JPH07253001A - Integral shroud moving blade - Google Patents

Integral shroud moving blade

Info

Publication number
JPH07253001A
JPH07253001A JP4561594A JP4561594A JPH07253001A JP H07253001 A JPH07253001 A JP H07253001A JP 4561594 A JP4561594 A JP 4561594A JP 4561594 A JP4561594 A JP 4561594A JP H07253001 A JPH07253001 A JP H07253001A
Authority
JP
Japan
Prior art keywords
blade
shroud
wing
rear edge
trailing edge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4561594A
Other languages
Japanese (ja)
Inventor
Takashi Maruyama
隆 丸山
Eiichiro Watanabe
英一郎 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP4561594A priority Critical patent/JPH07253001A/en
Publication of JPH07253001A publication Critical patent/JPH07253001A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To make a complete three-dimensional blade by preventing generation of crack, unstable flow caused by damage or chip, and decrease of efficiency, through a process of eliminating any cut part as well as deceasing bending stress by eccentricity of a shroud during rotation. CONSTITUTION:The side surface, in the circumferential direction T, of a shroud 2 are formed by straight lines 4, 4' in the implanting directions to the rotor of a blade root on the front edge 3 side, and it is formed by bending lines formed in straight lines 6, 6' concentrated on a blade rear edge 5 on the rear edge 5 side, and the straight lines 4, 4' on the side surfaces on the front edge 3 side are deviated from a blade front side 9 to a blade back side 8. Moreover, the shroud 2 on the rear edge 5 side is so formed as to completely shield the rear edge 5. Thereby, the center of gravity G of the shroud is brought close to the radial line of the blade root, and bending tress during rotation can be decreased, and the strength of a moving blade can be increased. Moreover, any generation of crack or damage can be eliminated by eliminating a cut part, moreover turbulence of stream flow is decreased, so as to contribute to improvement of the efficiency of a turbine.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、翼端側および翼根側の
翼幹が、回転半径方向から傾けて設けられ、翼端に円周
方向に設けられるシュラウドカバー(以下、単にシュラ
ウドという)が、翼幹と一体成形される三次元翼設計の
インテグラルシュラウド動翼に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a shroud cover (hereinafter, simply referred to as shroud) in which blade tips on the blade tip side and the blade root side are provided inclined with respect to the radial direction of rotation and provided on the blade tip in the circumferential direction. Relates to an integral shroud rotor blade with a three-dimensional blade design integrally molded with the wing trunk.

【0002】[0002]

【従来の技術】動翼相互間の剛性を高め、翼振動調節の
働きをさせるため、翼端に円周方向に設けるシュラウド
が、翼幹と一体に形成されたタービン動翼を、インテグ
ラルシュラウド動翼(Integral Shroud Blade)(以下I
SBという)と言う。図2はその平面図で、略矩形に形
成されたシュラウド01は、機械加工、又は鍛造によ
り、円周方向Tに向けて翼幹02の外周に配設されて、
翼幹02と一体に形成されている。また、翼幹02の翼
固定部は矢印の方向Sに、図示しないロータに植込まれ
る、アキシャルエントリ型に形成されており、シュラウ
ド01側面のロータ軸方向Fとなす角度は、この植込方
向Sとロータ軸方向Fとなす角、植込角度θと同一にさ
れている。なお、翼前縁03と翼後縁04とを結ぶ直
線、すなわち翼弦Cと、ロータ軸F方向とのなす食い違
い角を、スタッガ(Stagger)角と呼称している。
2. Description of the Related Art In order to increase the rigidity between rotor blades and to adjust the blade vibration, a shroud provided in the circumferential direction at the blade tip is used as an integral shroud for a turbine rotor blade formed integrally with the blade trunk. Integral Shroud Blade (hereinafter I
SB). FIG. 2 is a plan view of the shroud 01. The shroud 01 formed in a substantially rectangular shape is arranged by machining or forging on the outer circumference of the blade trunk 02 in the circumferential direction T.
It is formed integrally with the wing trunk 02. Further, the blade fixing portion of the blade trunk 02 is formed in an axial entry type to be embedded in a rotor (not shown) in a direction S indicated by an arrow, and the angle formed with the rotor axial direction F on the side surface of the shroud 01 is the direction of this implantation. The angle formed by S and the rotor axial direction F is the same as the implantation angle θ. A straight line connecting the blade leading edge 03 and the blade trailing edge 04, that is, a stagger angle formed by the chord C and the direction of the rotor axis F is referred to as a Stagger angle.

