
部に対し所定の高さbの段差を持つように形成された第
2平面部とを備えることを特徴とする請求項1に記載の
高回転型インペラ。
2. A rear surface of the disk, a first flat portion substantially perpendicular to an axis of the disk forming an outer peripheral end portion having a predetermined thickness a, and a radially inner side of the first flat portion, 2. The high-rotation impeller according to claim 1, further comprising a second flat portion formed to have a step of a predetermined height b with respect to the first flat portion. 3.
【請求項3】 前記背面の第1平面部と第2平面部は曲
率半径の小さい円弧部を介して連続していることを特徴
とする請求項1又は2に記載の高回転型インペラ。
3. The high-rotation type impeller according to claim 1, wherein the first flat portion and the second flat portion on the back surface are continuous via an arc portion having a small radius of curvature.
【請求項4】 前記背面の第2平面部より径方向内側に
は、曲率半径の大きい円弧部が、第2平面部と連続して
設けられていることを特徴とする請求項1〜3に記載の
高回転型インペラ。
4. An arcuate portion having a large radius of curvature is provided radially inward of the second flat portion on the back surface and is continuous with the second flat portion. The high-speed impeller described.
【請求項5】 前記所定の高さbは、前記ディスクの中
心孔の、前記外周側端部に対応する部位に生じる遠心応
力が耐久目標の許容値内の値に設定されていることを特
徴とする請求項1〜4のいずれか一項に記載の高回転型
インペラ。
5. The predetermined height b is such that a centrifugal stress generated in a portion corresponding to the outer peripheral end of the center hole of the disk is set to a value within an allowable value of a durability target. The high-rotation type impeller according to any one of claims 1 to 4.
JP2000230999A 2000-07-31 2000-07-31 High speed rotation type impeller Pending JP2002047944A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000230999A JP2002047944A (en) 2000-07-31 2000-07-31 High speed rotation type impeller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000230999A JP2002047944A (en) 2000-07-31 2000-07-31 High speed rotation type impeller

Publications (1)

Publication Number Publication Date
JP2002047944A true JP2002047944A (en) 2002-02-15

Family

ID=18723889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000230999A Pending JP2002047944A (en) 2000-07-31 2000-07-31 High speed rotation type impeller

Country Status (1)

Country Link
JP (1) JP2002047944A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008138684A (en) * 2006-12-04 2008-06-19 Minebea Co Ltd Impeller of blower
WO2009121465A1 (en) * 2008-04-01 2009-10-08 Daimler Ag Exhaust gas turbocharger for an internal combustion engine
DE102008035206A1 (en) 2008-07-29 2010-06-02 Daimler Ag Blade wheels for rotor assembly of exhaust gas turbo charger of internal-combustion engine of motor vehicle, have multiple rotor blades, which are arranged between front sides and rear sides of blade wheels
JP2010174807A (en) * 2009-01-30 2010-08-12 Ihi Corp Impeller, turbine impeller, turbocharger and method for adjusting impeller balance
KR20110122192A (en) * 2009-02-19 2011-11-09 터보메카 Erosion indicator for a compressor wheel
JP2012077642A (en) * 2010-09-30 2012-04-19 Kobe Steel Ltd Foreign material adhesion prevention structure on rear surface of centrifugal compressor impeller
WO2013162874A1 (en) * 2012-04-23 2013-10-31 Borgwarner Inc. Turbocharger blade with contour edge relief and turbocharger incorporating the same
WO2014008117A1 (en) * 2012-07-02 2014-01-09 Borgwarner Inc. Method for turbine wheel balance stock removal
WO2014046927A1 (en) * 2012-09-19 2014-03-27 Borgwarner Inc. Turbine wheel
WO2014128930A1 (en) * 2013-02-22 2014-08-28 三菱重工業株式会社 Turbine rotor and turbocharger incorporating such turbine rotor
EP3034781A1 (en) * 2014-12-18 2016-06-22 Bosch Mahle Turbo Systems GmbH & Co. KG Exhaust gas turbo charger
US9683442B2 (en) 2012-04-23 2017-06-20 Borgwarner Inc. Turbocharger shroud with cross-wise grooves and turbocharger incorporating the same
WO2017168642A1 (en) * 2016-03-30 2017-10-05 三菱重工業株式会社 Impeller, rotary machine, and turbocharger
EP3124793A4 (en) * 2014-03-24 2017-11-22 IHI Corporation Centrifugal compressor impeller
WO2018019401A1 (en) * 2016-07-26 2018-02-01 Daimler Ag Impeller for a rotor of a turbocharger and method for producing such an impeller
US9896937B2 (en) 2012-04-23 2018-02-20 Borgwarner Inc. Turbine hub with surface discontinuity and turbocharger incorporating the same
CN108136518A (en) * 2015-10-07 2018-06-08 大陆汽车有限公司 Method for balance mark to be introduced into the compressor wheels of turbocharger and the turbocharger including having the compressor wheels of balance mark
US10202850B2 (en) 2014-03-20 2019-02-12 Borgwarner Inc. Balancing method for a turbocharger
EP3470626A1 (en) * 2017-10-12 2019-04-17 Borgwarner Inc. Turbocharger having improved turbine wheel
WO2021044022A1 (en) * 2019-09-06 2021-03-11 Datatechnic Method for selecting a radial profile of a cavity to be produced in a rear side of an impeller
EP3835593A1 (en) * 2019-12-10 2021-06-16 Ingersoll-Rand Industrial U.S., Inc. Centrifugal compressor impeller with nonlinear backwall

