JPH08176819A - Thin film forming device - Google Patents

Thin film forming device

Info

Publication number
JPH08176819A
JPH08176819A JP6318098A JP31809894A JPH08176819A JP H08176819 A JPH08176819 A JP H08176819A JP 6318098 A JP6318098 A JP 6318098A JP 31809894 A JP31809894 A JP 31809894A JP H08176819 A JPH08176819 A JP H08176819A
Authority
JP
Japan
Prior art keywords
substrate
film
thin film
magnetic field
sputtering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6318098A
Other languages
Japanese (ja)
Inventor
Katsutaro Ichihara
勝太郎 市原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP6318098A priority Critical patent/JPH08176819A/en
Publication of JPH08176819A publication Critical patent/JPH08176819A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To excellently control the temp. of a substrate by supporting the substrate to be worked with a holder, providing a member with the conductivity changed by a magnetic field between the substrate and holder and impressing a magnetic field. CONSTITUTION: A magneto-resistance effect member 1 is formed on the supporting face of a substrate holder 3 in a sputtering chamber 10. A substrate 2 to be coated with a thin film is supported by the holder 3. The rear of the holder 3 is heated by an IR lamp 5 to heat the substrate 2 through the member 1. A thin film is formed on the substrate 2 by sputtering using sputtering sources 71 and 72. The member 1 is impressed with an electromagnet 41 to change its conductivity, and the temp. of the substrate 2 is controlled. This device is excellent in high-speed responsiveness, high precision and adaptability to a large area.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、薄膜素子に薄膜の形成
または薄膜の加工等の薄膜処理を施す薄膜処理装置に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin film processing apparatus for performing thin film processing such as thin film formation or thin film processing on a thin film element.

【0002】[0002]

【従来の技術】スパッタリング装置、蒸着装置、CVD
装置、MBE装置等の薄膜形成装置、およびRIE装
置、イオンミリング装置、CDE装置、アッシング装置
等の薄膜加工装置は、DRAM、TFT−LCD、半導
体レーザ、磁気ヘッド、磁気ディスク、光ディスク等、
産業上極めて重要な薄膜素子の製造に幅広く用いられて
いる。
2. Description of the Related Art Sputtering equipment, vapor deposition equipment, CVD
Devices, thin film forming devices such as MBE devices, and thin film processing devices such as RIE devices, ion milling devices, CDE devices, and ashing devices include DRAMs, TFT-LCDs, semiconductor lasers, magnetic heads, magnetic disks, optical disks, etc.
It is widely used for manufacturing thin film devices, which are extremely important in industry.

【0003】薄膜の形成、加工いずれのプロセスにおい
てもプロセス中の基板温度は、膜質、膜形成速度、膜加
工速度、加工形状等、薄膜素子機能の主要な決定要因の
一つであり、温度分布も含めて所定の管理が必要であ
る。
In any of the processes of forming and processing a thin film, the substrate temperature during the process is one of the main determinants of thin film element function, such as film quality, film forming speed, film processing speed, and processing shape, and temperature distribution. Prescribed management is required including the above.

【0004】また、近年特に注目されている人工格子膜
に代表される多層積層膜では、異種膜材料を順次積層し
ていく際、または加工していく際に、各層毎の最適な形
成温度または加工温度に合わせて迅速に基板温度を制御
することが望まれる。
In addition, in a multilayer laminated film represented by an artificial lattice film, which has been particularly attracting attention in recent years, when the different film materials are sequentially laminated or processed, the optimum forming temperature of each layer or It is desired to control the substrate temperature quickly according to the processing temperature.

【0005】従来の薄膜形成装置および薄膜加工装置等
の薄膜処理装置においては、基板支持台中にヒータを設
けるか、または基板支持台外部から基板に向けて赤外線
ランプを照射して基板を加熱するか、基板支持台中に液
体窒素導入路を設けてそこに液体窒素を通流させること
により基板を冷却し、これにより基板の温度管理を行っ
ている。
In a conventional thin film processing apparatus such as a thin film forming apparatus and a thin film processing apparatus, a heater is provided in the substrate supporting base or an infrared lamp is irradiated toward the substrate from outside the substrate supporting base to heat the substrate. The substrate support is provided with a liquid nitrogen introduction passage, and liquid nitrogen is allowed to flow therethrough to cool the substrate, thereby controlling the temperature of the substrate.

【0006】しかしながら、これらの方法はいずれも高
速応答性、大面積均一性、要求精度を満たしているとは
いえず、必ずしも最適な状態で膜の形成もしくは加工が
実施されていない状況にある。
However, none of these methods can be said to satisfy high-speed responsiveness, large area uniformity, and required accuracy, and the film formation or processing is not necessarily performed in an optimum state.

【0007】[0007]

【発明が解決しようとする課題】本発明はかかる事情に
鑑みてなされたものであって、薄膜プロセス中の基板温
度制御性、すなわち高速応答性、大面積均一性および制
御精度の良好な薄膜処理装置を提供することを目的とす
る。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and it is a thin film process that has a good substrate temperature controllability during a thin film process, that is, high-speed response, large area uniformity, and control accuracy. The purpose is to provide a device.

【0008】[0008]

【課題を解決するための手段および作用】本発明は、上
記課題を解決するために、プロセス室と、この室内に設
けられ、薄膜プロセスが施される基板を支持する支持台
と、該支持台に支持された基板に薄膜プロセスを施す手
段と、前記支持台に磁界を印加する手段と、前記支持台
の内部または前記支持台の支持面に設けられ、前記磁界
を印加する手段から印加される磁界によって熱伝導率が
変化する部材とを具備することを特徴とする薄膜処理装
置を提供する。
SUMMARY OF THE INVENTION In order to solve the above problems, the present invention provides a process chamber, a support provided in the chamber for supporting a substrate on which a thin film process is performed, and the support. Means for performing a thin film process on the substrate supported by the substrate, means for applying a magnetic field to the support base, and means provided inside the support base or on the support surface of the support base for applying the magnetic field. A thin film processing apparatus, comprising: a member whose thermal conductivity changes according to a magnetic field.