【0003】また、05は翼幹02の腹側、06は背側
であり、Eは蒸気流の流入方向、Dは流出方向である。
Further, 05 is the ventral side of the wing trunk 02, 06 is the dorsal side, E is the inflow direction of the steam flow, and D is the outflow direction.

【0004】また、γは蒸気流の方向が変化する角度、
すなわち翼幹02の回転面への蒸気流の流入角αと、流
出角βとの差である転向角であり、転向角γが大きくな
る程、図3に示すように、植込角度θ及びスタッガ角ξ
は設計上の要請から大きくなり、いわゆるハイスタッガ
の翼列となる。
Γ is the angle at which the direction of the steam flow changes,
That is, the turning angle is the difference between the inflow angle α and the outflow angle β of the steam flow into the rotating surface of the blade trunk 02. As the turning angle γ increases, the implantation angle θ and Stagger angle ξ
Became larger due to design requirements, and became a so-called high staggered cascade.

【0005】次に、高性能反動翼ではリアクションコン
トロールによって、動・静翼共に三次元設計法による、
二次流れ損失の低減が図られている。しかし、内、外径
端のチップ、及びベース壁面に発生する境界層内に二次
流れが発生し、これが翼の後縁から渦として流出し、二
次流れ損失を発生させる。この損失は、転向角γが大き
い程著しく、このため、高性能反動翼では、転向角γを
小さくして、この二次流れ損失の低減を図ることが行わ
れている。
Next, in the high-performance reaction blade, reaction control is used, and both the moving and stationary blades are manufactured by the three-dimensional design method.
The secondary flow loss is reduced. However, a secondary flow is generated in the tip at the inner and outer diameter ends and in the boundary layer generated on the base wall surface, and this flows out as a vortex from the trailing edge of the blade, causing a secondary flow loss. This loss is remarkable as the turning angle γ is large. Therefore, in the high-performance reaction blade, the turning angle γ is made small to reduce the secondary flow loss.

【0006】しかし、この方法にも限界があり、最近に
なって、図に示すように翼幹02を回転半径方向(ラジ
アルライン)Rから傾けて設けることにより、蒸気流を
チップ壁面07、およびベース壁面08に押しつけ、チ
ップ及びベース壁面07,08における渦の発達を抑制
して、二次流れ損失の低減を図ることが行われるように
なってきた。この様な翼を、完全三次元翼と呼称してい
る。すなわち、図5(A)に示すように、従来、翼幹0
2はラジアルラインR方向を向く直線で形成していたも
のを、完全三次元翼では、図5(B)に示すように、チ
ップ及びベース壁面04,05に当接する近傍を、相互
に反対方向に傾斜させて、連続した曲線を形成するよう
にしている。このような翼は、スキュード(Skewed)
翼、又はバウ(Bow)翼とも呼ばれ、図5(B)の斜視図
である、図4に詳細に示されているように、翼幹02は
ラジアルライン方向Rに斜曲線を形成し、弓状に湾曲さ
せることによって、チップ壁面07、およびベース壁面
08近傍の蒸気流の流れを矢印AA′で示すように、そ
れぞれ壁面07,08方向へ向くように、主流Bの方向
から変向することによって、チップ壁面07、およびベ
ース壁面08における境界層の発達を防止して、二次流
れの発生を低減し、二次流れ損失の低減を図っている。
However, this method also has a limit, and recently, as shown in the figure, by providing the blade stem 02 inclined from the rotational radial direction (radial line) R, the vapor flow is made to flow to the tip wall surface 07, and It has come to be attempted to reduce secondary flow loss by pressing against the base wall surface 08 and suppressing the development of vortices on the chip and the base wall surfaces 07 and 08. Such a wing is called a perfect three-dimensional wing. That is, as shown in FIG.
In the complete three-dimensional wing, 2 is formed by a straight line that faces the radial line R direction, but in the case of the complete three-dimensional blade, the vicinity of abutting the tip and the base wall surfaces 04 and 05 is opposite to each other, as shown in FIG. 5 (B). It is inclined to form a continuous curve. Such a wing is Skewed
Also referred to as a wing, or Bow wing, as shown in detail in FIG. 4, which is a perspective view of FIG. 5B, the wing trunk 02 forms a diagonal curve in the radial line direction R, By bowing, the flow of the vapor flow near the tip wall surface 07 and the base wall surface 08 is changed from the direction of the main flow B toward the wall surfaces 07 and 08, respectively, as indicated by arrow AA ′. As a result, the development of the boundary layer on the chip wall surface 07 and the base wall surface 08 is prevented, the generation of the secondary flow is reduced, and the secondary flow loss is reduced.