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008138684A (en) * 2006-12-04 2008-06-19 Minebea Co Ltd Impeller of blower
WO2009121465A1 (en) * 2008-04-01 2009-10-08 Daimler Ag Exhaust gas turbocharger for an internal combustion engine
DE102008016937A1 (en) 2008-04-01 2009-10-08 Daimler Ag Exhaust gas turbocharger for an internal combustion engine
DE102008035206A1 (en) 2008-07-29 2010-06-02 Daimler Ag Blade wheels for rotor assembly of exhaust gas turbo charger of internal-combustion engine of motor vehicle, have multiple rotor blades, which are arranged between front sides and rear sides of blade wheels
JP2010174807A (en) * 2009-01-30 2010-08-12 Ihi Corp Impeller, turbine impeller, turbocharger and method for adjusting impeller balance
KR101706795B1 (en) 2009-02-19 2017-02-14 사프란 헬리콥터 엔진스 Erosion indicator for a compressor wheel
KR20110122192A (en) * 2009-02-19 2011-11-09 터보메카 Erosion indicator for a compressor wheel
JP2012077642A (en) * 2010-09-30 2012-04-19 Kobe Steel Ltd Foreign material adhesion prevention structure on rear surface of centrifugal compressor impeller
US9683442B2 (en) 2012-04-23 2017-06-20 Borgwarner Inc. Turbocharger shroud with cross-wise grooves and turbocharger incorporating the same
US9896937B2 (en) 2012-04-23 2018-02-20 Borgwarner Inc. Turbine hub with surface discontinuity and turbocharger incorporating the same
CN104204444A (en) * 2012-04-23 2014-12-10 博格华纳公司 Turbocharger blade with contour edge relief and turbocharger incorporating the same
WO2013162874A1 (en) * 2012-04-23 2013-10-31 Borgwarner Inc. Turbocharger blade with contour edge relief and turbocharger incorporating the same
WO2014008117A1 (en) * 2012-07-02 2014-01-09 Borgwarner Inc. Method for turbine wheel balance stock removal
CN104350255A (en) * 2012-07-02 2015-02-11 博格华纳公司 Method for turbine wheel balance stock removal
CN104603420A (en) * 2012-09-19 2015-05-06 博格华纳公司 Turbine wheel
JP2015531845A (en) * 2012-09-19 2015-11-05 ボーグワーナー インコーポレーテッド Turbine wheel
WO2014046927A1 (en) * 2012-09-19 2014-03-27 Borgwarner Inc. Turbine wheel
US9915152B2 (en) 2012-09-19 2018-03-13 Borgwarner Inc. Turbine wheel
EP2960463A4 (en) * 2013-02-22 2016-04-13 Mitsubishi Heavy Ind Ltd Turbine rotor and turbocharger incorporating such turbine rotor
CN104903561A (en) * 2013-02-22 2015-09-09 三菱重工业株式会社 Turbine rotor and turbocharger incorporating such turbine rotor
US9874100B2 (en) 2013-02-22 2018-01-23 Mitsubishi Heavy Industries, Ltd. Turbine rotor and turbocharger having the turbine rotor
WO2014128930A1 (en) * 2013-02-22 2014-08-28 三菱重工業株式会社 Turbine rotor and turbocharger incorporating such turbine rotor
US11008868B2 (en) 2014-03-20 2021-05-18 Borgwarner, Inc. Balancing method for a turbocharger
US10202850B2 (en) 2014-03-20 2019-02-12 Borgwarner Inc. Balancing method for a turbocharger
EP3124793A4 (en) * 2014-03-24 2017-11-22 IHI Corporation Centrifugal compressor impeller
US20160177726A1 (en) * 2014-12-18 2016-06-23 Bosch Mahle Turbo Systems Gmbh & Co. Kg Exhaust-gas turbocharger
DE102014226477A1 (en) * 2014-12-18 2016-06-23 Bosch Mahle Turbo Systems Gmbh & Co. Kg turbocharger
EP3034781A1 (en) * 2014-12-18 2016-06-22 Bosch Mahle Turbo Systems GmbH & Co. KG Exhaust gas turbo charger
CN105715303A (en) * 2014-12-18 2016-06-29 博世马勒涡轮系统有限两合公司 Exhaust gas turbo charger
CN105715303B (en) * 2014-12-18 2018-06-15 博世马勒涡轮系统有限两合公司 Exhaust-driven turbo-charger exhaust-gas turbo charger
CN108136518A (en) * 2015-10-07 2018-06-08 大陆汽车有限公司 Method for balance mark to be introduced into the compressor wheels of turbocharger and the turbocharger including having the compressor wheels of balance mark
CN108136518B (en) * 2015-10-07 2020-08-18 大陆汽车有限公司 Turbocharger including compressor wheel with balance flag and related method
US10883513B2 (en) 2016-03-30 2021-01-05 Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. Impeller, rotary machine, and turbocharger
JPWO2017168642A1 (en) * 2016-03-30 2019-02-14 三菱重工エンジン&ターボチャージャ株式会社 Impeller, rotating machine, turbocharger
WO2017168642A1 (en) * 2016-03-30 2017-10-05 三菱重工業株式会社 Impeller, rotary machine, and turbocharger
CN109196230A (en) * 2016-03-30 2019-01-11 三菱重工发动机和增压器株式会社 Impeller, rotating machinery, turbocharger
WO2018019401A1 (en) * 2016-07-26 2018-02-01 Daimler Ag Impeller for a rotor of a turbocharger and method for producing such an impeller
EP3470626A1 (en) * 2017-10-12 2019-04-17 Borgwarner Inc. Turbocharger having improved turbine wheel
WO2021044022A1 (en) * 2019-09-06 2021-03-11 Datatechnic Method for selecting a radial profile of a cavity to be produced in a rear side of an impeller
FR3100562A1 (en) * 2019-09-06 2021-03-12 Datatechnic Method of selecting a radial profile of a cavity to be produced in a rear face of a paddle wheel.
EP3835593A1 (en) * 2019-12-10 2021-06-16 Ingersoll-Rand Industrial U.S., Inc. Centrifugal compressor impeller with nonlinear backwall
US11408434B2 (en) * 2019-12-10 2022-08-09 Ingersoll-Rand Industrial U.S., Inc. Centrifugal compressor impeller with nonlinear backwall
US20220381259A1 (en) * 2019-12-10 2022-12-01 Ingersoll-Rand Industrial U.S., Inc. Centrifugal compressor impeller with nonlinear backwall
US11821434B2 (en) * 2019-12-10 2023-11-21 Ingersoll-Rand Industrial U.S., Inc. Centrifugal compressor impeller with nonlinear backwall
US20240052846A1 (en) * 2019-12-10 2024-02-15 Ingersoll-Rand Industrial U.S., Inc. Centrifugal compressor impeller with nonlinear backwall
US12110902B2 (en) * 2019-12-10 2024-10-08 Ingersoll-Rand Industrial U.S., Inc. Centrifugal compressor impeller with nonlinear backwall