【0009】本発明は、比較的熱容量の小さい基板を薄
膜プロセスの対象とする全ての薄膜処理装置に対して適
用することが可能であり、例えばスパッタリング、蒸
着、MBE等のPVDプロセス、熱CVD、プラズマC
VD、光CVD、MOCVD等のCVDプロセス、プラ
ズマ重合プロセス、アッシングプロセス、CDEプロセ
ス、RIEプロセス等の薄膜形成および薄膜加工を行う
装置における基板の温度管理に適用可能である。
INDUSTRIAL APPLICABILITY The present invention can be applied to all thin film processing apparatuses in which a substrate having a relatively small heat capacity is subjected to a thin film process. For example, sputtering, vapor deposition, PVD processes such as MBE, thermal CVD, Plasma C
It is applicable to temperature control of a substrate in an apparatus that performs thin film formation and thin film processing such as a CVD process such as VD, photo CVD, MOCVD, a plasma polymerization process, an ashing process, a CDE process, and an RIE process.

【0010】本発明において、対象とする基板(薄膜プ
ロセス基板)に特に制限はないが、熱容量が小さいほど
本発明を適用することによる効果は顕著である。基板の
支持台はプロセスの目的に応じて多様な形態があり、本
発明の適用に際して特に制限はなく、電位的に接地でも
浮動でもよく、高圧が印加されるものでもよい。また、
機械的に静止しているものでも、移動するものでもよ
い。
In the present invention, the target substrate (thin film process substrate) is not particularly limited, but the smaller the heat capacity, the more remarkable the effect of applying the present invention. There are various forms of the support base of the substrate according to the purpose of the process, and there is no particular limitation when the present invention is applied, and it may be grounded or floating in terms of potential, or may be one to which a high voltage is applied. Also,
It may be mechanically stationary or moving.

【0011】本発明に係る装置における基板の熱的条件
については、冷却でも加熱でもよいが、特にプロセス中
に高速に基板温度を制御する実施態様、例えば異種材料
からなる多層膜の形成や一括加工を行う場合に本発明は
効果的である。
Regarding the thermal condition of the substrate in the apparatus according to the present invention, it may be cooling or heating. In particular, an embodiment in which the substrate temperature is controlled at high speed during the process, for example, formation of a multi-layer film made of different materials or batch processing The present invention is effective when performing

【0012】支持台に磁界を印加する手段にも特に制限
はないが、基板支持台付近に電磁石もしくは永久磁石を
配置するのが一般的で、必要なことは後述する熱伝導率
変化部材(磁界の印加によって熱伝導率が変化する部
材)に磁界を印加することができ、かつ好ましくは印加
磁界の大きさを変えることができることである。
The means for applying a magnetic field to the support base is not particularly limited, but it is common to dispose an electromagnet or a permanent magnet near the substrate support base, and what is needed is a thermal conductivity changing member (magnetic field) to be described later. It is possible to apply a magnetic field to a member whose thermal conductivity changes by the application of, and preferably to change the magnitude of the applied magnetic field.

【0013】磁界印加源として電磁石を用いる場合は電
磁石への通電電流によって磁界の大きさを変えればよ
く、また永久磁石を用いる場合は熱伝導率変化部材と磁
石との相対的な位置を変えればよい。
When an electromagnet is used as the magnetic field applying source, the magnitude of the magnetic field may be changed by the current supplied to the electromagnet, and when a permanent magnet is used, the relative positions of the heat conductivity changing member and the magnet may be changed. Good.

【0014】磁界の印加によって熱伝導率が変化する部
材は、支持台の支持面すなわち基板と支持台の間、また
は支持台内部に配置され、代表的には磁気抵抗効果を示
す材料が用いられ得る。例えば適当な基板(薄膜プロセ
ス基板とは違う基板で、以下熱制御用基板と記述する)
上に、異方性磁気抵抗効果を示す材料例えばNiFe
膜、あるいは強磁性層と非磁性金属層を周期的に積層し
た磁性人工格子膜例えばCo/Cu周期積層膜、あるい
は磁性人工格子材料の一つの積層単位で構成されたスピ
ンバルブ膜(すなわちCo/Cu/CoFe等に代表さ
れる非磁性金属層を磁性層で挟んだサンドイッチ膜)等
が設けられた部材である。
The member whose thermal conductivity changes by the application of a magnetic field is arranged on the supporting surface of the supporting table, that is, between the substrate and the supporting table, or inside the supporting table. Typically, a material exhibiting a magnetoresistive effect is used. obtain. For example, a suitable substrate (a substrate different from the thin film process substrate, hereinafter referred to as a thermal control substrate)
Above, a material exhibiting an anisotropic magnetoresistive effect, such as NiFe
Film, or a magnetic artificial lattice film in which a ferromagnetic layer and a non-magnetic metal layer are periodically laminated, for example, a Co / Cu periodic laminated film, or a spin valve film composed of one laminated unit of a magnetic artificial lattice material (that is, Co / Cu / This is a member provided with (a sandwich film in which a non-magnetic metal layer typified by Cu / CoFe is sandwiched between magnetic layers) and the like.

【0015】これらの磁気抵抗効果を示す材料は磁界の
印加によって電気抵抗が変化すると同時にヴィーデマン
・フランツ則に従って熱伝導率が変化する。すなわちヴ
ィーデマン・フランツ則は材料の熱伝導率と電気伝導率
との比が一定の温度の下で一定であるというものである
から、上述の磁気抵抗効果を示す材料は磁界の印加によ
る電気抵抗変化に伴って熱伝導率が変化するのである。
この熱伝導率の変化は基本的に印加する磁界の変化に追
随するので極めて高速である。
In the materials exhibiting the magnetoresistive effect, the electric resistance is changed by the application of the magnetic field, and at the same time, the thermal conductivity is changed according to the Wiedemann-Franz rule. That is, the Wiedemann-Franz law states that the ratio of the thermal conductivity and the electrical conductivity of a material is constant at a constant temperature, so that a material exhibiting the above-mentioned magnetoresistive effect changes the electrical resistance due to the application of a magnetic field. As a result, the thermal conductivity changes.
This change in the thermal conductivity basically follows the change in the applied magnetic field, and thus is extremely fast.

【0016】薄膜を形成しようとする基板の熱容量がそ
れ程大きくない場合(一般的には大きくない)は、磁気
抵抗効果を示す材料の設けられた熱制御用基板を、基板
支持台中に設置するか基板支持台と薄膜基板の間に設け
る等すれば、磁気抵抗効果を示す材料の熱伝導率の変化
によって薄膜プロセス基板の温度を制御することが可能
である。
When the heat capacity of the substrate on which the thin film is to be formed is not so large (generally not so large), is a heat control substrate provided with a material exhibiting a magnetoresistive effect placed in a substrate support base? If it is provided between the substrate support and the thin film substrate, it is possible to control the temperature of the thin film process substrate by changing the thermal conductivity of the material exhibiting the magnetoresistive effect.