【0007】このように、完全三次元翼では必ずしも転
向角γを小さくする必要がなく、大きな転向角γに設計
して、高効率を狙うことができる。しかし、この場合必
然的に植込角度θ、及びスタッガ角ξも大きくなり、I
SBの場合スタッガ角ξが大きくなると、シュラウド0
1の重心位置Gは、図2、図3に示すように、翼幹02
のチッププロフィルの背側06から腹側05へ移行す
る。一方、翼幹02のラジアルラインは、図4に示すよ
うに、チッププロフィルの背側06を指向している。こ
のため、完全三次元翼設計によるISBでは、回転時シ
ュラウド01の偏心による曲げ応力が加わり、強度上問
題となっていた。
As described above, it is not always necessary to reduce the turning angle γ in a perfect three-dimensional blade, and a high turning angle γ can be designed for high efficiency. However, in this case, the implantation angle θ and the stagger angle ξ also inevitably increase, and I
In the case of SB, if the stagger angle ξ becomes large, the shroud 0
As shown in FIGS. 2 and 3, the center of gravity position G of
The tip profile of No. 06 shifts from the dorsal side 06 to the ventral side 05. On the other hand, the radial line of the wing trunk 02 is directed to the back side 06 of the chip profile, as shown in FIG. For this reason, in the ISB based on the complete three-dimensional blade design, bending stress is applied due to the eccentricity of the shroud 01 during rotation, which causes a problem in strength.

【0008】また、図3に示す通り、翼幹02の後縁が
シュラウド01の端面から大きく突出して、最終植込翼
でのカット部Aを形成し、この部分からのクラック発
生、又は破損等の問題点があった。また、最終植込翼で
は、上記カット部Aが欠落するために流れが不安定とな
り、効率の低下を招くという不具合もあった。
Further, as shown in FIG. 3, the trailing edge of the blade trunk 02 largely projects from the end face of the shroud 01 to form a cut portion A in the final implant blade, and cracks or damages from this portion occur. There was a problem. Further, in the final implanting blade, the cut portion A is missing, so that the flow becomes unstable, resulting in a decrease in efficiency.

【0009】[0009]

【発明が解決しようとする課題】このため、本発明は翼
端に設けられるシュラウドが、翼幹と一体成形で形成さ
れ、しかも翼端側、および翼根側の翼幹がラジアルライ
ンから傾けて設けられて、完全三次元翼にされたインテ
グラルシュラウド動翼において、回転時のシュラウドの
偏心による曲げ応力を小さくするとともに、カット部を
なくしてクラックの発生、又は破損並びに欠落による流
れの不安定、および効率の低下を防止したインテグラル
シュラウド動翼を提供することを課題とする。
Therefore, in the present invention, the shroud provided at the blade tip is formed integrally with the blade trunk, and the blade tip side and the blade root side blade trunk are inclined from the radial line. Integral shroud rotor blades that are installed and are made into a complete three-dimensional blade reduce bending stress due to eccentricity of the shroud during rotation, and eliminate the cut portion to cause flow instability due to crack generation, breakage, or lack. It is an object of the present invention to provide an integral shroud rotor blade that prevents deterioration of efficiency.