Similar Documents

Publication Publication Date Title
JP2002047944A (en) High speed rotation type impeller
US6994523B2 (en) Air blower apparatus having blades with outer peripheral bends
EP1208303B1 (en) Cooling fan
US6837679B2 (en) Gas turbine engine
US9260971B2 (en) Turbine rotor
JPH04224203A (en) Disk with blade for gas turbine
JP2004036567A (en) Impeller of centrifugal compressor
JP2008539356A (en) Turbine wheel
EP0992693B1 (en) Axial fan
JP4094495B2 (en) Francis-type runner
JPS6215760B2 (en)
EP2766577B1 (en) Turbomachine compressor blade comprising a curved portion
US11506220B2 (en) Fan wheel with three dimensionally curved impeller blades
EP4130430A1 (en) Integrated bladed rotor
JP5369198B2 (en) Compressor housing
JP2024086911A (en) Impeller, and centrifugal compressor
JP4946901B2 (en) Impeller structure
US5044886A (en) Rotor blade fixing providing improved angular alignment of said blades
JPH10213094A (en) Impeller for centrifugal compressor
JP2003090279A (en) Hydraulic rotating machine vane
JP6642258B2 (en) Supercharger
JPH07253001A (en) Integral shroud moving blade
JPH0222202B2 (en)
JP2020090953A (en) Axial flow type turbo machine and its blade
US20240352944A1 (en) Radial fan with tapered tongue geometry