【0017】具体的な実施態様の一つとしては、基板支
持台に従来から基板温度制御に一般的に用いられている
シースヒータ等を埋設し、支持台の支持面に上述したよ
うな熱制御用基板の上に磁気抵抗効果を示す材料が形成
された部材(以下、磁気抵抗効果部材と記す)を設け、
その上に薄膜基板を設置する。
As one of the concrete embodiments, a sheath heater or the like which has been generally used for controlling the substrate temperature is embedded in the substrate supporting table, and the thermal control for the heat control as described above is performed on the supporting surface of the supporting table. A member (hereinafter referred to as a magnetoresistive member) on which a material exhibiting a magnetoresistive effect is formed is provided on the substrate,
A thin film substrate is placed on it.

【0018】この状態でシースヒータに通電を行うと、
系の熱容量、熱伝導率等の熱定数で決定される時間応答
で薄膜プロセス基板はある一定の温度に達する。この時
の薄膜プロセス基板は系の熱定数で決定される温度差を
もってヒータ、支持台に比べて低い温度で定常値とな
る。
When the sheath heater is energized in this state,
The thin film process substrate reaches a certain temperature with a time response determined by thermal constants such as heat capacity and thermal conductivity of the system. At this time, the thin film process substrate has a temperature difference determined by the thermal constant of the system, and becomes a steady value at a lower temperature than the heater and the support.

【0019】例えば磁気抵抗効果部材に磁界を印加しな
い状態で薄膜プロセス基板を所定の温度に昇温し、例え
ばその所定温度が最適成膜温度である膜部材Aを薄膜プ
ロセス基板上に所定の厚さ形成し、例えば次に磁気抵抗
効果部材に所定の磁界を印加して熱伝導率の高い状態と
すると、系の熱定数が変化するので、薄膜プロセス基板
の温度は磁気抵抗効果部材に磁界を印加しない状態より
も高くなる。
For example, the thin film process substrate is heated to a predetermined temperature without applying a magnetic field to the magnetoresistive member, and for example, the film member A whose predetermined temperature is the optimum film forming temperature has a predetermined thickness on the thin film process substrate. Then, for example, when a predetermined magnetic field is applied to the magnetoresistive effect member to bring it into a state of high thermal conductivity, the thermal constant of the system changes, so that the temperature of the thin film process substrate changes the magnetic field to the magnetoresistive effect member. It will be higher than in the non-applied state.

【0020】この時の時間応答はヒータの通電電流を変
化させる場合に比べて極めて迅速である。なぜならばヒ
ータによって加熱・冷却する場合には一般的に熱容量の
非常に大きなヒータ自身および基板支持台の熱応答を待
たねばならないのに対して、磁気抵抗効果部材の熱伝導
率の変化は極めて急峻であり、かつ熱制御基板と薄膜プ
ロセス基板の熱容量は一般的に小さく、少なくもヒータ
・支持台のそれよりは小さいからである。
The time response at this time is extremely quick as compared with the case where the energizing current of the heater is changed. This is because when heating and cooling with a heater, it is generally necessary to wait for the thermal response of the heater itself and the substrate support, which have a very large heat capacity, whereas the change in thermal conductivity of the magnetoresistive effect member is extremely sharp. This is because the thermal capacities of the heat control substrate and the thin film process substrate are generally small, and at least smaller than that of the heater / support.

【0021】このようにして迅速な熱応答で薄膜プロセ
ス基板を第2の所定の温度に保持することができ、その
第2の所定温度が最適成膜温度である膜部材Bを前記し
た膜部材Aの上に形成することにより、最適な薄膜形成
を行うことができる。
In this way, the thin film process substrate can be held at the second predetermined temperature with a rapid thermal response, and the film member B whose second predetermined temperature is the optimum film forming temperature is the above film member. By forming it on A, the optimum thin film can be formed.

【0022】このような膜形成以外に例えば多層膜の一
括加工等に本発明を適用する場合も同様の考え方で最適
加工が可能となり、また単層膜の形成や加工を行う際に
も本発明により応答性の良好な高精度の温度制御が可能
となる。
In addition to such film formation, when the present invention is applied to, for example, batch processing of a multilayer film, the optimum processing can be performed by the same idea, and the present invention is also applied when forming or processing a single layer film. This enables highly accurate temperature control with good responsiveness.

【0023】以上のように本発明の薄膜処理装置によれ
ば、磁界を印加する手段から印加される磁界によって熱
伝導率が変化する部材を薄膜プロセスが施される基板の
近傍に設けるので、PVD法、CVD法、プラズマ重合
法、CDE法、RIE法、アッシング法等全ての薄膜プ
ロセスにおいて、高速応答・高精度かつ大面積性の良好
な基板温度制御が可能となり、最適な薄膜の形成・加工
を高い工業的生産性をもって行うことができる。
As described above, according to the thin film processing apparatus of the present invention, the member whose thermal conductivity is changed by the magnetic field applied from the means for applying the magnetic field is provided in the vicinity of the substrate on which the thin film process is performed. Method, CVD method, plasma polymerization method, CDE method, RIE method, ashing method, etc. In all thin film processes, it is possible to control the substrate temperature with high-speed response, high accuracy and large area, and to form and process the optimum thin film. Can be performed with high industrial productivity.

【0024】[0024]

【実施例】以下、添付図面を参照して、本発明の実施例
について説明する。図1は本発明の一実施例に係る薄膜
処理装置、より具体的にはスパッタリング装置の構成図
であり、図2はその水平断面図である。これらの図に示
すように、この装置はスパッタ室10を有し、その中の
上部に基板支持台3がその面を水平にして配置されてお
り、この基板支持台3は基板支持台回転用モータ6に接
続されている。基板支持台3の支持面には、磁界によっ
て熱伝導率が変化する部材としての磁気抵抗効果部材1
が設けられ、その上に薄膜プロセス基板2が支持され
る。
Embodiments of the present invention will be described below with reference to the accompanying drawings. FIG. 1 is a configuration diagram of a thin film processing apparatus according to an embodiment of the present invention, more specifically, a sputtering apparatus, and FIG. 2 is a horizontal sectional view thereof. As shown in these figures, this apparatus has a sputtering chamber 10 in which an upper part of a substrate support base 3 is arranged with its surface horizontal. The substrate support base 3 is for rotating the substrate support base. It is connected to the motor 6. On the support surface of the substrate support base 3, the magnetoresistive effect member 1 as a member whose thermal conductivity changes with a magnetic field
Is provided, and the thin film process substrate 2 is supported thereon.