【0010】[0010]

【課題を解決するための手段】このため、本発明のイン
テグラルシュラウド動翼は、次の手段とした。 (1)シュラウドの円周方向側面を、翼前縁側では翼植
込み方向、翼後縁側では後縁に向う折れ線によって形成
した。 (2)シュラウドの円周方向側面のうち、翼前縁側の側
面を翼腹側から翼背側に偏移させて配置した。
Therefore, the integral shroud rotor blade of the present invention has the following means. (1) The circumferential side surface of the shroud is formed by a polygonal line that extends toward the trailing edge on the blade leading edge side and toward the trailing edge on the blade trailing edge side. (2) Of the circumferential side surfaces of the shroud, the side surface on the blade leading edge side is arranged so as to be displaced from the blade ventral side to the blade back side.

【0011】また、他の本発明のインテグラルシュラウ
ド動翼は、上記手段に加え次の手段とした。 (3)シュラウドで翼端後縁を掩蔽するようにして、シ
ュラウドの端面から突出するカット部をなくした。
Another integral shroud rotor blade of the present invention has the following means in addition to the above means. (3) The shroud obscures the trailing edge of the blade tip to eliminate the cut portion protruding from the end surface of the shroud.

【0012】[0012]

【作用】本発明の、上述(1),(2)の手段を具える
インテグラルシュラウド動翼では、シュラウドの重心が
翼幹のチッププロフィルの腹側から背側へ移行し、翼幹
のラジアルラインとの偏心量が減少して、回転時の偏心
による曲げ応力が減少し、強度上の問題が解消する。
In the integral shroud rotor of the present invention, which has the above-mentioned means (1) and (2), the center of gravity of the shroud shifts from the ventral side to the dorsal side of the tip profile of the blade trunk, and the radial of the blade trunk is changed. The amount of eccentricity with the line is reduced, bending stress due to eccentricity during rotation is reduced, and the problem of strength is solved.

【0013】また、本発明の上述(3)の手段を具える
インテグラルシュラウド動翼では、上述の作用に加え、
動翼の強度が向上すると共に、最終植込翼のカット部か
らのクラック発生、又は破損の問題点がなくなるととも
に、欠落による不安定流れの発生、および効率低下の問
題が解消する。
Further, in the integral shroud moving blade provided with the above-mentioned means (3) of the present invention, in addition to the above-mentioned operation,
The strength of the moving blade is improved, the problem of crack generation or breakage from the cut portion of the final implant blade is eliminated, and the problem of unstable flow due to lack and the problem of reduced efficiency are solved.

【0014】[0014]

【実施例】以下、本発明のインテグラルシュラウド動翼
の実施例を、図面により説明する。図1は、本発明のイ
ンテグラルシュラウド動翼の、一実施例を示す平面図で
ある。1は翼幹のチッププロフィルであり、本実施例の
翼幹1は、前述した図4と同様に、翼端側および翼根側
がラジアルラインから傾けて形成された、完全三次翼設
計により作成されている。チッププロフィル1には、シ
ュラウド2が、機械加工、若しくは鍛造により一体に形
成されている。
Embodiments of the integral shroud rotor blade of the present invention will be described below with reference to the drawings. FIG. 1 is a plan view showing an embodiment of an integral shroud rotor blade of the present invention. Reference numeral 1 denotes a tip profile of the blade, and the blade 1 of the present embodiment is made by a complete tertiary blade design in which the blade tip side and the blade root side are inclined from the radial line as in the case of FIG. 4 described above. ing. The shroud 2 is integrally formed with the tip profile 1 by machining or forging.

【0015】シュラウド2の円周方向Tの側面は、翼前
縁3側では、翼植込み方向Sと一致する直線4,4′で
形成され、翼後縁3側では、後縁5に向う直線6,6′
で形成され、両直線4,4′、6,6′および背側8の
直線4′と直線6′を継ぐ直線7からなる折れ線によっ
て形成されている。
The side surface of the shroud 2 in the circumferential direction T is formed by straight lines 4 and 4'which coincide with the blade implantation direction S on the blade leading edge 3 side, and extends on the blade trailing edge 3 side toward the trailing edge 5. 6,6 '
And a straight line 7 connecting both straight lines 4, 4 ′, 6, 6 ′ and straight line 4 ′ on the back side 8 and straight line 6 ′.