【0025】基板支持台3の上方には基板支持台3を加
熱するための赤外線ランプ5が設けられている。また、
基板支持台3の外周側には磁界印加手段としての一対の
電磁石41が設けられており、これら電磁石41は電磁
石電源42から給電される。
An infrared lamp 5 for heating the substrate support 3 is provided above the substrate support 3. Also,
A pair of electromagnets 41 as magnetic field applying means are provided on the outer peripheral side of the substrate support base 3, and these electromagnets 41 are fed from an electromagnet power source 42.

【0026】スパッタ室10の底部には4つのスパッタ
リング源71,72,73,74が配置され、その上
に、それぞれスパッタリングターゲット81,82,8
3,84が配置され、さらにそれらの上方にそれぞれシ
ャッター91,92,93,94が設けられている。ま
た、各スパッタリング源71,72,73,74にはス
パッタ用電源101,102,103,104が接続さ
れている(スパッタ用電源101,102のみ図示)。
Four sputtering sources 71, 72, 73, 74 are arranged at the bottom of the sputtering chamber 10, and sputtering targets 81, 82, 8 are placed on the four sputtering sources 71, 72, 73, 74, respectively.
3, 84 are arranged, and shutters 91, 92, 93, 94 are respectively provided above them. Further, sputtering power sources 101, 102, 103, 104 are connected to the respective sputtering sources 71, 72, 73, 74 (only the sputtering power sources 101, 102 are shown).

【0027】また、スパッタ室10の側面には、ガス導
入系11およびガス排気系12が接続されている。図3
は上記磁気抵抗効果部材1およびその上の薄膜プロセス
基板2上に形成された薄膜の一例を示す断面図である。
すなわち、スパッタプロセス終了後の状態を示してい
る。この例における磁気抵抗効果部材1は、熱制御用基
板1a上に磁化回転膜1b、非磁性金属膜1c、磁化固
定膜1d、および磁化固着膜1eが順に形成されてお
り、スピンバルブ型の磁気抵抗効果を示す材料で構成さ
れている。また、この磁気抵抗効果部材1の上に薄膜プ
ロセス基板2が支持され、その上に透明電極膜21、絶
縁膜22、エレクトロルミネッセンス(EL)膜23、
および電子放出電極膜24が順に形成されており、薄膜
冷陰極素子を構成している。
A gas introduction system 11 and a gas exhaust system 12 are connected to the side surface of the sputtering chamber 10. FIG.
FIG. 3 is a sectional view showing an example of a thin film formed on the magnetoresistive member 1 and the thin film process substrate 2 thereon.
That is, it shows the state after the sputtering process is completed. In the magnetoresistive member 1 in this example, a magnetization rotation film 1b, a non-magnetic metal film 1c, a magnetization fixed film 1d, and a magnetization fixed film 1e are sequentially formed on a heat control substrate 1a, and a spin valve type magnetic film is formed. It is made of a material that exhibits a resistance effect. A thin film process substrate 2 is supported on the magnetoresistive member 1, and a transparent electrode film 21, an insulating film 22, an electroluminescent (EL) film 23, and
Further, the electron emission electrode film 24 is sequentially formed, and constitutes a thin film cold cathode device.

【0028】本実施例の磁気抵抗効果部材1の具体的な
材料は、熱制御用基板1aがSiウエハ、磁化回転膜1
bがCoFe、非磁性金属膜1cがCu、磁化固定膜1
dがCoFe、磁化固着膜1eがFeMnであり、各膜
は図1とは別のスパッタリング装置で形成した。
As a specific material of the magnetoresistive effect member 1 of this embodiment, the heat control substrate 1a is a Si wafer, and the magnetization rotation film 1 is used.
b is CoFe, non-magnetic metal film 1c is Cu, and magnetization fixed film 1
d is CoFe, the magnetization fixed film 1e is FeMn, and each film was formed by a sputtering apparatus different from that shown in FIG.

【0029】また、薄膜冷陰極素子に用いた材料は、薄
膜プロセス基板2がSi基板、透明電極膜21がITO
(インジウム・スズ酸化物)、絶縁膜22がTa2
3 、EL膜23がZnS、電子放出電極膜24がAuで
ある。これらの膜の最適成膜温度は予め実施した予備的
実験の結果、ITOが200℃、Ta25 が180
℃、ZnSが160℃、Auが180℃であることがわ
かっている。
As the material used for the thin film cold cathode device, the thin film process substrate 2 is a Si substrate and the transparent electrode film 21 is ITO.
(Indium tin oxide), insulating film 22 is Ta 2 O
3 , the EL film 23 is ZnS, and the electron emission electrode film 24 is Au. The optimum deposition temperature for these films was 200 ° C. for ITO and 180 ° for Ta 2 O 5 as a result of preliminary experiments conducted in advance.
C., ZnS is 160.degree. C., Au is 180.degree.

【0030】上記の薄膜冷陰極素子を本発明の装置によ
り形成するに際しては、前記した4つのスパッタリング
源71,72,73,74にはターゲットとして、各々
ITOターゲット81、Ta25 ターゲット82、Z
nSターゲット83、Auターゲット84が装着され
る。
In forming the above-mentioned thin film cold cathode device by the apparatus of the present invention, the four sputtering sources 71, 72, 73 and 74 described above are provided with targets of ITO target 81 and Ta 2 O 5 target 82, respectively. Z
An nS target 83 and an Au target 84 are attached.