【0016】なお、直線7は必ずしも必要とするもので
はなく、腹側9の直線4、直線6でなる折れ線のよう
に、背側の直線4′と直線6′の延長線で連結した折れ
線にするようにしてもよい。
The straight line 7 is not always necessary, and like the broken line formed by the straight lines 4 and 6 on the abdominal side 9, a straight line connected by an extension line of the straight line 4'and the straight line 6'on the back side. You may do it.

【0017】また、前縁3側翼植込み方向Sの腹側9の
直線4は、背側8の直線4′と背側8との間隔より狭く
され、腹側9へ近付けて設けられている。すなわち、シ
ュラウド2の翼前縁3側の、円周方向Tの側面9から背
側8へ偏移して設けられている。このため、シュラウド
2は、図3に示す動翼と同様に、転向角γが大きく、植
込み角θ、及びスタッガ角ξが大きいハイスタッガの翼
列であるにも拘らず、その重心位置Gは図3に示す位置
から、チッププロフィル1の背側8へ移行する。また、
後縁5側の円周方向Tの側面を形成する折れ線6,6′
は、後縁5まで延長されており、後縁5はシュラウド2
によって掩蔽される。
The straight line 4 on the ventral side 9 in the wing implantation direction S on the front edge 3 side is narrower than the distance between the straight line 4'on the back side 8 and the back side 8 and is provided close to the ventral side 9. That is, the shroud 2 is provided so as to be displaced from the side surface 9 in the circumferential direction T on the blade leading edge 3 side to the back side 8. Therefore, the shroud 2 is a high staggered blade row having a large turning angle γ, a large implantation angle θ, and a large stagger angle ξ, like the moving blade shown in FIG. The position shown in FIG. 3 shifts to the back side 8 of the chip profile 1. Also,
Polygonal lines 6, 6'that form a side surface in the circumferential direction T on the trailing edge 5 side
Extend to the trailing edge 5, which is shroud 2
Occluded by.

【0018】本実施例は、上述のように構成されるの
で、シュラウドの重心位置Gの翼幹1のラジアルライン
との偏心量が減少して、回転時の偏心に伴う曲げ応力が
減少し、従来の動翼で生じていた問題点が解消する。
Since this embodiment is constructed as described above, the amount of eccentricity of the shroud with respect to the radial line of the blade trunk 1 at the center of gravity G of the shroud decreases, and the bending stress associated with the eccentricity during rotation decreases. The problems that have occurred with conventional blades are eliminated.

【0019】また、従来のISBでは、隣接する翼幹の
外周に設けられるシュラウドで後縁が掩蔽されるように
していたため、最終植込翼では必ず生じていたカット部
を、本実施例のものでは、なくすることができるので、
従来、カット部から発生することが多かった、クラック
の発生、又は破損を低減できるとともに、カット部の欠
落に伴う、不安定流の発生、および、これに伴うタービ
ン効率低下の問題を解消できる。
Further, in the conventional ISB, since the trailing edge is obscured by the shroud provided on the outer circumference of the adjacent blade stem, the cut portion which is always generated in the final implant blade is the same as that of this embodiment. So you can get rid of it,
Conventionally, it is possible to reduce the occurrence of cracks or breakage, which often occur from the cut portion, and to solve the problem of the unstable flow caused by the lack of the cut portion and the turbine efficiency reduction accompanying this.

【0020】[0020]

【発明の効果】以上述べたように、本発明のインテグラ
ルシュラウド動翼によれば、特許請求の範囲に示す構成
により、次の効果が得られる。 (1)シュラウドによる偏心応力が減少して、翼強度が
増大する。 (2)シュラウドから突出した後縁部がなくなり、該部
での翼強度が向上する。 (3)最終植込翼での後縁部のカット部がなくなり、不
安定流れが防止されて効率が向上する。
As described above, according to the integral shroud rotor blade of the present invention, the following effects can be obtained with the configuration shown in the claims. (1) The eccentric stress due to the shroud is reduced, and the blade strength is increased. (2) The trailing edge portion protruding from the shroud is eliminated, and the blade strength at that portion is improved. (3) The cut portion at the trailing edge of the final implant blade is eliminated, and unstable flow is prevented, improving efficiency.

【0021】すなわち、信頼性及び熱効率の向上におい
て、顕著な効果を奏する。なお、本発明は翼高さが小さ
い高,中圧タービン、及び低圧タービン上流段落に使用
される動翼の製作に、利用されて、特に効果を発揮する
ものである。
That is, a remarkable effect is obtained in improving reliability and thermal efficiency. It should be noted that the present invention is particularly effective when applied to the production of moving blades used in upstream stages of high-, medium-pressure turbines, and low-pressure turbines having a small blade height.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のインテグラルシュラウド動翼の一実施
例を示す平面図。
FIG. 1 is a plan view showing an embodiment of an integral shroud rotor blade of the present invention.

【図2】従来のインテグラルシュラウド動翼を示す平面
図。
FIG. 2 is a plan view showing a conventional integral shroud rotor blade.

【図3】従来のハイスタッガインテグラルシュラウド動
翼を示す平面図。
FIG. 3 is a plan view showing a conventional high stagger integral shroud rotor blade.

【図4】完全三次元翼の斜視図。FIG. 4 is a perspective view of a complete three-dimensional wing.

【図5】翼列内の流れを示す概念図で、図5(A)はラ
ジアルライン方向に直線で形成された翼列内の流れ、図
5(B)は完全三次元翼の翼列内の流れを示す。
FIG. 5 is a conceptual diagram showing a flow in a blade row, FIG. 5 (A) is a flow in a blade row formed by a straight line in a radial line direction, and FIG. 5 (B) is a blade row in a complete three-dimensional blade. Shows the flow of.

【符号の説明】[Explanation of symbols]

1 翼幹のチッププロフィル 2 シュラウド 3 (翼)前縁 4,4′ 前縁部側面 5 後縁 6,6′ 後縁部側面 8 (翼の)背側 9 (翼の)腹側 G シュラウドの重心 S (翼の)植込方向 T 円周方向 1 Tip profile of the wing 2 Shroud 3 (Wing) Leading edge 4,4 'Leading edge side 5 Trailing edge 6,6' Trailing edge side 8 (Wing) dorsal side 9 (Wing) ventral G Shroud's Center of gravity S (Wing) implantation direction T Circumferential direction

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 翼幹の翼端側および翼根側がラジアルラ
インから傾けて設けられ、翼端の円周方向に設けるシュ
ラウドが翼幹と一体に成形されるインテグラルシュラウ
ド動翼において、前記シュラウドの円周方向側面を、翼
植込み方向の翼前縁側の直線と、翼後縁方向の翼後縁側
の直線とからなる折れ線で形成するとともに、前記翼前
縁側側面を翼腹側から翼背側へ偏移させたことを特徴と
するインテグラルシュラウド動翼。
1. An integral shroud rotor blade in which a wing tip side and a wing root side of a wing trunk are provided so as to be inclined from a radial line, and a shroud provided in a circumferential direction of the wing tip is integrally formed with the wing trunk. The circumferential side surface of the blade is formed by a polygonal line composed of a straight line on the blade leading edge side in the blade implantation direction and a straight line on the blade trailing edge side in the blade trailing edge direction, and the blade leading edge side surface is formed from the blade vent side to the blade back side. Integral shroud blade characterized by being shifted to.
【請求項2】 前記シュラウドが翼端後縁を掩蔽して設
けられていることを特徴とする、請求項1のインテグラ
ルシュラウド動翼。
2. The integral shroud rotor blade according to claim 1, wherein the shroud is provided so as to cover the trailing edge of the blade tip.
JP4561594A 1994-03-16 1994-03-16 Integral shroud moving blade Withdrawn JPH07253001A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4561594A JPH07253001A (en) 1994-03-16 1994-03-16 Integral shroud moving blade

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4561594A JPH07253001A (en) 1994-03-16 1994-03-16 Integral shroud moving blade

Publications (1)

Publication Number Publication Date
JPH07253001A true JPH07253001A (en) 1995-10-03