【0031】本発明の実施手順を説明するに先立って、
磁気抵抗効果部材1の磁界(H)と熱伝導率(k)との
関係について説明しておく。本実施例に使用した図3の
磁気抵抗効果部材1の各磁性層の初期磁化方向は図3中
の矢印で示した向きであり、このような磁化方向は磁性
層中で最も保磁力の高い磁化固着膜1eの磁化方向を図
中に示される向きに例えば外部磁場を印加することによ
り設定することができ、磁化固定膜1dの磁化は磁化固
着膜1eからの交換磁界により磁化固着膜1eと同じ向
きに配列され、磁化回転膜1bの磁化は磁化固着膜1e
および磁化固定膜1dからの漏洩磁界により磁化固定膜
1dの磁化とは反対向きに配列される。
Prior to explaining the procedure for carrying out the present invention,
The relationship between the magnetic field (H) and the thermal conductivity (k) of the magnetoresistive member 1 will be described. The initial magnetization direction of each magnetic layer of the magnetoresistive effect member 1 of FIG. 3 used in this example is the direction shown by the arrow in FIG. 3, and such a magnetization direction has the highest coercive force in the magnetic layer. The magnetization direction of the magnetization pinned film 1e can be set in the direction shown in the figure by applying, for example, an external magnetic field, and the magnetization of the magnetization pinned film 1d is exchanged with the magnetization pinned film 1e by the exchange magnetic field from the magnetization pinned film 1e. The magnetizations of the magnetization rotation film 1b are arranged in the same direction, and the magnetization of the magnetization rotation film 1b is fixed.
The leakage magnetic field from the magnetization fixed film 1d causes the magnetization fixed film 1d to be arranged in the opposite direction to the magnetization.

【0032】この状態で外部から磁化回転膜1bの初期
磁化の向きとは反対向きに磁界を印加すると磁化回転膜
1bの磁化が磁化固定膜1dの磁化方向に回転し、磁化
回転膜1bの磁化と磁化固定膜の磁化の相対的な角度関
係によって磁気抵抗効果部材1の電気伝導率が変化し、
その結果上述したヴィーデマン・フランツ則に従って磁
気抵抗効果部材1の熱伝導率が変化する。
In this state, when a magnetic field is applied from the outside in the direction opposite to the direction of the initial magnetization of the magnetization rotation film 1b, the magnetization of the magnetization rotation film 1b rotates in the magnetization direction of the magnetization fixed film 1d, and the magnetization of the magnetization rotation film 1b. The electrical conductivity of the magnetoresistive effect member 1 changes according to the relative angular relationship between the magnetization of the magnetization fixed film and
As a result, the thermal conductivity of the magnetoresistive effect member 1 changes according to the Wiedemann-Franz rule described above.

【0033】図4は熱伝導率kの磁界Hに対する変化を
磁化回転膜の磁化の向きと磁化固定膜の磁化の向きと共
に模式的に示す図であり、磁化回転膜の磁化と磁化固定
膜の磁化が反平行の初期状態が最もkは低く、磁化回転
膜の磁化が磁化固定膜の向きに回転を始めるとkは次第
に増加し、直交状態で飽和値の半分に達して、さらに回
転を続け平行状態になると最大の飽和値に達する。kの
Hに対する変化に時間的な遅れはほとんどない。
FIG. 4 is a diagram schematically showing the change of the thermal conductivity k with respect to the magnetic field H together with the magnetization direction of the magnetization rotation film and the magnetization direction of the magnetization fixed film. The initial state in which the magnetization is antiparallel is the lowest k, and when the magnetization of the magnetization rotation film starts to rotate in the direction of the magnetization fixed film, k gradually increases, reaches half the saturation value in the orthogonal state, and continues rotation. The maximum saturation value is reached in the parallel state. There is almost no time delay in the change of k with respect to H.

【0034】次に、上記構成を有するスパッタリング装
置により実際に上記薄膜を形成した際の手順について説
明する。まず各薄膜が形成される前の薄膜プロセス基板
2を、スパッタリング装置の基板支持台3上に予め設置
された磁気抵抗効果部材1の上に取り付けた後、スパッ
タ室10を密閉しガス排気系12を動作してスパッタ室
10内の圧力が10-6Torrになるまで排気し、次に
ガス導入系11を介して1%O2 −Ar混合ガスを20
0sccmの流量でスパッタ室10に導入し、スパッタ
室10内の圧力を5mTorrに保持した。
Next, a procedure for actually forming the thin film with the sputtering apparatus having the above structure will be described. First, the thin film process substrate 2 on which each thin film is not formed is mounted on the magnetoresistive effect member 1 previously installed on the substrate support 3 of the sputtering apparatus, and then the sputtering chamber 10 is closed and the gas exhaust system 12 is installed. Is evacuated until the pressure in the sputtering chamber 10 becomes 10 −6 Torr, and then a 1% O 2 —Ar mixed gas is added to the gas through the gas introduction system 11 to 20
It was introduced into the sputtering chamber 10 at a flow rate of 0 sccm, and the pressure in the sputtering chamber 10 was maintained at 5 mTorr.

【0035】次に赤外線ランプ5を点灯すると共に電源
42を投入して電磁石41に通電し、磁気抵抗効果部材
1の熱伝導率kを高い飽和値に設定した。薄膜プロセス
基板2の温度が200℃に達するまで放置した後に、I
TOターゲット81が設置されたスパッタ源71に電源
101から直流電圧を投入しターゲット上にプラズマを
生成しシャッター91を閉じた状態で暫くコンディショ
ニングした後、モータ6によって薄膜プロセス基板2を
回転させ、シャッター91を開放して10分間スパッタ
を継続して膜厚100nmのITO膜を薄膜プロセス基
板2上に形成した。
Next, the infrared lamp 5 was turned on and the power source 42 was turned on to energize the electromagnet 41 to set the thermal conductivity k of the magnetoresistive effect member 1 to a high saturation value. After allowing the thin film process substrate 2 to reach a temperature of 200 ° C., I
A DC voltage is applied from a power source 101 to a sputtering source 71 having a TO target 81 installed, plasma is generated on the target, and after conditioning for a while with the shutter 91 closed, the thin film process substrate 2 is rotated by a motor 6 to release the shutter. 91 was opened, and sputtering was continued for 10 minutes to form an ITO film having a film thickness of 100 nm on the thin film process substrate 2.

【0036】その後、電磁石41への通電電流を低下さ
せkを低下させると数10秒間で薄膜プロセス基板2の
温度は180℃の一定値に達した。温度を調整する間に
Ta25 ターゲット82が設置されたスパッタリング
源72に電源102から高周波電力を投入してプラズマ
を生成し、シャッター92を閉じた状態でコンディショ
ニングし、基板温度が一定に達して数10秒後にシャッ
ター92を開放し、30分間のスパッタを継続してIT
O膜21上に膜厚300nmのTa25 膜を形成し
た。
After that, when the current passed through the electromagnet 41 was decreased to decrease k, the temperature of the thin film process substrate 2 reached a constant value of 180 ° C. in several tens of seconds. While adjusting the temperature, a high frequency power is applied from a power source 102 to a sputtering source 72 in which a Ta 2 O 5 target 82 is installed to generate plasma, and the shutter 92 is conditioned to close the substrate to reach a constant substrate temperature. After a few tens of seconds, the shutter 92 is opened, and spatter for 30 minutes is continued to perform IT.
A Ta 2 O 5 film having a film thickness of 300 nm was formed on the O film 21.

【0037】次にさらに電磁石41への通電電流を低下
しkをさらに低下すると数10秒で薄膜プロセス基板2
の温度は160℃の一定値に達した。導入ガスを1%O
2 −Ar混合ガスから純Arに置換した後、ZnSター
ゲット83が設置されたスパッタリング源73に電源1
03より高周波電力を投入しコンディショニング後シャ
ッター93を開放して20分間スパッタを継続し、Ta
25 膜上に膜厚500nmのZnS膜を形成した。
Next, when the current passing through the electromagnet 41 is further reduced and k is further reduced, the thin film process substrate 2 is produced in several tens of seconds.
The temperature reached a constant value of 160 ° C. Introduced gas is 1% O
After replacing the 2- Ar mixed gas with pure Ar, the power source 1 is supplied to the sputtering source 73 in which the ZnS target 83 is installed.
High frequency power from 03. After conditioning, open the shutter 93 and continue sputtering for 20 minutes.
A ZnS film having a film thickness of 500 nm was formed on the 2 O 5 film.

【0038】その後、電磁石41への通電電流をTa2
5 膜形成時と同じ値に戻し、Auターゲット84が設
置されたスパッタリング源74に電源104から直流電
圧を印加し、シャッター94を開放し、30秒間のスパ
ッタを行って、ZnS膜上に膜厚10nmのAu膜を形
成した。
After that, the current supplied to the electromagnet 41 is changed to Ta 2
After returning to the same value as when the O 5 film was formed, a DC voltage was applied from the power source 104 to the sputtering source 74 on which the Au target 84 was installed, the shutter 94 was opened, and sputtering was performed for 30 seconds to form a film on the ZnS film. An Au film having a thickness of 10 nm was formed.

【0039】このようにして成膜終了後、電磁石41へ
の通電の停止、赤外線ランプ5の消灯、モータ6の停
止、ガス供給の停止を順次行って、基板温度が室温付近
に冷却されるまで薄膜プロセス基板を放置し、その後ス
パッタ室10を大気開放して基板2上に上記薄膜が形成
された薄膜冷陰極素子を取り出した。
After the film formation is completed in this manner, the energization of the electromagnet 41 is stopped, the infrared lamp 5 is turned off, the motor 6 is stopped, and the gas supply is stopped until the substrate temperature is cooled to near room temperature. The thin film process substrate was left to stand, then the sputtering chamber 10 was opened to the atmosphere, and the thin film cold cathode device having the above thin film formed on the substrate 2 was taken out.

【0040】上記各膜の成膜の際における経過時間tと
薄膜プロセス基板の基板温度Tおよび磁気抵抗効果部材
の熱伝導率kとの関係を図5に示す。この図に示すよう
に、磁界を変化させることにより磁気抵抗効果部材の熱
伝導率kが極めて急峻に変化し、これに伴って基板温度
Tが極めて応答性良く制御されていることが確認され
た。
FIG. 5 shows the relationship between the elapsed time t in forming each of the above films, the substrate temperature T of the thin film process substrate, and the thermal conductivity k of the magnetoresistive effect member. As shown in this figure, it was confirmed that the thermal conductivity k of the magnetoresistive member changes extremely sharply by changing the magnetic field, and the substrate temperature T is controlled with extremely high responsiveness accordingly. .

【0041】このようにして形成された薄膜冷陰極素子
の特性は、素子のAu膜面に対向させて陽極を配置した
測定装置を用い、ITO膜とAu膜の間に周波数1kH
zのパルス電圧を印加し、Au膜と陽極間に数kVの直
流電圧を印加して、パルス電圧値と薄膜冷陰極素子から
の放出電子電流の関係を調べて評価した。
The characteristics of the thin-film cold cathode device thus formed were measured by using a measuring device in which the anode was placed so as to face the Au film surface of the device, and a frequency of 1 kHz was applied between the ITO film and the Au film.
A pulse voltage of z was applied and a direct current voltage of several kV was applied between the Au film and the anode, and the relationship between the pulse voltage value and the electron current emitted from the thin film cold cathode device was investigated and evaluated.

【0042】その結果、パルス電圧がppで120V程
度から電子電流が立上がり、最大で30nA/cm2
度の放出電流密度が得られた。次に比較のために図1の
スパッタリング装置によって従来技術に従って同様の薄
膜冷陰極素子を形成した。すなわちこの比較例において
は本発明の磁気抵抗効果部材を用いた熱制御は行わず、
成膜時の薄膜プロセス基板2の温度はZnS膜の最適条
件の160℃一定とし、他は全て前記した本発明の実施
例に従って実施した。
As a result, the electron current rose from a pulse voltage of about 120 V at pp, and an emission current density of about 30 nA / cm 2 at maximum was obtained. Next, for comparison, a similar thin film cold cathode device was formed by the sputtering apparatus of FIG. 1 according to the conventional technique. That is, in this comparative example, thermal control using the magnetoresistive member of the present invention is not performed,
The temperature of the thin film process substrate 2 during film formation was constant at 160 ° C., which is the optimum condition for the ZnS film, and everything else was carried out according to the above-described embodiment of the present invention.

【0043】このようにして形成された薄膜冷陰極素子
を、上記磁気抵抗効果部材を用いた温度制御を行った薄
膜冷陰極素子と同じ方法で評価したところ、放出電流の
立上がり電圧は180V程度と高く、また放出電流密度
も高々10nA/cm2 程度と低かった。
The thin-film cold cathode device thus formed was evaluated by the same method as the temperature-controlled thin film cold-cathode device using the magnetoresistive effect member, and the rising voltage of the emission current was about 180V. The emission current density was high and the emission current density was as low as about 10 nA / cm 2 .