Family

ID=12724291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4561594A Withdrawn JPH07253001A (en) 1994-03-16 1994-03-16 Integral shroud moving blade

Country Status (1)

Country Link
JP (1) JPH07253001A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002129901A (en) * 2000-10-30 2002-05-09 Ishikawajima Harima Heavy Ind Co Ltd Chip shroud structure
JP2002276303A (en) * 2001-02-08 2002-09-25 General Electric Co <Ge> Shape of airfoil portion for turbine nozzle
JP2005106053A (en) * 2003-08-12 2005-04-21 General Electric Co <Ge> Center-located cutter teeth on shrouded turbine blade
JP2014500432A (en) * 2010-11-22 2014-01-09 スネクマ Movable blade for turbomachine
WO2020249914A1 (en) 2019-06-14 2020-12-17 Safran Aircraft Engines Vane for a turbine engine with optimised root and method for optimising a vane profile
CN115013089A (en) * 2022-06-09 2022-09-06 西安交通大学 Method and system for designing rear turbine casing rectifying support plate with wide working condition backward shielding

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002129901A (en) * 2000-10-30 2002-05-09 Ishikawajima Harima Heavy Ind Co Ltd Chip shroud structure
JP2002276303A (en) * 2001-02-08 2002-09-25 General Electric Co <Ge> Shape of airfoil portion for turbine nozzle
JP2005106053A (en) * 2003-08-12 2005-04-21 General Electric Co <Ge> Center-located cutter teeth on shrouded turbine blade
JP2014500432A (en) * 2010-11-22 2014-01-09 スネクマ Movable blade for turbomachine
US9303516B2 (en) 2010-11-22 2016-04-05 Snecma Movable blade for a turbomachine
WO2020249914A1 (en) 2019-06-14 2020-12-17 Safran Aircraft Engines Vane for a turbine engine with optimised root and method for optimising a vane profile
FR3097262A1 (en) * 2019-06-14 2020-12-18 Safran Aircraft Engines Pi (Aji) TURBOMACHINE DAWN WITH OPTIMIZED HEEL AND PROCESS FOR OPTIMIZING A DAWN PROFILE
CN114080489A (en) * 2019-06-14 2022-02-22 赛峰飞机发动机公司 Blade for a turbine engine with an optimized root and method for optimizing the blade profile
CN115013089A (en) * 2022-06-09 2022-09-06 西安交通大学 Method and system for designing rear turbine casing rectifying support plate with wide working condition backward shielding
CN115013089B (en) * 2022-06-09 2023-03-07 西安交通大学 Method and system for designing rear turbine casing rectifying support plate with wide working condition backward shielding

Similar Documents

Publication Publication Date Title
US6669445B2 (en) Endwall shape for use in turbomachinery
JP3876195B2 (en) Centrifugal compressor impeller
KR100248129B1 (en) Blade for axial fluid machine
US5480285A (en) Steam turbine blade
JP5059991B2 (en) Stator blade with narrow waist
JP3968234B2 (en) Row of flow guide elements for turbomachines
US6375420B1 (en) High efficiency blade configuration for steam turbine
US5292230A (en) Curvature steam turbine vane airfoil
JP3621216B2 (en) Turbine nozzle
US20020197156A1 (en) Aerofoil for an axial flow turbomachine
EP1152122B1 (en) Turbomachinery blade array
JP6034860B2 (en) Turbomachine element
JP2003074306A (en) Axial flow turbine
JP2015183691A (en) gas turbine blade
US5035578A (en) Blading for reaction turbine blade row
JPH0874502A (en) Turbine blade
US6638021B2 (en) Turbine blade airfoil, turbine blade and turbine blade cascade for axial-flow turbine
JPH04219403A (en) Turbine blade
JPH07253001A (en) Integral shroud moving blade
JP3697296B2 (en) Turbine blade
JPH10184305A (en) Turbine having shroud moving blade
JP2004263602A (en) Nozzle blade, moving blade, and turbine stage of axial-flow turbine
JPS61149504A (en) Turbine rotor structure in pneumatic machine
JPH1061405A (en) Stationary blade of axial flow turbo machine
US11454126B1 (en) Blade root shank profile

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010605