【0044】この理由は薄膜冷陰極素子の心臓部である
電子加速機能を担うZnS膜だけを最適温度で形成して
も、電極膜や絶縁膜が最適温度で形成されておらず膜質
的に不十分な場合は、例えばZnS膜と絶縁膜の界面で
の電子蓄積機能、ITO電極の電気伝導性、Au膜の電
子トンネリング特性等のいずれかに支障を生ずるためと
考えることができる。
The reason for this is that even if only the ZnS film, which is the heart of the thin-film cold cathode device, which has the electron accelerating function, is formed at the optimum temperature, the electrode film and the insulating film are not formed at the optimum temperature, and the film quality is poor. If it is sufficient, it can be considered that, for example, any of the electron storage function at the interface between the ZnS film and the insulating film, the electrical conductivity of the ITO electrode, the electron tunneling property of the Au film, and the like will be hindered.

【0045】次にさらなる比較のため、やはり従来技術
に従って薄膜冷陰極素子を形成した。この比較例では各
膜の形成温度は前記した本発明の実施例と同じ最適温度
とした。ただし、本発明の磁気抵抗効果部材を用いた熱
制御ではなく、単に図1の赤外線ランプ5への通電電力
量の変化によって基板温度制御を実施した。
Next, for further comparison, a thin film cold cathode device was formed also according to the prior art. In this comparative example, the formation temperature of each film was set to the same optimum temperature as that of the above-described embodiment of the present invention. However, the substrate temperature control was performed not by the heat control using the magnetoresistive member of the present invention, but simply by changing the amount of electric power supplied to the infrared lamp 5 in FIG.

【0046】この例では膜と膜を形成する間は基板温度
が一定となるまでAr気流中で放置したが、高々20℃
程度の温度低下もしくは上昇するにも加熱系全体の熱容
量が大きいために10数分以上の時間を要した。
In this example, while the films were formed, they were left in an Ar stream until the substrate temperature became constant, but at most 20 ° C.
Even if the temperature is lowered or raised to some extent, it takes 10 minutes or more because the heat capacity of the entire heating system is large.

【0047】このようにして形成した薄膜冷陰極素子の
特性を上述としたのと同じ方法で評価した。この例で
は、電子電流立上がり電圧は上記本発明の実施例と同様
の120V程度の値となったが、放出電流密度の最大値
は20nA/cm2 と本発明の実施例で得られた30n
A/cm2 に至らなかった。
The characteristics of the thin film cold cathode device thus formed were evaluated by the same method as described above. In this example, the rising voltage of the electron current was a value of about 120 V, which was the same as that of the above-mentioned embodiment of the present invention, but the maximum value of the emission current density was 20 nA / cm 2, which was 30 n obtained in the embodiment of the present invention.
It did not reach A / cm 2 .

【0048】この理由はAr気流中といえども、Au膜
形成前のZnS膜を10数分間の長い間露呈していたこ
とによって、スパッタ室内部に残存する不純物、特に水
系不純物が膜表面に吸着し表面変質層を形成したためと
考えられる。
The reason for this is that, even in the Ar flow, since the ZnS film before the Au film formation was exposed for a long time of 10 minutes, impurities remaining in the sputtering chamber, particularly water-based impurities, were adsorbed on the film surface. It is considered that the surface-altered layer was formed.

【0049】以上のように、本発明の装置を用いた場合
には、従来の場合よりも応答性の良好な高精度の温度制
御が可能となることが確認された。上記した本発明の実
施例および比較例では、本発明の基板温度制御技術をP
VD装置の代表であるスパッタリング装置に適用した例
について詳細に述べたが、本発明はスパッタリング装置
以外の蒸着装置、MBE装置等のPVD装置、さらには
熱CVD、プラズマCVD、光CVD、MOCVD等の
CVD装置、さらにプラズマ重合装置、および、ミリン
グ装置、CDE装置、RIE装置、アッシング装置等の
薄膜加工装置等、全ての薄膜処理装置に適用可能なこと
は本発明の主旨から自明である。
As described above, it was confirmed that when the device of the present invention was used, it was possible to perform highly accurate temperature control with better response than in the conventional case. In the above-described embodiments and comparative examples of the present invention, the substrate temperature control technique of the present invention is applied.
Although an example applied to a sputtering apparatus, which is a representative of VD apparatuses, has been described in detail, the present invention is applicable to vapor deposition apparatuses other than sputtering apparatuses, PVD apparatuses such as MBE apparatuses, and thermal CVD, plasma CVD, photo CVD, MOCVD, and the like. It is obvious from the gist of the present invention that it can be applied to all thin film processing apparatuses such as a CVD apparatus, a plasma polymerization apparatus, and a thin film processing apparatus such as a milling apparatus, a CDE apparatus, an RIE apparatus, and an ashing apparatus.

【0050】また、本発明は実施例に記載した多層膜の
連続形成のみならず、単層膜の形成においても、基板温
度制御性の点から効果がある。さらに、多層膜の一括加
工、単層膜の加工においても同様であり、対象とする膜
材料にも特に限定されず適用可能である。
Further, the present invention is effective not only in the continuous formation of the multilayer film described in the examples but also in the formation of a single layer film from the viewpoint of substrate temperature controllability. Further, the same applies to the batch processing of a multilayer film and the processing of a single layer film, and the present invention is applicable without particular limitation to the target film material.

【0051】[0051]

【発明の効果】本発明によれば、高速応答性、高精度
性、大面積性のいづれにも優れた基板温度制御の可能な
薄膜処理装置が提供され、薄膜素子の高性能化、生産性
の向上が実現される。
According to the present invention, there is provided a thin film processing apparatus capable of controlling a substrate temperature which is excellent in high-speed response, high accuracy and large area. Is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係る薄膜処理装置を示す構
成図。
FIG. 1 is a configuration diagram showing a thin film processing apparatus according to an embodiment of the present invention.

【図2】図1の装置の水平断面図。2 is a horizontal cross-sectional view of the device of FIG.

【図3】本発明の装置に用いられた磁界によって熱伝導
率が変化する部材としての磁気抵抗効果部材およびその
上の薄膜プロセス基板上に形成された薄膜の一例を示す
断面図。
FIG. 3 is a cross-sectional view showing an example of a magnetoresistive member as a member whose thermal conductivity is changed by a magnetic field used in the device of the present invention and a thin film formed on the thin film process substrate thereon.

【図4】本発明の実施に使用した磁気抵抗効果部材の特
性の一例を示す図。
FIG. 4 is a diagram showing an example of characteristics of a magnetoresistive effect member used for implementing the present invention.

【図5】本発明の実施例に係る装置によって薄膜を形成
した場合の薄膜プロセス基板の温度履歴および磁気抵抗
効果部材の熱伝導率の変化を示す図。
FIG. 5 is a diagram showing changes in the temperature history of the thin film process substrate and the thermal conductivity of the magnetoresistive effect member when a thin film is formed by the apparatus according to the embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…磁気抵抗効果部材、1a…熱制御用基板、1b…磁
化回転膜、1c…非磁性金属膜、1d…磁化固定膜、1
e…磁化固着膜、2…薄膜プロセス基板、3…基板支持
台、5…赤外線ランプ、6…モータ、10…スパッタ
室、11…ガス導入系、12…ガス排気系、21…透明
電極膜、22…絶縁膜、23…EL膜、24…ガス放出
電極膜、41…電磁石、42…電磁石電源、71,7
2,73,74…スパッタリング源、81,82,8
3,84…スパッタリングターゲット、101,102
…スパッタ用電源。
DESCRIPTION OF SYMBOLS 1 ... Magnetoresistive effect member, 1a ... Heat control substrate, 1b ... Magnetization rotation film, 1c ... Nonmagnetic metal film, 1d ... Magnetization fixed film, 1
e ... Magnetization fixing film, 2 ... Thin film process substrate, 3 ... Substrate support, 5 ... Infrared lamp, 6 ... Motor, 10 ... Sputtering chamber, 11 ... Gas introduction system, 12 ... Gas exhaust system, 21 ... Transparent electrode film, 22 ... Insulating film, 23 ... EL film, 24 ... Gas discharge electrode film, 41 ... Electromagnet, 42 ... Electromagnet power supply, 71, 7
2, 73, 74 ... Sputtering source, 81, 82, 8
3, 84 ... Sputtering target, 101, 102
… Sputter power supply.

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 // G11B 5/31 M 8940−5D Continuation of front page (51) Int.Cl. 6 Identification number Office reference number FI technical display location // G11B 5/31 M 8940-5D

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 プロセス室と、この室内に設けられ、薄
膜プロセスが施される基板を支持する支持台と、該支持
台に支持された基板に薄膜プロセスを施す手段と、前記
支持台に磁界を印加する手段と、前記支持台の内部また
は前記支持台の支持面に設けられ、前記磁界を印加する
手段から印加される磁界によって熱伝導率が変化する部
材とを具備することを特徴とする薄膜処理装置。
1. A process chamber, a support table provided in the chamber for supporting a substrate on which a thin film process is performed, a means for performing a thin film process on the substrate supported by the support table, and a magnetic field on the support table. And a member that is provided inside the support base or on the support surface of the support base and whose thermal conductivity is changed by the magnetic field applied from the means for applying the magnetic field. Thin film processing equipment.
JP6318098A 1994-12-21 1994-12-21 Thin film forming device Pending JPH08176819A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6318098A JPH08176819A (en) 1994-12-21 1994-12-21 Thin film forming device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6318098A JPH08176819A (en) 1994-12-21 1994-12-21 Thin film forming device

Publications (1)

Publication Number Publication Date
JPH08176819A true JPH08176819A (en) 1996-07-09

Family

ID=18095469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6318098A Pending JPH08176819A (en) 1994-12-21 1994-12-21 Thin film forming device

Country Status (1)

Country Link
JP (1) JPH08176819A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5149285B2 (en) * 2009-03-02 2013-02-20 キヤノンアネルバ株式会社 Magnetic device manufacturing apparatus and magnetic device manufacturing method for film formation by sputtering
RU2626704C2 (en) * 2015-12-08 2017-07-31 Федеральное государственное автономное образовательное учреждение высшего образования "Белгородский государственный национальный исследовательский университет" (НИУ "БелГУ") Device of optical heating of the sample in magnetic reconciliation installations

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5149285B2 (en) * 2009-03-02 2013-02-20 キヤノンアネルバ株式会社 Magnetic device manufacturing apparatus and magnetic device manufacturing method for film formation by sputtering
EP2415898A4 (en) * 2009-03-02 2016-07-20 Canon Anelva Corp Substrate processing device, manufacturing device and manufacturing method of magnetic device
RU2626704C2 (en) * 2015-12-08 2017-07-31 Федеральное государственное автономное образовательное учреждение высшего образования "Белгородский государственный национальный исследовательский университет" (НИУ "БелГУ") Device of optical heating of the sample in magnetic reconciliation installations

Similar Documents

Publication Publication Date Title
US6478931B1 (en) Apparatus and method for intra-layer modulation of the material deposition and assist beam and the multilayer structure produced therefrom
TWI424081B (en) Protective offset sputtering
US8837924B2 (en) Vacuum heating/cooling apparatus and manufacturing method of magnetoresistance element
US20100000855A1 (en) Film Forming Apparatus and Method of Forming Film
US7156961B2 (en) Sputtering apparatus and film forming method
JP2005500644A (en) Method and apparatus for depositing a magnetic film
US5328583A (en) Sputtering apparatus and process for forming lamination film employing the apparatus
RU2550464C2 (en) Device and method for substrate fast heating and cooling and application of coating thereon in vacuum
US20050183945A1 (en) Back-biased face target sputtering based memory
US20200093027A1 (en) Substrate placement mechanism, film forming apparatus, and film forming method
US20030054133A1 (en) Apparatus and method for intra-layer modulation of the material deposition and assist beam and the multilayer structure produced therefrom
US20090199768A1 (en) Magnetic domain patterning using plasma ion implantation
US20150214473A1 (en) Method and system for performing post-etch annealing of a workpiece
US4994320A (en) Thin magnetic film having long term stabilized uniaxial anisotropy
US4399013A (en) Method of producing a magnetic recording medium
JPH08176819A (en) Thin film forming device
US6610373B2 (en) Magnetic film-forming device and method
JPH0572733B2 (en)
JP7036635B2 (en) Magnetic memory element, perpendicular magnetization film forming method, and magnetic memory element manufacturing method
WO2014157735A1 (en) Planarization method, substrate processing system, and memory manufacturing method
JP3241913B2 (en) Sputtering equipment
JP2001207257A (en) Method and system for manufacturing gmr film
JP5681879B2 (en) Method and apparatus for manufacturing perpendicular magnetic recording medium
JP2980266B2 (en) Sputtering apparatus for forming a laminated film of a magnetic thin film and a non-magnetic thin film
JPH04116160A (en) Film forming device

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050310

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20051215

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061017

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070117

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100126

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130126

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20130126